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The effect on both the longitudinal and the transverse magnetoresistance of a parabolic semiconductor with

isotropic effective mass of the inelasticity of the acoustic phonons is studied in the framework of the Arora-

Peterson density-matrix formalism, To exhibit clearly the effect of inelasticity, the numerical computations are

done for a model where electrons are assumed to interact strongly with phonons of wave vector q —1/P,
where X is the radius of the cyclotron orbit. It is found that inelasticity changes the transverse

magnetoresistance dramatically, while the Hall coefficient and the longitudinal magnetoresistance remain

essentially unchanged.

I. INTRODUCTION

The study of the effect of a magnetic field on

transport properties yields useful information about
the role various scattering interactions are expected
to play in solids. The transverse and longitudinal
magnetoresistance are the two most investigated
properties in which theeffect of a magnetic field is
exhibited. Although the Boltzmann transport equa-
tion has been quite successful in interpreting longi-
tudinal magnetoresistance, the case of transverse
magnetoresistance has not been easy to analyze, '
especially for strong magnetic f ields. Reviews of
earlier theoretical works are given by Kubo et gl.
and Roth and Argyres. Although consistent in their
results, these works had the unpleasant drawback
of divergent results for the transverse case. To
offset this divergence, various cutoff mechanisms
have been suggested. '3

One of the cutoff mechanisms which has been con-
sidered to be important among others is the in-
elasticity of the acoustic phonons. Kubo et al.
considered in detail the effect of inelasticity of the
acoustic phonons in the quantum limit. The cutoff
corresponds to the energy of a phonon whose wave-
length is comparable to that of the radius of the
cyclotron orbit. Their approximation was based on
the assumption that q /q, »l, so that q-q, -l/&,
where X = (Sc/eB) ~ is the radius of the cyclotron
orbit: in a magnetic field of strength 8, q is the
wave number of the phonon, and q, =(q„+q, )

~ is
the transverse component of the wave number.
They also analyzed the results when q, was not
assumed to be constant. Pal and Sharma used the
cutoff corresponding to q, —1/X to study the damp-
ing of helicon waves in the framework of Kubo's
formalism. Cassiday and Spector incorporated the
inelasticity of the acoustic phonons in the magneto-
conductivity expression obtained by other work-
ers. '~ They also included in their work the as-
sumption q, /q, » 1 in the high-temperature approx-
imation, but did not replace q, by 1/X. The ex-
pression for the transverse magnetoresistivity was

obtained in terms of integrals of Bessel functions.
In the development of a numerical computation,
they assumed that the maximum values of the wave
vector for phonons that interact with the electrons
are of order qr =(2m*ksT/8 ) ~ when h~, /ksT
«1 and of order 1/~ when %u, /AT& 1, where m,
= eB/m*c is the frequency of the cyclotron motion
of an electron with isotropic effective mass m*.
The primary purpose of all the above works has
been to obtain a f inite expression for the magneto-
conductivity by including inelasticity.

It has been demonstrated by Arora and Peter-
son that divergence could be eliminated by ex-
tending the scattering dynamics beyond the strict
Born approximation. Their conclusion was that no
artificial cutoff mechanism was necessary for re-
moval of divergence. Other details like phonon

drag, inelasticity, etc. , couldbe incorporatedwhen
deemed important. In the present work to exhibit
clearly the effect of inelasticity of the acoustic
phonons, we use the magnetoconductivity expres-
sions arrived at by Arora and Peterson. To make
the theory simple and comparison with other works
possible, we will make the same simplifying as-
sumption that 1/A is the wave number of phonons
which interact most strongly with electrons, and
thus Su/X is the typical energy of an acoustic pho-
non, as has been considered by others. '

In Sec. II, the magnetoconductivity expressions
of Arora and Peterson are given for the case of
acoustic-phonon scattering and then modified to
include the inelasticity of the acoustic phonons.
Numerical results are presented in Sec. III with
the conclusion that although the longitudinal mag-
netoresistance and the Hall coefficient remain es-
sentially unaffected by inelasticity, this may dra-
matically change the value of the transverse mag-
netoresi stance.

II. THEORETICAL DEVELOPMENT

The Hamiltonian describing an electron system
interacting with the lattice is
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(2. 1)

V=+ C(q)bq 8 +Hermit(an conjugate, (2. 2)

X =+3C& +eh ~ I + V,

where r is the carrier position, 8 is the applied
electric field, X~ is the lattice Hamiltonian, and
V is the electron-lattice interaction, assuming
electron-acoustic-phonon to be the dominant
mechanism of scattering:

s = %8~/ks T,
1/7„„,,(k) =-,'1/7„(k)+-,' 1/~„,, (k) .

(2. 13)

All notations are same as those used in Ref. l.
The relaxation time r„(k) can be obtained from the

equation

0( )
21Tk slnh(s/2) e gy z (2 12)f„k n=,

with

I c(q) I
= E ~

kq /2pQ&u, , (2 &)

I&nkl Vln'k'&('

~~(&n'a' en' ++~c) ~ (2. 15)
where Ej is deformation potential energy, and ~,
is the frequency of a phonon of wave vector q, cus-
tomarily taken to be uq with u the directionally
averaged longitudinal sound velocity, C(q) is the
coupling coefficient, 0, is a phonon destruction
operator, 0 is the volume of the sample, and p its
mass density. The electronic Hamiltonian K for
an electron of momentum p, isotropic mass m*,
charge —e (e& 0) in a magnetic field B in the z di-
rection is given by

X() = [p', + (p, + m*(u, x)'+ p,']/2 m*,

where ~, is the cyclotron frequency of an electron.
The energy eigenvalues of K are

&„~=( n-+', ) )(fu, +8' k, /2m*, n=0, 1, 2, . . . , (2. 5)

corresponding to eigenfunctions

g„(k„,k„r) = q „(x-x, ) exp[i(k„y+ k,z)]/(L„L,,)' ~',
(2. 5)

where y„are harmonic-oscillator functions cen-
tered at

(2. &)

t = (hc/e8)'~~ being the length of the cyclotron or-
bit. I., and I-, are sampj. e dimensions.

The magnetoconductivity tensor 0 for a parabolic
semiconductor for the simple case of acoustic pho-
non scattering is given by

0' = ' 0'2 0'j

0 0 0

where + k~, is the energy of a phonon involved in

emission and absorption of an acoustic phonon.
With the use of potential V of Eq. (2. 2), we obtain

, (,)- g ~. I «q)l &,;.~, .„5'.,...,I&;.I

nba

~[F5(&n'a' ~no+ k~e)

+(n, +l)5(e„, —&„,—k'„,)],

n, =n, + 1 =ksT/@u, . (2. 18)

Summing over k,
'

and q„and converting summa-
tions into integrations, we get

F-', u, r "
()=$2 l~ dk, dqqld„„l

"[~(&n'a' &no+ f~e) + 5(&n'a' ~na +~a)1 .
(2. 19)

The presence of Ku, =8n[q, +(k, —k, ) ] ~ in the
function makes it quite difficult for us to inte-

grate. Some simplification is therefore necessary.
As discussed in the Introduction, we follow Kubla

et al. to make an approximation

dxexp(iq„x)q~(x+ X k, + X q„) F„(v+& k, ) .
(2. 17)

n, is the equilibrium phonon number given by Bose-
y instein distribution, which in the high-tempera-
ture approximation (~, «ks T) can be approxi-
mated as

q, /q, » 1, (2. 20)

o2= (1 —e ')P (n+1)f„(k) 2 zm* oak
" roc+ Tn n+1

eS/8
— g k',r „„(k)f„'(k),m* 8 nak

with

(2. 10)

(2. 11)

o, =—(1 —e ') Q (n+1)f„'(k) ~
"'

2
— ), (2. 9)-sI c +~n, n+&~~

which will make Ko, =huq, . Now, we make the
simplifying assumption that the phonons which in-
teract strongly with electrons have wave numbers
of the order of 1/A. This assumption is justifiable
on the gr'ound that for g Wpg, ~, can be neglected on
the ground that ~, « ~„but when g = pg (intralevel
scattering), the integrand of integral involving q,
has a maximum at q, -l/X (for n=n'=0, IJ'„„I
- e 'j~ " ). Therefore, it does not look like too
crude an approximation if we use for S~,, the aver-
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age phonon energy:

( no/,') = ylfu//t. , (2. 21)
G„(y) = k, (y)+-,'[(&+1+y+&)'"

+ (/~/+ 1+y - B) ' "],
where y is a parameter which is zero for elastic
scattering and describes the extent of inelasticity
of the collision. This approximation will. further
allow us to use the property of J„.„:

(2. 22)

P = yu/XQ/o

Cg = CA„(%u, ) /

C2 = CS+~ p

25/2eomg1/oso/ae s/8 0/oar/44 ook
3 C otC

C=2 / e e ' (1 —e ')e~ o /4o m*X

(3. 10)

(3. 11)

(3. 12)

(3. 13)

to get a simplified expression for 1/o „(k):

, , = —,'/t„p ([&„,—(n'+ —,')h'o/, —yffu/x] ' '
ft ff

+ [&„,—(n'+-,')k&o, + y/fu/X] '/'],
with

g„=Z', k, T(2m+}' "/2v pff'u'~',

(2. 23)

The experimentally observable properties are
&p„„/p(0) (transverse magnetoresistance), 4p„/
p(0) (longitudinal magnetoresistance) and the Hall
coefficient R„=B„/B, which in terms of o„oo,
and o, are'

&p„„/p(0) =op /(of+oo) p(0) —1,
~p„/p(0) =1/o,p(0) —1,
B„=—cr, /(o,' o,'+)B,

(3.1)

(3.2)

(3. 3)

where p(0), the zero-field resistivity, is given by

p(0) =3(2m'm*ksT) m* E&kaT/4n, e wh pu

(3.4)
To facilitate numerical computation, we use the

transformation and resummation technique used
earlier:

/ 1 OO N

-o ~=o m=o (m+y)

Gv(y)
%u,'+A'„G„'(y) '

1 OO N- 1

0 N 0m =0 (=m + y}

(3. 6)

1
ho&, + A„G„(y)

'

1

o, =C, dye '" e "'Q (m+y)'/'t'„'(y), (3.V)
0 N=0 fft =O

with

kg(y) =—Q [(&'+y+P) '"+(X'+y p) '"], -
N = oo

(3. 6)

where prime on the summation means that all term.
of the form x, where g& 0 are excluded.

III. RESULTS AND DISCUSSION

e' "a =n, (2vlf'/m*ko T)' ' sinh(-,'s)/s. (3. 16)

The parameters used are those appropriate to a
parabolic model of n-InSb. 8 The numerical results
are shown in Fig. 1. The longitudinal magnetore-
sistance b p„/p(0) remains essentially unaffected
by the inelasticity of the acoustic phonons, where-
as the transverse magnetoresistance changes dra-
matically with inelasticity, decreasing with in-
creasing value of the inelasticity parameter y.
The high-field Hall coefficient (not shown on figure}
retains its value of 1/n, ec indpendent of scattering
or inelasticity. As discussed in Sec. II, the main
contribution of inelasticity comes from intralevel
scattering (n=n ), which for slowly moving elec-
trons (k, = 0) in the direction of the magnetic field
is given by

[1/r„(k, = 0)]'(intralevel) =-,' A„(you/X) ' /' . (3. 16)

For elastic scattering (y=0), this diverges, as
has been noted earlier. But this divergence of the
relaxation rate makes a zero contribution to the
conductivity tensor of Eq. (2. 8). For the longi-
tudinal case, these slowly moving electrons will
not contribute to the longitudinal conductivity, no

matter whether @=0 or not, as is obvious from Eq.
(2. 11). For the transverse case, k, =0 electrons
do not make a contribution if the elastic scattering
assumption is made, but they do contribute if in-
elasticity is included. This is the reason why
transverse rnagnetoresistance is so sensitive to in-
elasticity of the acoustic phonons, whereas longi-
tudinal magnetoresistance i.s not.

An excellent analysis of these slowly moving elec-
trons in terms of wave-packet description is given
by Kubo eI; g$. The stronger the magnetic field
is, the more slowly the electrons move in the di-
rection of the magnetic field. This causes inelas-
ticity to play an even larger role in high magnetic
fields. In the extreme quantum limit, when only
the yg = 0 level is appreciably occupied, the resultant
wave packet will look like a cigar, which is greatly
elongated in the direction of the magnetic field and
ha. s a small cross section sA -1/B. When the
elongation becomes of the order of the mean dis-
tance of scatterers, the wave packet can be simul-
tnneously scattered by two scatterers, making the
scattering process even more complicated. As-
suming that the magnetic field is not ultrastrong,
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FIG. 1. Magnetoresis-
tance ratio vs magnetic
field for the parabolic mod-
el of n-type InSb at temper-
ature T= 77 K. Solid
curves are for elastic scat-
tering and dashed curves
for inelastic scattering.
The values of the inelastic-
ity parameter y are shown
on each curve.
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these slowly moving electrons will interact with
phonons of q, «q, - 1/X, making the assumption
made in the above theory valid to reasonable extent.

To conclude, inelasticity may be expected to
play an active role and hence should be included
for electronic transport in the transverse config-
uration.
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