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Resonant acceptor levels in zero-gap semiconductors under uniaxial stress

G. Bastard
Groupe de Physique des Solides de l'Fcole Xormale Superieure, 24 rue Lhomond, 7523/ Paris 05, France

P. Nozieres
Institut Max von Laue-Paul Langevin, B. P. .156, Grenoble Cedex 38042, France

(Received 30 June 1975)

The variation with uniaxial stress of acceptor binding energy, as well as the natural level width, are calculated

by the resolvent method in the case of zero-gap structures. %'e have neglected the warping of the I „bands
and assumed a short-range impurity potential. %'hen the resonant level merges into the induced gap and

becomes a perfectly localized state, an anomaly appears in the stress dependence of the binding energy. A

phase-shift analysis of the problem is presented, which enables a complete discussion of the nature of the

impurity levels in zero-gap semiconductors.

In a zero-gap semiconductor, the impurity
levels interfere with a continuum of free states
and are then not strictly localized. " It has been
experimentally shown" that, in HgTe, the Hg
vacancies give rise to an acceptor state with 2.2-
meV binding energy. More recently, a model'
was proposed which satisfactorily explains the
existence of a quasilocalized acceptor state degen-
erate with the conductio~ band, but also shows
that donor levels interfering with the heavy-hole

valence band are always overdamped.
It is the purpose of this paper to extend this

model to the case of a uniaxially stressed material
in which, due to the breaking of cubic symmetry,
a finite gap has been opened between the I', valence
and conduction levels.

For stress parallel to the [111]direction, ne-
glecting warping and the linear k term, the disper-
sion relations of the I", bands are'

«, (k) =-,'(I, + 2iif)I'*([-.'(I. —.M)]'u'+ 2+ ~-.(L, -~)~2(3 cos2g

In E«l. (1), the hydrostatic shift corresponding to a
uniform motion of the bands has been omitted; 2A

is the gap between the conduction (+sign) and the
valence bands ( —sign) at it =0, and 9 is the angle
between k and the [111]direction. In the following
we shall restrict ourselves to the case b, &0, for

I

which the valence and conduction bands are pulled
apart.

In k space, the Dyson equation relating Go and

, the unperturbed and perturbed propagators, is
written

G „(k,k ) = G'„(V)V-„-„,+ g fd'I 'Co, (k)(k
~ V, (k")G„,(k",k'),

f ~ m

where i, j refer to the basis of the four Bloch
functions at k =0. In order to retain a simple al-
gebra, we assume a short-range interaction,
somewhat similar to the Slater-Koster potential, '

(k
~ V,.~

k') = Vd,.u(a) u(u ), (3)

where u(k) is an isotropic cutoff factor. In writing
Eq. (3), we assume a potential which is slowly
varying on an atomic distance a (as displayed by
the absence of nondiagonal terms, )em, that would
couple the various orthogonal Bloch states at the
center of the zone).

On the other hand, the potential is nearly local
on the scale of the bound-state radius ro, its range
being that of u„, which we assume to be «r, and
»a. (The cut-off is needed in order to avoid spu-

rious short-distance divergences. Qualitatively,
it accounts for the finite bandwidth of the host
material. )

To the extent that we are interested only in qual-
itative results on the damping and stress depen-
dence of bound s'tates, E«i. (3) may be viewed as a
rough model, where V is adjusted to reproduce the
correct zero-stress impurity level. In fact, the
use of a short-range interaction is not unreason-
able, in view of the large, screening present in
zero- gap materials. The main oversimplification
is the assumption that V (i.e. , screening) is
stress-independent, which is at best approximately
true.

The use of simple potential (3) allows us to take
an exact account of the I", symmetry of the band
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edge, i.e., of the intimate impurity coupling
between conduction and valence bands, which is of
primary importance in determining bound states.

The binding energy to the impurity is supposed
to be much smaller than the bandwidth, so we can
neglect the nonparabolicity of the band. Wherever
the k sums converge naturally, we drop the cutoff
factor u~, the latter is retained only in divergent
sums, where it essentially acts to renormalize
the strength of the potential V.

Within these simplifications, the solution of Eq.
(2} is straightforward. We define

G(J =Q G()(k, k')u bouge .

Equation (2) thus becomes a 4x4 matrix equation

(1 —VG )G =G, . (4)

Hereafter, the symbols A will define a 4@4 matrix
A. Equation (4) is to be compared to the secular
equation found by Mauger and Friedel. ' In Ref. 7(b),
the unperturbed propagator G,(k) was supposed to
be diagonal; thus, for each k, the basis is chosen
along the four eigenstates of H(k). In this k-depen-
dent basis, the matrix nature of the problem ap-
pears in the interaction V». , instead of G,(k). Of
course, the two approaches are up to that point
completely equivalent. The difference appears in
the choice of V. Mauger and Friedel take an arbi-
trary coupling matrix, depending on eventually
three parameters. We instead show that the inter-
action depends only on one parameter V, a fact
that is most easily seen in the Kohn-Luttinger
representation where V is scalar. In this sense,
our results may be viewed as a reduced form of
the Mauger-Friedel approach, where the rotational
structure of the eonduetion and valence bands is
fully exploited.

In practice, the Go and G matrices can now be
expressed in terms of E, G, H, and 5, defined
by Bir and Pikus',

d'k u'(k}X(k)
87f (e —E+)(E —6 }

H =(I- V&~-R)&.-G&+V(I&H&l'+ I&»l'), (5a)

& =(I —V&e —F&)(I —V&s —G&) —V'(I&» I'+ I&» I').
(6b)

From the identity (F& =&G), all the diagonal ele-
ments of G are found to be equal. Bound states,
if any, are given by the zeros of S(e). Mathemat-
ics are considerably simplified if we assume an
isotropic-band structure, characterized by the
approximate dispersion relation

e, = ,'(I. + 2—M)k' ~(d,'+ [-,'(I, —M)j'k')" .
Equation (I) is exact in the stress-free case (6
=0). In the presence of stress it yields the cor-
rect gap 2A at k =0, and the exact effective masses
at large values of k. On the other hand, the va-
lence-band anisotropic camelback has been lost,
and the dispersion relation of this band is now
nonmonotonic for all the directions. %'ith these
approximations &» =(H) =0, and the G and Go
matrices reduce to scalars. The solution of Eq.
(2} is then straightforward and yields

c =G,/(I —vc, ),

C, =&e-F&.

More generally, one ean calculate the density of
states brought about by the impurity

5p(e) =-(I/w) Im Tr(G —G,),
where the trace involves summation over k and
the four values of the angular momentum 2V~.
From Eq. (2), we see that

G(k, k') —G,(k)5-„g = Vu(k)u(k')G, (k)(1- VG, ) G.(k').

As (Go)' = -(8/se)GO, we finally obtain

4 8
5p(s) = ———Im ln(1 —VG, )

77 BE'

Go=

1 (H+& H6=-
&I*& 0

0 &I+& &-H*&

& -H&

&. —G& &H&

&H+& &e —F&

&I*& 0 ( -F& &-»
&I'& &-H*& ( -G&

(5a}

(5b)

or
4 8

5p(~) = ———5(e),
w 86'

where 5(e) =arg(1 —VG, ) is the s-waves phase
shift produced by the potential.

A bound state will occur for an energy &0 such
that 5(e,) =-,'v and its width I' will be given by

—1mG, (e,) (1
d5(e) '='0 (d/de}Re 0(e) I =,

1. Zero-stress ease

Any root of S(e} is necessarily fourfold degen-
erate. For instance, for a strong enough repul-
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sion, we find a bound state with an energy e, +iTO

given by

——+ —=Pm„3~'(v e~)
V V, " 2e n&„

where

1 m„—m,
V, 2m A

In obtaining Eq. (11), we have used the following
approximations:

"u~k dk
Qg, tR —E'

6+ QIc A
~ (12}

The cutoff, i.e. , the finite bandwidth, only enters
in the first term, which is & independent, and acts
only to correct the potential strength V. In fact,
physical quantities such as the phase shift may be
expressed in terms of e„rather than V, according
to

m t'"~&
5(e, e,) =arctan —,e &0,

2 gE' —V 60
(13)

5(e, e,) =-arctan —,i, , e &0,
v'co + I;

where t=m, /m„. This result is only valid near
&=0. Away from the origin, the cutoff ensures
6(+~) =d(-~) =0. Such a feature applies in all
cases, whether there exists a bound state or not;
the strength of the coupling only enters in a scale

of energy for the density of states.
There are essentially three cases, which for

m, /m„«1 correspond to the following situations:
(a) V&V„ leading to a fairly sharp resonance in

the conduction band, (b) 0&V&V, , corresponding
to a non-resonant repulsion, and (c) V&0, where
no resonance occurs.

The corresponding behavior of the phase shift
is sketched in Fig. 1. Note that in case (a), the
phase shift goes through —2n on both sides of the
origin; however, the very high damping for e &0

completely kills the resonance.
Well-defined bound states only exist for V) V, .

They always correspond to acceptor states, since
the resonance is taken away from the valence band.
Indeed, the number of states drawn from the va-
lence band to the impurity is

0 4
ap(e)de =+ -5(0}=+ 4 in case (a) .

17

These four states are precisely transferred into
the resonant state for & &0.

2. Finite stress

The twofold solutions of Eq. (11), corresponding
to four states because of the Kramers degeneracy,
would split into two doublets if the dispersion re-
lations we use were the exact ones. Within the
approximation of Eq. (7), the two doublets remain

degenerate, mith an energy e = xE„which is the

root of the equation

4f W "[x(I+ f')/2f) r. '+ (1 —f )(D' —x')
z '+ 2z'x(1 —t) + 4f(D' —x')

(b)

0+5-

0
b
TT

-0 5

F IG. 1. Phase-shift energy dependence in the three
cases discussed in the text; (a) V & V„(b) 0 & V & VQ f

(c) V&0.

where D =a/e, and e, has been defined in Eq. (8).
Figure 2 presents the x(D) variation. When the

acceptor level merges into the induced gap, i.e. ,
when x &D, one observes a kink in the x(D) depen-
dence. This corresponds to a transition from a
resonant state to a localized state which is obtained
in numerical calculations by replacing in Eq. (14)
a Cauchy principal part, when x «D by a true defi-
nite integral mhen ~ «D. It should be stressed that
this singularity reflects the singularity of Re Go
itself and thus necessarily occurs.

For practically all stress values, the acceptor
level follows the downward shift of the valence
band. Only when it is inside the gap, but very
close to the conduction band, is its position in-
fluenced by both bands. This result is a conse-
quence of the large ratio between the two effective
masses.

As long as g «D, the acceptor level has a finite
width which can be calculated from Eq. (10). Fig-
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FIG. 2. Acceptor energy
& (in units ~p) measured
from the top of the valence
band at zero stress, as a
function of the applied
stress, The binding ener-
gy R*(~) with respect to
the k =0 extremum of the
valence band is such that
R*(A) =6+@(D).

Kp

ure 3 presents the variation of I"/e, with D As.
expected, I /e, goes to zero when D increases
until the level merges into the gap where I' is
identically zero. This behavior is apparent in Eq.
(10) as I' is directly proportional to the conduction
band density of states.

An interesting point is to observe that, even
when the localized level is very close to the con-
duction band, it remains an acceptor state as
shown by the phase shift variation sketched on Fig.
4; this state is always built from valence-band
states.

The same kind of anomaly in the binding energy
of acceptor states could be observed near the
semimetal-semiconductor transition in Hg, „Cd„
Te alloys. In the semiconductor configuration,
near the transition point (x~ 0.16), the I', conduc-

tion band and the acceptor level belonging to the
r, valence bands are degenerate. "From the
previous discussion, this level depends mainly on

I

0 &a

0.5-

I I I

-BP E xylo

ii S

xg CQ

0.5 05-

h

0 I I I I I I I i I I I Zo
0,2 0.4 0.6 0.8 1 12

FIG. 3. Width of the acceptor level as a function of
the stress.

0 xC

FIG. 4. Energy-dependence phase shift produced by
an acceptor level with an energy &&

p for different values
of the stress: (a) b, =0; (b) 6&xEp (c) A&xcp.
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the valence-band posltlon. By Mcreaslng &) ol
applying a hydrostatic pressure the acceptor will
fall inside the I;-I; gap, and at this point its posi-
tion will become influenced by all the bands, until
the I',-I', gap is large enough to stabilize the level
at a rather fixed distance of the valence band.
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