
P HYSICAL RE VIEW B VOLUME 13, NUMBER 6 15 MARCH 1976

Orbital nonorthogonality effects in band stuctures: Bond orbital model
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An approximate method to correct band structures for the effects of the nonorthogonality of a basis set
consisting of degenerate orbitals is derived and applied to the bond-orbital model for tetrahedrally coordinated
semiconductors. It is shown that the band structure corrected for the nonorthogonality of the basis orbitals is

approximately related through a simple transformation to the band structure calculated by disregarding the
nonorthogonality. Expansion of this transformation shows that nearest-neighbor overlap can produce terms in

the band structure which are similar to those produced by more distant-neighbor interactions. For the bond-
orbital model, the most important effect of nonorthogonality correction is to increase the curvature of the p-
like bands at I, bringing the overall agreement of the model band structure into still better agreement with

experiment.

I. INTRODUCTION

In tight-binding energy band-structure calcula-
tions, the nonorthogonality of the basis orbitals on

different sites introduces computationally trouble-
some energy-dependent off-diagonal terms into the
secular equations. ' Here, we show that the non-

orthogonality of degenerate atomic orbitals on

adjacent sites can be taken into account approxi-
mately, so that the band structure including non-

orthogonality effects can be expressed analytically
in terms of that calculated by disregarding the
nonorthogonality. It is shown that the effects of
nonorthogonality on the band structure are similar
to those induced by more distant-neighbor interac-
tions. The most notable improvement of the en-

ergy bands of the bond-orbital model2 9 brought
about by consideration of the nonorthogonality is
the decrease of the effective masses of the p-like
bands at I', while the over-all good description of
the band structure achieved previously is still
maintained.

II. NONORTHOGONALITY CORRECTION: FORMALISM

In this section, we discuss an approximate,
but simple, method to correct the band struc-
tures for the neglect of the nonorthogonality of
the degenerate basis set. Although we shall
apply the results of this section to the bond-or-
bital model, the formalism is more general and
can be applied to other cases, such as d-band
metals.

We assume that the solution to Schrodinger's
equation can be expressed as a linear combina-
tion of atomic orbitals. The general matrix equa-
tion operating on the coefficients of the atomic or-
bitals for an arbitrary point in k space including
nonorthogonality of the basis set takes the form

I(E —Eo) g =IH- S(E-Eo)](&

where H and S are the Coulomb-interaction and
charge-density overlap matrices, respectively, be-

tween orbitals that lie on different sites. There-
fore, the H and S matrices contain no diagonal
terms involving the same orbitals on the same
site, but do contain nonvanishing H;; and S;; terms
which involve the same type of orbital, but each
type of orbital on a different site. The symbol I
is the identity matrix. The constant Ep corresponds
to the energy of the isolated atomic orbitals, which
are all degenerate. The constant E corresponds
to the energy eigenvalues of the matrix equation.

It is difficult to solve Eq. (1) in general since the

S;,. terms produce off-diagonal energy-dependent
terms; usually, these terms are neglected in order
to simplify the calculations. The energy-dependent
off-diagonal terms may be eliminated with the
Lowdin scheme, which involves a recalculation of
the interaction matrix H as a power series in the
overlap parameters and therefore is still only ap-
proximate. The scheme that we shall introduce is
far simpler, but not as generally applicable as
Lowdin's scheme.

We now add and subtact pH(E —Eo) from Eq. (1)
to obtain

I(E —E ) &t&
= (H + n, H) (,

where

Ho = H[1 —p(E —Eo)],

n H = pH(E —Eo) S(E Eo)

and p is a constant to be chosen so as to minimize
the effects of the nonorthogonality. The motivation
for manipulating the matrix equation in this manner
is that there should be some degree of proportion-
ality between the charge-density overlap matrix
2nd the interaction matrix. When they are exactly
proportional, there is some value of p for which
&H vanishes and Hp becomes the exact matrix
operating on g.

If the effect of &H on the eigenvalues of Hp can be
neglected, the eigenvalues Eq. (1) would be given by
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f(E-Eo)g=&oe .

Since E —Eo and I —p(E —Eo) are constants, we can
dividebothsides of Eq. (3) by thefactor 1 —p(E —Eo)
to obtain

IE'g = Hg,

be a minimum, we obtain

PEio

This definition of p depends only upon the diagonal
components of 5 represented in terms of the eigen-
functions of (4). In the case for which

(E Eo)
l-p(E-E, )

'

Equation (4) is precisely the form of the matrix
equation obtained under the assumtpion that the
overlap terms are zero, i.e. , the basis set is
orthogonal. Ne have chosen the zero point of the
energy E to be equal to that of the isolated orbital.
Since the energy of the atomic orbital Eo has been
absorbed into the definition of E', E' cannot be
arbitrarily shifted but is nom defined by the abso-
lute values obtained by solving Eq. (4). The eigen-
values of Eq. (3) are related to those of Eq. (4) by

Ef
E= —,+Eo. (5)1+pE'

Thus, the charge-density overlap is very easy to
include, since the band structure calculated, taking
into account the nonorthogonality, can be expressed
in terms of that calculated disregarding the non-
orthogonality. The nonorthogonality correction
does not depend upon the detailed nature (e. g. ,
symmetry) of the wave function, but only upon its
energy. Furthermore, the eigenfuoetions of Eqs.
(3) and (4) are identical.

A crucial restriction needed in the derivation of
the transformation is that all of the isolated atomic
orbitals have the same energy and that crystal-
field splitting does not remove their degeneracy.
If nondegenerate orbitals mere considered, the
matrix IEo mould be replaced by another diagonal
matrix in mhich the elements mould not all be the
same. For this case, it is obvious that the simple
transformation given in Eq. (4) is not applicable.

%e have been unable to derive a simple transfor-
mation for the general ease of an arbitrary number
of nondegenerate orbitals. A quadratic transfor-
mation can be derived mhen sets of orbitals having
tmo energies are used, provided that these tmo sets
of orbitals interact mith each other, but not among
themselves. It appears that the general transfor-
mation lf it exists ls a polynomial of 01 der N
mhere N is the number of different orbital energies.

%e nom discuss a procedure by mhich p can be
chosen. When the eigenfunctions for Eq. (4) have
been calculated, me might mish to minimize some
average moment of the matrix ~H over the energy
bands. For example, by requiring that

i.e. , the overlap matrix is proportional to the
interaction matrix, choosing p=X makes 4H
vanish and the overlap correction as given by Eq.
(5) becomes exact. If the interaction and overlap
matrices are dominated by one term, S ~ and
H ~, then p can be taken approximately as

From this simple expression me see that p is ex-
pected to be a negative quantity, since a positive
charge-density overlap usually implies a corre-
sponding negative interaction integral.

III. GENERAL FEATURES OF THE NONORTHOGONALITY

CORRECTION

In this section, me discuss the general features
of the nonorthogonality correction as given by Eq.
(5). Section IV shall present some numerical
examples on the bond-orbital model mhich demon-
strate these features more explicitely.

As a check on our formalism, me consider the
trivial case of tmo equivalent orbitals interacting
via a potential matrix element V (e.g. , the hydro-
gen molecule); the resulting energies are according
to Eq. (5)

E=~ V(I+ pV).

This gives back the well-known result that the ef-
fects of the overlap are to increase the energy of
the antibonding states more than that of the bonding
states. "

Since the correction for nonorthogonality depends
only upon the energy, the density of states including
nonorthogonality corrections, N(E), is conveniently
related to the old density of states deduced by dis-
regarding the nonorthogonality, N'(E'), by the ex-
pression

iv(E) = iv'
1 —p(E -E )) [( -p(E -ED)(

Since p is negative, the bands are stretched in
energy where E(k) &Eo, and flattened where E(k)
&Eo. As consequence of the fact that the bands are
stretched more than they are flattened, the center
of mass of the corrected density of states no longer
corresponds to that of the isolated atom, but is
shifted upward in energy by - —p ((E')2).

It is easy to show by differentiation of Eq. (5)
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that the effective masses at all critical points
corrected for the nonorthogonality are given by

1 1 ' 1
m m (1+pE')~ (8)

V coskt2

1+pVcoskg ' (9)

By expanding the denominator, one finds that the
band structure as given by Eq. (9) contains all
Fourier components, and not just a single coska
term. When the nonorthogonality is neglected,
such as in the Slater-Koster method, ' higher-order
Fourier terms arise only when interactions be-
tween more distant neighbors are taken into account.
As this example demonstrates, however, similar
higher-order Fourier components can arise from
nearest-neighbor overlap terms. This points out
the possible dangers of interpreting correctly cal-
culated band structures in terms of a simplified
tight-binding model in which overlap effects are
not properly taken into account.

IV. OVERLAP CORRECTIONS IN THE
BONDARBITAL MODEL

where (1/m)' and E' are the effective mass and
energy calculated ignoring the overlap terms. In
general, for E'(0) &0, the overlap correction in-
creases both the bandwidths and their curvature.
However, comparison of Eqs. (5) and (8) shows that
the curvature at the top of the band is increased by
a larger factor than the corresponding bandwidth.

In the tight-binding approximation for the s band
of a linear chain of atoms, with interactions re-
stricted to nearest neighbors only, the form of the
energy dispersion neglecting the nonorthogonality
of the s orbitals is

E'(k) = V coska,

where ais the nearest-neighbor separation. Taking
into account the nonorthogonality, the band struc-
ture becomes via Eq. (5)

effective masses at I' into better agreement with
more sophisticated calculations.

The basis set of the bond-orbital model consists
of four tetrahedral bonds in the unit cell, which
connect each atom with its four nearest neighbors.
In terms of atomic orbitals, such bonding orbitals
are constructed by taking tetrahedral sp hybrids on
each type of atom and forming the bonding combina-
tion between nearest-neighbor atoms. The anti-
bondinglike combination is projected to much higher
energy and can therefore be neglected when con-
sidering only the valence bands.

The valence-band structure of Ge and Si which
we shall consider here has already been presented
in Ref. 9 using only two interaction parameters:
Vo, the interaction between two bond orbitals meet-
ing at an atomic vertex, and V2, the interaction
between second-neighbor bond orbitals that are
parallel to one another.

In the energy bands of the bond-orbital model
for Si to be presented, we have chosen a value of
p = 0.1 eV ', which is about twice as large as that
which we calculate for the nearest-neighbor bond
overlap of Si using the overlap tables of Mulliken
et al. ' We may consider this parameter to be
absorbing to some extent the effects of interactions
with more-distant neighbors and of basis functions
not explicitly included. Our primary purpose here
is not for quantitative accuracy, however, but
rather only to display the qualitative effects of the
nonorthogonality correction.

In Fig. 1, we compare the band structure calcu-
lated for Vo= —1.5 eV, V&=0, with p=O and —0. 1
eV . Since only one interaction parameter is in-
volved, there is some p for which Eq. (5) is exact.
Without the interaction between second-neighbor
bond orbitals, Vz, two flat p bands are obtained,
as has been noted in previous works. The lower
two bands are not in good agreement with photo-
emission experiments. The separation of the

In the remainder of this paper, we shall illustrate
the effects of the overlap correction by considering
the band structures of Si derived from the bond-or-
bital model. Recent works ' have shown that the
bond-orbital model, with just a few adjustable pa-
rameters extended to second-neighbor bonds, gives
a surprisingly accurate description of the energy
bands calculated with much larger secular equa-
tions. The only major defects of the model are in
its failure to describe the middle P-like band along
the Z axis and the effective masses of the p bands
at r." pantelides and Harrisonv suggest that
these defects are due to the neglect of interactions
between more distant bond orbitals. Here we show
that inclusion of the nooorthogonality brings the

Overlap neglected (——j
and included ( )

//

r
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REDUCED WAVE VECTOR

FIG. 1. Valence bands of the bond-orbital model
calculated for V&=-1.5 eV, V2=0, with p=0. 0 (dashed
line) p=-0. 1 (solid line).
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lomer tmo bands at L is equal to one-half the total
bandmidth, mhereas it should be —,

' this amount; the
point X at mhieh the lower tmo bands meet lies mid-
may between the tmo 1" points. The correction for
the nonorthogonality does not remove the flat p
bands, but it does decrease the separationof the
bands at I. and lomer the X point, tending to bring
the shape of the bands into better agreement with
experiment. (Rescaling of the width of the cor-
rected band structure should bring it into very
good agreement with the experiment. ) As will be
seen shortly, the second-neighbor interaction V2

produces simQar changes in the lower bands.
If this overl. ap correction is primaxily responsible

for these improvements, then it is less likely that
dihedral rotations, as suggested earlier, are im-
portant in sxnearing the tmo-peak structure in the
lower valence bands of the amorphous form. The
Weaire-Thorpe model, therefore, has an even
greater degree of validity for the valence bands
than previously believed.

In Fig. 2, the band structure calculated without
the nonorthogonality correction (henceforth re-
ferred to as I) was adjusted to fit the orthogo-
nalized-plane-wave (OPW) band structure of Her
man. Considering the simplicity of the model,
the agreement is remarkably good, except in the
5 direction mhere the middle p band does not dip
to low enough energies. When this band structure
is corrected for nonorthogonality (henceforth re-
ferred to as II) it becomes greatly distorted. The
I'» and I'z points move up in energy by 6 and 2. 5

eV, respectively, accounting for an increase of
3. 5 eV (25%) in the total bandwidth. The curva-
tures of the bands at I'». have more than doubled.
Although the midths of the p bands have doubled,
that of the s-band has decreased to about one-half
its previous value. The separation of the two lomer
bands at I. has diminished to about 1 eV and the
Xpoint is nom too lom in energy. It is apparent that

Overlap neglected (
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FIG. 2. Valence bands of the bond-orbital model cal-
culated for V~ = —l.5 eV, V2 = 0.75 eV, with p = 0 (solid
line, band structure I) and p=-0. 1 (dashed line, band

structure II).
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FIG. 3. Valence bands of the bond-orbital model cal-
culated for V'~ = —l.5 eV, V2 =+ 0.3 eV, p = —0.1 (solid
line, band structure III) compared to that calculated in
Fig. 2 for p=0 (dashed line).

the combined effects of V2 and the overlap corx ec-
tion on the X a.nd I. points are too strong, and thus
some readjustment of the parameters is necessary
to bring the band structure back into agreement
with the results of more elaborate calculations.
The overlap correction does not improve the middle
p-like ba,nd along the Z direction, as evident from
inspection [Eq. (5)]. Apparently, this feature is in

part due to neglected basis functions or longer-
range interactions.

After several attempts to adjust V2 and Vo to
bring the nonorthogonality corrected band struc-
ture II into agreement with the uncorrected one (I),
me concluded that a good fit mas achieved by simply
reducing V2 from 0.75 to 0. 3 eV, and leaving Vo

unchanged. The readjusted band structure (hence-
forth referred to as III) is compared in Fig. 3
with the one calculated previously without the cor-
rection. To aid in compa, rison of the bands, we
made the I'». point of the readjusted band coincide
mith that of the earlier calculation. The adjusted
band structure III matches band structure I very
well at the symmetry points and thus the agree-
ment with more sophisticated band structures is
partially restored. The lomer s-like bands are
now about I eV narrower than those calculated by
Herman. We believe that inclusion of the ne-
glected antibonding s-like orbitals might increase
the width of the lower s-like bands. A slightly
larger value of Vo could have also moved the I',
point of band structure III to coincide mith that of
band structure I, but this would have destroyed the
good agreement at the X and I.points. The pri-
mary improvement brought about by reducing Vz

is in the reduction of the effective masses of the
p bands at I'2, , to about one-half of their previous
values.

The shapes of the uppermost p bands of III are
nearly the same as those as I, but the lomer p band
has a different form throughout the zone. Since
the primary effect of the overlap correction is to
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TABLE I. Calculated effective masses at the I' point
for different parameter values in the directions indicated
(free-electron mass identical to 1).

Vp

V2

P

mg

A m2

m3

mf
~ m2

m3

mf
m2

m3

—1.5
0.75
0

0.948
0.948
0.239

0.641
0.641
0.318

l. 264
0.632
0.254

-l.5
0.75

—0.1

0.231
0.231
0.053

0 ]44
0 ]44
0.072

0.285
0.142
0.057

—1.5
0.3
0

2.32
2.32
0.378

1.608
1.608
0.453

3.33
1.55
0.395

—1.5
0.3

—0.1
0.863
0.863
0.140

0.598
0.598
0.169

1.239
0.576
0.147

change the curvature of the bands, we have listed
in Table I the effective masses at I' along the
X, and Z axes before and after the overlap correc-
tion for the various interaction parameter values
used. Inspection of this table shows that the over-
lap correction can account for a large portion of
the effective masses, particularly for the light-
@-hole band. The net change (i.e. , difference be-
tween band structures I and III) in the heavy mass
due to the overlap correction is only 10%, since
it was necessary to reduce Vz by one-half of its
original value to maintain the correct p band width,
however, the overlap corrected light mass is one-
half of the uncorrected one. Both the heavy- and
light-hole masses are now in better agreement with
experimental values. ' A different choice of param-
eters could reproduce the small effective masses
in Ge, but at the expense of flattening the s bands.
In terms of this model, the much smaller effec-
tive masses of Ge compared to Si might be ex-
pained by a larger overlap parameter; the effec-
tive masses are extremely sensitive to p, partic-

ularly when 1+pE-O, as can be seen in Eq. (8).
However, as already mentioned, other factors,
such as interactions between more distant neighbors'
and interactions with higher-lying orbitals are
probably still contributing significantly to the ef-
fective masses. In this case, p loses its physical
significance and becomes nothing more than a pa-
rameter which attempts to absorb the effects of
these interactions.

V. SUMMARY AND CONCLUSIONS

It has been shown that the nonorthogonality of
degenerate orbitals can be incorporated into band-
structure calculations, in an approximate and
simple manner. When the overlap matrix is pro-
portional to the interaction matrix, the procedure
outlined here is exact. The primary effect of this
correction is to change the functional form of the
bands so that the effective masses of the top of the
bands are decreased. We suggest that the failure
of the bond-orbital models to predict correctly the
effective masses at 1 is in part due to the neglect
of the charge-density overlap, and not entirely due
to the neglect of interactions between more-distant
neighbor atoms and higher-lying bands.

From the present results, we conclude that the
bond-orbital model, including nonorthogonality of
the basis set, is indeed faster converging (in the
usual tight-binding sense) than originally believed.
The omission of such nonorthogonality terms must
be picked up on interactions between more-distant
neighbors ina Slater-Koster-type scheme, which
ignores the overlap. We suggest that the overlap
correction introduced here should also be useful
for bands derived from d orbitals.
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