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Simple model of multiple charge states of transition-metal impurities in semiconductors
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The Anderson model for magnetic impurities in metals is extended to semiconductors. It is shown how self-
consistent Hartree-Fock solutions can exist in the gap for many different charge states of the impurity,
providing the matrix elements coupling the impurity and substrate are large enough.

INTRODUCTION

In contrast to the shallow hydrogenic impurity
states resulting from doping semiconductors with
impurity atoms having similar pseudopotentials to
their host, doping with transition metals gives rise
to a remarkable sequence of levels deep in the gap,
corresponding to often as many as five different
charge states of the impurity. (See, for example,
Ref. 1 for a chart of such impurity levels. )

Spin resonance studies show that the electronic
configuration of the impurity atom can be chosen
to be compatible with measures S,J values by a
s imple phenomenolo gical model: in substitutional
impurities, enough d electrons to satisfy bonding
requirements are promoted to sp3 orbitals; in in-
terstitials, all valence electrons go into d orbitals.
The occupation of the d states then varies as elec-
trons are accepted or donated. The ESR studies
indicate considerable hybridization between the d
orbitals of the impurity and the band states of the
substrate semiconductor.

In view of the fact that the energies separating
different charge states of the free atom are of the
order of tens of volts, it seems remarkable, even
allowing for dielectric screening, that such differ-
ent charge states as, for example, Aua and Au'

can occur in the O. 8-eV gap of germanium. The
key to the understanding of these states lies in the
hybridization which allows the nominal occupancy
of d-like states to vary considerably, while keeping
the actual amount of charge in the core regions of
the transition-metal atom almost the same as in
the free atom.

We have developed a simple model which shows
how the impurity can bind many electrons or holes
without this actual charge on the impurity atom it-
self changing by more than a fractional amount.

I. MODEL HAMI LTONIAN

The magnetic properties of transition-metal im-
purities in nonmagnetic metals are usually under-
stood by means of the Anderson Hamiltonian '

(We use a simplified version of the usual Hamilto-
nian here, only keeping the dominant Coulomb term
U in the two-particle part, and omitting the ex-
change term J.)
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We will use it, suitably reinterpreted, to investi-
gate the properties of these impurities in semi-
conductors.

The E~ and n~, are the energies and occupancies
of free-electron-like states of the substrate semi-
conductor. In a metallic model, this density of
states is usually taken to be constant; to model a.

semiconductor, we have introduced a gap. For
simplicity, the matrix elements P ~ mere taken to
be independent of m and k. Ed and n, refer to a
set of localized orbitals on the same site, for ex-
ample, the 10 nearly degenerate orbitals I mo) of
Mn on a cubic impurity site. U is the strong in-
tra-atomic Coulomb repulsion between electrons
localized in d orbitals in the core of the atom.

The main omission in (1) is the Coulomb inter
action between electrons in I k) states, and in I k)
and I d) states. This can partly be allowed for by
reducing U, and treating it as a net extyg repulsion
between electrons in the very localized 0' states.
This, however, still fails to treat the long-range
part of the Coulomb interaction due to a net charge
localized in the surroundings of the impurity. This
will only have appreciable effect on highly charged,
weakly bound states of the impurity, as energies
associated with this long-range force are of the
order of (charge) times the appropriate rydberg
for the semiconductor.

Other omissions such as the exchange energies,
and differences in U for interactions between elec-
trons in different m states, which determine the
actual state I.SJ of the free atom, only affect de-
tails, and could be included as perturbations.
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To model the band structure, we chose a con-
stant density of k states p~ with a gap between the
valence- and conduction-band edges at E„and E,.
These sharp band edges guarantee a pole in the
final density of states in the gap for each of the 10
7na values.

The impurity atom is characterized by the pa-
rameters E„and U, the semiconductor by the gap
width e, —&„, and the interaction between k and d
states by the quantity & =7t l V„~l p~,' together,
these four energies completely determine the
model.

The model has been solved in the Hartree-Fock
approximation, for a series of states with different
numbers of the 10 poles in the gap occupied, and a
range of different values of the four energies de-
scribing the atom, semiconductor, and interac-
tion. Whether states corresponding to donor and
acceptor levels were bound, and at what energy,
was determined by examining the differences in the
total energy of solutions with different numbers of
electrons; since the amount of hybridization
changes a great deal as occupancy changes, Koop-
mans theorem is inappropriate here.

Over a large range of the parameters, multiply
charged states in the gap were found.

II. DETAILS OF METHOD USED TO SOLVE HAMILTONIAN

A. General

The Hamiltonian was solved in the unrestricted
Hartree-Fock approximation (HFA), using a
Green's-function method. First, a single-particle
effective Hamiltonian was solved in terms of the
parameter E",':

The parameters E",' must be determined self-
consistently from

where Z, was the contribution to (n, ) from hy-
bridization between d states and states of the oc-
cupied valence band, and Z was the residue of the
pole of G, (rrr) in the gap, which might or might not
be occupied, depending on &F.

Self-consistent solutions with different occupan-
cies of the ten poles in the gap were found, and
their total energies evaluated in the HFA. In
Hartree-Foek, summing the single-particle ener-
gies double counts the two-particle terms, so we
must subtract one half of these from the sum to
get the total energy of the system in the HFA. The
single-particle energy was further broken down
into two parts: the band-structure energy contri-
bution from the occupied orbitals of the valence
band, and the energies of occupied poles in the gap
at a~', where

&ms ~(~me) Eeff 0

The total energy is

QVE"' = —Im
~

v Tr G(ur) d~+
+ «OO ma' occupied

maAm'a'
(10)

TrG = TrG + g —In[&a —E",' —g(a)],
ma d&

where G (u) is the Green's function for the pure
semiconductor. Hence

Since we are only interested in changes in the
total energy as we add electrons to the system (and
also as in our simple infinite-bands-with-a-gap
model, the band-structure energy is infinite), we
need only examine how the band-structure energy
changes with the E','. From Appendix A we see
that

Em", =E„+U nm,
maAm'a'

(n, ) was calculated from (2) using

1 rEF
(n, ) =-Im ' G .(&u)d(u,

71 «OQ

where (see Appendix A)

G„.((o) = [(u —E",' —Z(~)] ',
~( )

CO —Eg

(n, ) was broken down into two contributions:
pe

Z, (E„",') =—Im ' G,((o) d~,
7l «ce

fee
Z(E",') = —Im

J G,(~) d&,
7t

(3)

(4)
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=Z, (E",') . (12)

Thus we arrive at

E ff
E"=g I Z, lEtdE ~

ma ma occupied

—~U n, n .; +const.
ma Am'a'

(13)

Given the set of E",', it is now trivial to evaluate
the relative total energies for different self-con-
sistent solutions.
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B. Particular details of our model

y = x+(E~+ 9U [Z, (x) + Z(x)]j/(10 —n„),
x =y+ [E~+9UZ, (y)]/n„~

(16)

(17}

These equations are easily solved, subject to the
condition x & y & x+ U for physical solutions. In
every case a unique self-consistent solution was
found.

In our model, Z((()) becomes (see Fig. 2. )

(18)

where (p~ is the constant density of states in the
semiconductor bands)

~ —&lI'), ul p), ~

We write Z((d) as Z'((())+i&(~), where

(19)

(d —E,Z'((u) =—ln
7T CO —E„

(d&&v& (d) Ec&
&(~) =

0, &„&(0&6, .

(20)

The solutions we looked for were simple in form,
and certainly unique in the nonmagnetic region (see
later); n„of the 10 ma states had a degenerate,
occupied pole in the gap, and the other (10 —n„)
had a degenerate, unoccupied pole in the gap above
the first one. (See Fig. 1.) In this case, (3) takes
on a particularly simple form

x =E~+ U((n„—1)[Z|(x)+Z(x)]+(10 —n„)Z&(y)f, (14)

y = E~+ U{n„[Z~(x)+Z(x)] + (9 —n„)Z, (y)j, (15)

where x and y are the values of E",' for the states
with occupied and unoccupied poles in the gap.
Z, ((d) and Z((d) were tabulated, and are the charac-
teristic functions of the problem. Equations (14)
and (15) can be transformed from implicit to ex-
plicit form

Then Z, (E",') and Z(E",'), which must be calculated
numerically and tabulated, are given by

ev b,
Z, (E~()') =—

[ Eeff i( }]2 &2 da (21)

and, since in the gap the integrand becomes a 5
function at (d~' with strength Z,

(22)

where (d~
' is the position of the pole in the gap,

given by (9}(see Fig. 3}.

III. RESULTS OF CALCULATION

The types of solution of (2) and (3) for various
values of the parameters describing the problem
fall into two regimes, according to a criterion
similar to that deciding between magnetic and non-
magnetic solutions in the problem of local moments
on impurities in metals.

For 4 & U/x, the weak coupling limit, the ground
state of the impurity resembles the free atom,
with at best one or two bound levels in the gap ap-
pearing as & increases. The total energy of self-
consistent solutions of (3), as a function of the
number of bound electrons n„has a pronounced
minimum near the valency of the neutral free
atom (Fig. 4). As & approaches the transition re-
gion & - U/v, this minimum disappears (Fig. 4} and

all ten possible charge states of the impurity can
be bound in the gap by varying the Fermi level
(Fig. 5). As & becomes the dominant term in the
three energies (U, b, gap width} characterizing
the problem, the levels in the gap become a 10-
degenerate level repelled to the gap center by the
band edges. In this limit many-electron effects on
the impurity atom become negligible, since Z, the
fraction of atomic d orbital in the localized gap-
state wave functions goes to zero. The dominant

oulomb terms in this limit are the long-range
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FIG. 2. Self-energy
function Z(~) and position
of pole in gap.

Z'((u} = Re Z (~)

fi(&u} = Im Z (cu)

ones omitted in our model Hamiltonian, and the
model clearly becomes unphysical in this extreme
limit.

Examining the variation of the charge in the core
regions of the atom, as occupancy n„of d-like gap
states changes (Fig. 6), we notice that the self-
consistency requirement prevents this char ge
from varying by more than a fraction of an elec-
tron throughout the whole series of 10 levels.

This is the key to understanding how so many
valence states are energetically available to the
impurity. Adding an electron increases the charge
by Z; this is compensated by an upward shift of the
level of the pole of G(e) in the gap, which reduces
Z„ the contribution to the d occupancy from hy-
bridization with valence-band states, by exactly
the right amount: whatever the valence, the charge
on the impurity can remain close to neutrality.
The extra charge is localized in the long hydro-
genie tail regions of the impurity wave function.

The effect of changing U in the calculation is
shown in Fig. 7. U is half of its value in the pre-
vious calculation (Fig. 5). (Ed is also halved to

keep the atoms comparable. ) The main difference
in the results is that the transition value of &, U/v,
is halved. The insensitivity of the strong coupling
regime to U is apparent in the similarity of the re-
sults for && U/a' This reflects the increasing ir-
relevance of the intra-atomic two-electron term
in this limit.

IV. DISCUSSION

The point we wish to demonstrate in this calcu-
lation is that localized systems where correlation
and other many-electron effects are important,
hybridizing with a substrate system of extended
states, may have properties that can be described
by the occupation of orbitals with a fraction Z of
local character. The occupations of these orbitals
can differ greatly from those we expect intuitively
from charge neutrality, etc.

Our model leaves out many features, notably
exchange interactions (filling of d levels in the ex-
perimental results of Ref. 4 is in accordance with
Hunds rules —spin is maximized), and symmetry
effects (d levels split into T2 and E branches in

1.0

FIG. 3. Typical form
of Z~(E', ) and Z&(E'~)

0.0 I I

~v ~c eff
E mcus
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FIG. 4. Total energy of
self-consistent solutions
(3) as number of bound
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cubic symmetry: only Tz symmetry states couple
to the valence band in diamond-structure semi-
conductors).

Only the omitted long-range Coulomb effects will
involve effective masses and details of the band
structure, which are not important in treating ef-
fects of self-consistency on the central atom (mod-
ifying the square edged density of states with a
quadratic termination has little effect on the re-
sults of this calculation).

We expect our model to be reasonable physically
in the region of & around U/m or smaller. For
example, substitutional gold will have seven d
electrons in its neutral state: Figs. 5 or 6 com-
pare reasonably with gold in germanium, (Ref. 1)
for & in the tra. nsition region.

We expect that these ideas on the importance of
treating interacting local and extended systems

APPENDIX A: GREEN'S FUNCTIONS FOR ANDERSON
HAMI LTONIAN

H =~ EyFLy+~ Em m + ~ Vymcycm + Vmycmcy ~

m Q~ nt

single-particle effective Anderson Hamiltonian
(spin indices suppressed). From (u —H)G = I, we
obtain

(e —e„)Ga~. —Q V„~Gm~. = 5~a (A1)

((u —e~)Gq -Q V~ .G .„=0, (A2)

self-consistently may also be applied to such prob-
lems as the states of molecules adsorbed on cata-
lytic surfaces, transition-metal ions in enzymes,
etc.

Ec

FIG. 5. Bound states
in the gap for a given rnod-
el atom and semiconductor
as a function of &.

DONORS

0 +0.5 I.O XI.5 2.0 2.5X 3.0 X3.5 4.0 4.5 +5.0
VALENCE BAND



2558 ANDERSOND P.DANE ANp D-

Q

7.0

V&pi&tio+ oF&G-
. tge dtgj[ cha&gthe ~ .

h ~ for gi&e+
~m Sem&'con &c

2.O

g y„,.Gg a (AS)

(A4)

(A8)g( g,)]G m

G g

+llew

(~ E )Gmm

A4), we ~e(A2) and("",
. (A5)

Using

p(Z(d —
m m

m'

5ppgndsQpw» »~metry g

v ~~. '=z. +~
(d

an

~(~) ~

d(e)h«' '
QJ —+m

ents

G m'

)the oj(AS) ~e ~jn Aj
pf 6

y, V~'
G

~gk'
+

q CO
Gyp

(g If' m

~

the tI'. ace pf 6»E~gluat~ng

(AQ)

„,gG.. Z
m

l ~m&
G

I,g(i.g ( e,)'QP

z. -&-) ';...g( ——,". -)
m

~ (AgQ)jn[(d Em-'gl G +
d(d

thp&t

»»I

s stem w~,t nfen's «nc 'P
. elf-ene~g~j1npnl 1 p

hj$aj ) m)imP&~t~pn «&

H~s
RONS

I~PU ]eve&p')G ~ 7'
h@]f of~heilSoheme ~

the &~ $Il



13 SIMPLE MODEL OF MULTIPLE CHARGE STATES OF 2559

"Work supported by SRC Science Research Council.
tWork performed while on leave at Cavendish Labora-

tory, Cambridge, England; supported in part by the
Air Force Office of Scientific Research under Grant No.
AFOSR 73-2449.

~S. M. Sze and J. C. Irvin, Solid-State Electron. ~11

599 (1968).
G. W. Ludwig and H. H. Woodbury, Solid State Phys.
13, 263 (1962).

3P. W. Anderson, Phys. Rev. 124, 41 (1961).
P. W. Anderson and %. L. McMillan, in Proceedings
of the Internationgl Sckool of Physics "Enrico Fermi. "
XXXVII, The Varenna summer school, 1966, (Aca-
demic, New York, 1967), pp. 66, 67.

The only symmetry not destroyed by the impurity atom
is the point group about the impurity site. (Valid for
an isolated impurity only. ) Analyze each degenerate
set of k states onto symmetry representations k~: the
m states are members of one representation of the
point group, that is why they are degenerate, so each
m corresponds to a different n:

~w~am~ = g (m ] H ( kQ) (kG i Hi m')
CO

(m/Hfke) /

ke ~ ~k


