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The electronic structure of a jelliufn-Si interface is calculated using a jellium density corresponding to Al and
self-consistent Si pseudopotentials. Local densities of states and charge densities are used to study states near
the interface. At the Si surface, a high density of extra states is found in the energy range of the Si
fundamental gap. These states are bulklike in jellium and decay into Si with a high concentration of charge in

the dangling-bond free-surface-like Si state. Truly localized interface states are also found but at lower

energies. The calculated barrier height is in excellent agreement with recent experimental results.

I. INTRODUCTION

In this paper we present self-consistent pseudo-
potential calculations on the electronic structure
of a metal-semiconductor interface. The calcula-
tions model an Al-Si interface with a jellium po-
tential representing the aluminum-ion potential in
contact with the Si (111)surface. This model de-
scribes an ideal interface; i.e. , there is no oxide
layer between the two Inaterials. A local density
of states (LDOS) which displays the density of
states as a function of distance away from the in-
terface has been calculated for this Al-Si junction.
Various states which exist near the interface are
identified and discussed in terms of the LDOS and
their charge densities. Our calculated interface
barrier height is found to be in xcellent agree-
ment with recent experimental results. ' To our
knowledge, this is the first realistic self-consis-
tent calculation for a metal-semiconductor inter-
face.

Metal-semiconductor interfaces are of great
importance because of their rectifying properties,
which are crucial to the operation of many elec-
tronic devices. Many experimental efforts have
been devoted to the study of their properties. With
the advent of recent ultrahigh-vacuum techniques,
ideal interfaces can now be fabricated and studied
systematically, ' 5 and the detailed electronic
structure at the interface can be probed using
modern photoemission techniques. ' On the theo-
retical side, metal-semiconductor interfaces have
been the subject of much discussion and specula-
tion. Many models have been proposed to ex-
plain the interface properties. However, regret-
tably, past theoretical investigations into their
electronic structure have been mostly qualitative
or semiquantitative. A clear picture of the elec-
tronic structure at a metal-semiconductor inter-
face has yet to emerge.

Experimentally, the electrical barrier height

Qa (Schottky barrier) at a metal-semiconductor
interface can be accurately determined using many

different methods (I-V, C-V, photoelectric, etc. ).
To avoid confusion over n- and p-type semicon-
ductors, we measure here the barrier height from
the Fermi level EJ; to the semiconductor conduc-
tion band. For covalent semiconductors such as
Si and Qe, the barrier height is found to be virtu-
ally independent of the metal contact and of the
doping in the semiconductor 1,15,16 Bardeen6 at
tributed this behavior of the barrier height to a
high density of surface states in the semiconductor
band gap; i.e. , the filling or emptying of these
surface states pins the Fermi level to a nearly
constant value. Heine, on the other hand, pointed
out that semiconductor surface states cannot exist
in the semiconductor gap if this energy range is
inside the metallic band. He suggested that the
pinning of the Fermi level is due to states of a
different type in the semiconductor gap. These
states are composed of the states from the tails
of the metallic wave functions decaying into the
semiconductor side.

Theories" ' which do not explicitly involve
extra states in the semiconductor gap have also
been proposed to explain the barrier-height be-
havior. Inkson, " using a model-dielectric-
function formulation, proposed that the pinning of
the Fermi level is due to the narrowing of the
semiconductor gap at the interface. According to
Inkson, the screening of the valence and conduc-
tion bands of the semiconductor is different near
the interface. This causes the valence band to
bend up and the conduction band to bend down and
eventually the bands merge together at the inter-
face for a covalent semiconductor. In addition,
Phillips"' claimed that polarizability effects play
the dominant role at the metal-semiconductor in-
terface. He suggested that it is the elementary
excitations ' and chemical bonding' at the inter-
face which determine the behavior of the Schottky
bal rler

The purpose of the present work is to study the
electronic structure of a metal-semiconductor in-
terface in detail using the Al-Si junction as a pro-
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totype and to gain some insights into the nature of
metal-semiconductor Schottky barriers. The
model and methods of calculation presented here
can be applied to general metal-semiconductor
contacts. The main features of this calculation
which are absent in previous work are as follows:
(i) A realistic interface is constructed through a
jellium-semiconductor model and (ii) the calcula-
tion is self-consistent. It is noted that, as in all
previously existing self-consistent surface calcu-
lations, self-consistency in the present context
means self-consistency in the electronic responses
to a given structural model.

The remainder of the paper is organized as fol-
lows: In Sec. II the model for the interface and
the steps in the self-consistent calculations are
discussed in detail. In Sec. III the results for the
electronic structure of the Al-Si interface are
presented. And in the final section, IV, some
discussion and conclusions are presented.

II. CALCULATIONS

Our model for an ideal metal-semiconductor in-
terface consists of jellium in contact with a semi-
conductor described in the pseudopotential for-
rnalism. P resent experimental and theoretical
methods do not allow a detailed determination of
the geometry at the metal-semiconductor inter-
face; however, we believe that the important prop-
erties of the interface are dominated by the prop-
erties of the free electrons residing next to the
semiconductor surface. The present model is ex-
pected to contain all of the essential features of a
metal- semiconductor interface.

The method we have employed to calculate the
electronic structure of the Al-Si interface is simi-
lar to the method which we have used previously
in surface and molecular calculations. The
main difficulties in calculating the electronic
structure of solid interfaces are the following:

(i) Periodicity along the direction perpendicular
to the interface is absent. Therefore the estab-
lished methods for bulk calculations which depend
on the periodicity of crystalline solids cannot be
used.

(ii) Self-consistency is essential in obtaining
realistic solutions. It is necessary to allow the
electrons to react to the boundary conditions im-
posed by the interface and the resulting readjust-
ment and screening is a fundamental part of the
problem.

The essence of our method is to retain (artificial)
periodicity perpendicular to the interface and thus
allow the use of well-established tools in pseudo-
potential crystal calculations to calculate the in-
terface electronic structure. In addition, the
method goes beyond the usual pseudopotential ap-
proach through the requirement of self-consis-

tency. This method has been successfully applied
to surfa. ces' (both for metal and semiconductor
surfaces) and molecular" calculations.

For the present calculation, we consider a unit
cell consisting of a, slab of Si with the (ill) sur-
faces exposed to a jellium of Al density on both
sides. This cell is then repeated and the electronic
structure of the system is calculated self-con-
sistently. The basic idea consists of considering
periodic interfaces which are separated by large
distances, and then obtaining the essential fea-
tures of a single interface by calculating the elec-
tronic structure of this periodic system. The unit
cell used consists of 12 layers of Si plus an equiv-
alent distance of jellium. It is spanned in two
dimensions by the shortest lattice vectors parallel
to the Si (ill) surface, i. e. , hexagonal lattice
vectors with length 7. 26 a.u. , and by a long e
axis of length @=71.1 a.u. The volume of the cell
is equal to 3241 a. u. 3

With the above geometry, the jellium edge is
one-half of a Si-Si bond length away from the
atoms of the Si (111)surface. This is a physically
reasonable choice since the length of an Al-Si
bond is approximately the same as a Si-Si bond.
To simulate noninteracting interfaces, the Si and
the Al slab sizes have to be chosen such that (a)
the bulk properties of the materials are adequately
reproduced and (b) the surfaces from opposite
sides of the same slab do not interact appreciably.
Calculations on the Si (ill) surface' ' and various
test calculations on jellium slabs of Al density
showed that the assumed slab thickness which is
equivalent to 12 layers of Si satisfies the above
requirements well.

The electronic structure of this "periodic" sys-
tem can now be determined in a self-consistent
manner using pseudopotentials. The steps leading
to a self-consistent solution are shown in Fig. 1.
We expand the electron wave functions in plane
waves with reciprocal-lattice vectors 6:

g~) P tl (G) i(k+eG) F.
G

This leads to a matrix eigenvalue equation of the
usual kind,

which is solved by standard methods. ' Here, the
Hamiltonian matrix elements are of the form

a-, -, , =(ff'/2~i)il +C i'uo, -, , + V„(C,C'), (3)

where V„(G,6') are the pseudopotential matrix
elements. In general the pseudopotentials are
nonlocal and energy dependent. ' However, for
bulk Si and Si surfaces, local pseudopotentials are
known to yield satisfactory results. Therefore



STEPS IN ACHIEVING SELF-CONSISTENCY

Solve

Hf =Ef
H=P +V

Calculate

Calculate

vx =&4 (f'L]

~sea = ~H + ~x

M odel pa ra Ieters
Structure, V~o~

~T = "sea + vioN
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pletely inside the Al slab. Then the Hartree part
of the electron screening mill cancel the positive
jellium background and the starting potential for
the Al slab can be taken to contain only an exchange
term

v".,'„,(C) = —o.(s/sv}(sv')'" e' p'„",(C), (7)

where n=0. 79 and p', ~,'(6) are the Fourier com-
ponents of the jellium density to the one-third
power. Here me have x'eplaeed the nonlocal Har-
tree-Fock exchange potential V„('Y~ t ) bp the sta-
tistical exchange model of Slater. ' The choice
of n= 0. 79 mill be discussed later. In principle,
for a self-consistent calculation, the starting po-
tentials should be unimportant. Homever, in prac-
tice, a good starting potential reduces the numbex
of ltex'Rf. lons needed enormously.

From Eq. (S) we obtain the band structure E„(k)
and the pseudo-wave-functions p„f, (r). To perform
the next step in the self-consistent loop, the total
valence charge density

local pseudopotentials will be used throughout for
the presenf, calculation.

The self-consistent cycle is initiated by the fol-
lowing potential:

v„.„(c)=s(G) v'..',(IG~)+ v"„'.„(G) . (4)

The first term is the starting potential for the Si
slab and the second term is the starting potential
for the Al slab. The Si structure factor

S(C) =—ge-*' " (5)M, .

desex'ibes the positions of the Si atoms in the unit
cell. V, ',(I Gl ) are Si atomic pseudopotential
form factors derived from empirical bulk calcula-
tions. Since empirical form factors are only
known for discrete 6 vectors and the 6 vectors
are different for different cxystal structures, a
continuous extrapolation is performed to obtain
the form factors corresponding to the new 0 vec-
tors in the interface problem. %e fitted a curve
of the form

a, (q' —a, )v(~) = .„...„
to the three form factors for bulk Si, V(ill)
= —o. ss4l Rv, v(soo) = o. o55l Ry, v(sl l) = o. ovs4
Ry, and renormalized it for the different unit-cej. 1

volume. The four parameters a; in Eci. (6) are
given in Table I. The potential is normalized to
an atomic volume of 270 a.u. 3 and the units are in
Ry if q is entered in a.u.

A starting potential for the Al slab is less ob-
vious. %e assumed that in zeroth order, the Al
electronic charge is uniform and confined com-

PRrRmeters entering Eqs. (6) Rnd (],6) to
define the emplricRl Rnd iolllc Si pseGdopotentiRls,

0.174 59
2. 221 44
0. 86334
1.534 57

—0. 57315
0. 790 65

—0.352 01
—0. 018 07

p(r)=Spy $*„"„(r)p„„-(r), E„(k)

has to be Rccux'Rtely detelIQlned. This requires
good convergence in the electron wave functions
Rnd R pl eclse location of the Fel"Dll level. To RS-
sure good convergence, the electronic wave func-
tions were expanded in a basis set consisting of
approximately 270 plane waves. This expansion
corresponds to a kinetic-energy cutoff ' E,
= jG )

= 2. 7 Ry. In addition, another 300 plane
maves mere included via I Avdin'8 perturbation
scheme. ' The total valence charge density was
evaluated at 21 k points in the irreducible part
(~) of the taboo-dimensional hexagonal Brillouin
zone, with the Fermi level determined by demand-
ing charge neutx'Rllty lQ the unit cell, That ls the
Fermi level is determined by filling the eigen-
levels in the Brillouin zone until the number of oe-
eupied levels corresponds to the number of elec-
trons in the unit cell required by charge neutrality.

W'e note that, for our "periodic" system, we
should in principle evaluate the total charge over
the whole three-dlmenslonal Brlllouln zone How-
ever, for a large elongated cell, as in the present
case q the encl gles RQd wRve functions Rre qulfe
independent of the component of the k vectors along
the e direction. As me shall See later, the final
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charge density away from the interface is in accord
with the bulk calculations, thus indi. cating that our
sampling in k space is sufficiently fine and the
wave functions are converged.

V„(r)= Z V„(C)e"', (10)

with

V„(C)= 4ve'p(G)/i G i' .
Physically, over-all charge neutrality in the solid
requires that Ve(G=O)= —V„„(G=O},where V„,
is the ionic potential generated by the positive
Si" ion cores and by the positive jellium slab.
Therefore, for the present calculations, we can
arbitrarily set Ve(G = 0) = V„,(G = 0) = 0. Numeri-
cally, however, the divergent character of Ve(G)
and V„,(G) for small G values causes some prob-
lerns with the stability of the self-consistency
process. This is discussed in detail in Ref. 19.
The Hartree-Fock exchange potential was approxi-
mated using the Slater exchange model, as we
did for the Al starting potential. In G space, the
exchange potential then has the form

V.(G) = —~(6/2. ) (6.')'" "p'"(G), (»)
where o. =0.79 and p'~ (G) are Fourier components
of p' (r}. The justification for the present value
for n is that this choice of o, will bring Slater's
exchange in an approximate agreement with%ig-
ner's interpolation formula at the average valence
charge density of Al and Si. Thus, from the total
charge density, the electronic screening potential

Vac„(r}= Q [V„(G}+V„(G)]e' '"

is obtained at each iteration in the self-consistent
loop.

After the screening potential is determined, the
self-consistent process is continued by adding

Vsc& to an ionic potential V;,„to form a potential
for the next iteration. The ionic potential consists
of two terms,

V„,(G) = S(G) V,,',(G) + V"„',(G), (14)

where the first term is generated by the Si'4 ionic

Once the valence charge density p(r) is known

in terms of its Fourier components p(G), the
Hartree-Fock-type screening potentials VH and V„
can be evaluated easily. V„, the so-called Har-
tree screening potential, is the repulsive Coulomb
potential seen by an electron and is generated by
all the valence electrons. It is related to the va-
lence charge density by Poisson's equation

~'V„(r) = —4ve'p(r) (g)

and ean be written as a Fourier series

cores and the second term is generated by the Al
slab. S(G) is the Si structure factor as defined in

Eq. (6).
First let us discuss V"„',. This is just the Cou-

lombic potential generated by repeated slabs of
uniform positive charge. For an origin at the
center of a metallic slab, V«'„has the form

—Bwe n~ 81I1Ggg/2 (16)

V',„"(r)= V,~„,(r),

ViN (r) = Vi..(»+ Vsc'a(~& .
(17)

However, owing to the divergent character of VH

and V,» mentioned earlier, an input potential Vr„
which deviates from the truly self-consistent po-
tential will lead to an output potential which "over-
shoots" and is further away from the true poten-
tial. Therefore further iterations based on a
straightforward extension of Eq. (17) would not
yield a converging potential. This unstable be-
havior of the screening potential, especially for
very small G vectors, is commonly found in sur-
face calculations. " ' ' The procedure to deal
with these instabilities is to compute adjusted in-
put potentials V~&„"'(G) for n& 2 from preceding in-
put and output potentials. This can be done by ob-
taining the input potential of the nth iteration from
a linear combination of input and output potentials
of the (n —1)th iteration or from inspecting Vo„r-
versus- V,„graphs separately for each small G.
A detailed discussion of this problem and the pro-
cedures to overcome it are given in Ref. 19. The

where a is the width of the jellium slab, C is the
length of the unit cell along the direction (z) per-
pendicular to the interface, and n, is the positive
background density.

For the Si-ion core potential, we have used an
atomic model potential which was fitted to atomic
term values by Abarenkov and Heine. The re-
pulsive cores of the ionic model potentials as given
by Abarenkov and Heine are nonlocal (i. e. , f de-
pendent). For the present calculation, a local,
"on the Fermi sphere*' approximation has been
made and the Fourier transform of the resulting
local potential was fitted to a four-parameter
curve,

V;,'„(q) =(a,/p ) [cos(a&q)+ as]e'~' . (16)

The values of the a,.'s are given in Table I. The
normalization and the units for Eq. (16) are the
same as those for Eq. (6). Using the parameters
given in Table I, this ionic core potential has proven
to yield excellent results in bulk and surface self-
consistent calculations. '

With the above V,.„, the first two cycles of the
self-consistent loop were performed using
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criterion for self-consistency is now the stability
of the adjusted input screening potential as com-
pared to the output screening potential calculated
from Etl. (13). In the present calculation, the
final self-consistent potential is stable to within

0. 01 Ry.
Aftex' self-consistency has been reached, the

electronic structure of the interface can then be
analyzed in terms of charge densities. For this
purpose, charge densities have been calculated as
a function of diffex'ent energy intervals and dif-
ferent k points in the Brillouin zone. In addition,
we performed a local density of states (LDOS)
calculation for the Al-Si interface. This LDOS,
which displays the density of states in real space,
facilitates the identification and illustrates the
characteristics of the various kinds of states at
the interface. Analogous to the projected density
of states in tight-binding calculations, the LDOS
for a given region in real space is given by

~te=Z I lt;,„,.()Il*d"~(~-~tk!), n8!
Qt/e Il 0

where k~~ is the wave vector parallel to the inter-
face, n is the band index, gg„„ is the electronic
wave function, and 0, is the volume of the chosen
region. Physically N, (E) can be interpreted as the
probability that an electron with energy E is found
in the region i.

III. RESULTS

In this section our results for the Al-Si inter-
face which have been briefly reported recently '
are discussed. We find that four different types
of states can exist near the Al-Si interface. Aside
from the usual states which are bulklike in both
materials, there are states with energy below the
Al conduction band which are bulklike in the Si
side but decay rapidly in the A1. side. Also, in the
two-dimensional Brillouin zone, we find extra
"gap" states in the semiconductor energy gaps
whenever the range of the gap is inside the metal-
lic band. They are somewhat similar to the states
suggested by Heine; i. e. , they are bulklike in Al
and decay rapidly in Si. However, at the Si sur-
face, these gap states retain the characteristics
of the "free-surface" Si suQaee states which ex-
isted in the absence of the metal. It is these
states which pin the Fermi level and dominate the
properties of the Al-Si junction. In addition, we
find truly localized interface states which decay in
both directions away from the interface. These
appear in the Si energy gaps in the energy range
below the Al conduction band.

First let us examine the total, self-consistent
valence charge density. The total charge density
is a. good indicator of the quality of the present

(a) Al-Si Interface
Total valence charge

I 10

2.0~-
I (b) Al-Si In)erface Al =

;
'=

st

/TOTAL(Zj
I

I tl

I

I
!
I

I I II
I

I II,I IV

'T
!
!
I

I

/
I

/

!

Vl
. I.

FIG. 2. (a) Total valence-charge-density contours in
a (110) plane, The Si atoms are indicated by dots. (b)
Total valence charge density averaged parallel to the in-
terface and plotted along the direction perpendicular to
the interface. The charge densities are normalized to 1
electron per unit cell.

work. For the present calculations to adequately
represent noninteracting interfaces, the chax ge
densities away fxom the interface should resemble
the bulk densities of the two materials. Figure 2
displays the total valence charge density in a (110}
plane a, long with the function p„„,(z), which is the
total charge density averaged parallel to the in-
terface with z being the direction perpendicular to
the intexface. For the purpose of discussing the
charge densities and the local density of states,
we have also divided the unit cell into 12 equal re-
gions (slices} as shown partially in Fig. 2(b). The
jellium edge is indicated by the double-dashed
line. Only the charge within a few angstroms from
the interface is significantly perturbed from the
bulk values. The charge densities in regions I
and II and regions V and VI are in accord with bulk
densities. ' The slight differences between the
present Si charges away from the interface and
those calculated in Refs. 22 and 29 are due to the
difference in the cutoff energy E,.

From Fig. 2(b) one sees the well-known Friedel
oscillations in the Al charge density and there is
a net transfer of charge from aluminum to silicon.
On the Al side, regions I and II each contain 7. 9%
of the total charge in the unit cell, whereas region
III contains only 7. 6%. On the Si side, regions V
and VI each contain 8. 8% of the total charge but
region IV contains 9. 1%(). Thus approximately
0. 3% of the total charge in the unit cell has been
transferred from region III to region IV. A dipole
potential with an electric field pointing toward the
Si side is hence set up at the interface. This is a
consequence of equalizing the Fermi levels in the
two materials. From Fig. 2(a), the Al charge ap-
pears to be spilling into the empty "channels" in
the Si cha, rge density and into the dangling-bond
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Al-Si INTERFACE

Vsc (Ry)

(a)

Al-Si INTERFACE

V„(.) (Ry)

-0.7

gion VI from the LDOS of region IV to obtain a
difference local density of states (DLDOS). The
result is presented in Fig. 5. The positive por-
tion of the histogram indicates an addition of states
in that particular energy range in region IV and the
negative portion of the histogram shows a deprecia-
tion of states.

The LDOS reveals much information about the
electronic structure of the interface. From the
position of the Fermi level and the position of the
conduction-band edge of the semiconductor, one

FIG. 3. (a) Contour plot of the final. self-consistent
potential V„ in a (110) plane. ( b) Final self-consistent
potential averaged parallel to the interface and plotted .

along the direction perpendicular to the interface. The
potential values are in rydbergs.

'0 - Al-S
Reg

sites. The charge density at the dangling-bond
sites in the present case is significantly higher
than a sum of the jellium electron charge density
and the Si charge density from the free-surface
calculations. This indicates the formation of a
metallic-covalent-like bond between Si and a jel-
lium of Al density.

Figure 3 displays the self-consistent pseudopo-
tential V„ in a (110)plane along with V„(s), which
is U„averaged parallel to the interface. The
total charge density discussed earlier is the self-
consistent response to this potential. The poten-
tial on the Al side is flat and does not show pro-
nounced Friedel oscillations. Similar properties
have been found in self-consistent calculations on
the Al surface using the jellium model. In the
course of self-consistency, the Si potentials on
the first two layers are made slightly deeper than
the Si potentials further away from the interface.
As expected, the perturbation to the Si potentials
due to the presence of the metal appears to be
much less than the perturbation due to the free
surface. ' '

Now let us discuss the local density of states
(LDOS) as defined in Eq. (18). We have calcu-
lated the LDOS for the six regions indicated in

Fig. 2 by using 21 points in the irreducible part
of the two-dimensional zone. The histograms of
the LDOS for the six regions are shown in Fig. 4.
To facilitate comparisons, the density of states of
bulk Si from Ref. 22 is superimposed on the LDOS
of regions IV-VI, and a free-electron density of
states [i.e. , N(E)-E'~ ] is superimposed on the
LDOS of regions I-III. The Fermi level is indi-
cated by the dashed line. Most of the interesting
features appear in the LDOS of region IV. To in-
vestigate the energy positions of the extra states
and their origins, we subtracted the LDOS of re-
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FIG. 4. Local density of states in arbitrary units as

defined by Eq. (18). The regions are as shown in Fig.
2 (b).
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FIG. 5. Difference local density of states (DLDOS)
obtained by subtracting the LDOS of region VI from that
of region IV. The units are the same as in Fig. 4.
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can calculate the barrier height at the interface.
We obtained a barrier height of 0.6+ 0. 1 eV for
the Al-Si interface, which is in excellent agree-

1ment with the recent experimental result of 0. 61
eV. There are other experimental values for the
Al-Si barrier height, ranging from -0.55 to -0.70
eV. (See, for example, Ref. 15. ) However, we
believe that tQe value from Ref. 1 is the best for
an ideal Al-Si interface because of the ultrahigh-
vacuum conditions used in this particular experi-
ment.

The various types of states which appear near
the interface can be seen from the LDOS. States
with energy below —11.1 eV (i. e. , below the onset
of the Al conduction band) are bulklike in Si and do
not penetrate into the bulk of Al. Of course there
are states with higher energy which can behave
similarly. For example, at the k point K, states
with energy up to —6. 5 eV are below the Al con-
duction band. To illustrate this type of state, the
charge density for all states with energy below
—11.5 eV is presented in Fig. 6. On the Si side,
the charge-density contours strongly resemble
the charge-density contours for the bottom band
of bulk Si whereas the charge on the Al side is
completely zer o.

From the LDOS of region IV (Fig. 4) or the
DLDOS (Fig. 5), we see that the dips in the bulk

Al-Si INTERFACE
STATES V(1TH E = —12.7 Io —11.5

0.0

FIG, 6. Charge-density contours for states with
energy below —11.5 eV in the same plane and normaliza-
tion as in. Fig. 1(a).

IoI
1 8

1.5
q

I

AI.S( INTERFACE

(&)

FIG. 7. (a) Charge-density contours for "gap" states
with energy between 0 and l. 2 eV in the same plane and
normalization as in Fig. 1(a). (b) Charge density in (a)
averaged parallel to the interface and plotted along the
direction perpendicular to the interface.

Si density of states which are due to gaps in the Si
band structure are being filled up by either inter-
face states or "gap" states at the interface. The
extra states centered at - —8. 2 eV are partially
interface states and parti. ally gap states, whereas
the states centered at - —5. 0 eV and states in the
optical gap are gap states.

The gap states in the optical gap are of particu-
lar importance because the density of these states
sensitively influences the position of the Fermi
level with respect to the semiconductor band
edges. These states have a charge density which
is metallic in the Al slab, becomes dangling-
bond-like at the Si surface, and decays rapidly to
zero in the Si slab. The charge density for these
states in the thermal gap, i.e. , states with energy
between 0 and 1.2 eV, is plotted in Fig. 7 along
with p(z), which is the same charge density
averaged parallel to the interface. The dangling-
bond surface states which exist at these energies
for the free-surface ease have been matched to
the continuum of metallic states. Thus, as seen
from Fig. 7(a), the charge is quite uniform in the
Al slab but retains the dangling-bond character
at the Si surface. We note that the charge density
displayed in Fig. 7 is for all states with energy
in the thermal gap. The decaying rates are dif-
ferent for states at different energies. The charge
for states near midgap decays most rapidly into
the Si side.

An examination of the LDOS of region IV from
—1.0 to 2. 0 eV indicates that there is an apparent
asymmetry in the distribution of extra states about
the optical gap. A plausible physical explanation
is the following: The states in the optical gap are
derived from the valence band and the conduction
band. Note the la.rge depreciation of states near
—1.8 eV and near +4. 0 eV. (See Fig. 5. ) Since
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FIG. 8. Schematic diagram of the bottom two bands of
the Si band structure (horizontaQy hatched) projected to
the two-dimensional Brillouin zone. Superimposed on it
is the projected Al conduction band (vertically hatched).
S&denotes the interface states discussed in the text.

these gap states are dangling-bond-like (t. e. ,
p, -like) in region IV and the top of the Si valence
band is p-like, whereas the bottom of the conduc-
tion band is s-like, bulk states from the top of the
valence band will be '*robbed" to form the gap
states while only states higher in the conduction
band mill be strongly affected by the formation of
the gap states. Therefore the depreciation of bulk
state densities will be larger at the top of the Si
valence band than at the bottom of the conduction
band. This results in the apparent asymmetry.

The interface states centered at —8. 5 eV,
labeled SE in Fig. 4, appear near the point K in
the two-dimensional hexagonal BriUouin zone.
At first sight, localized states should not appear
because there are aluminum states in this energy
range. This appearance of interface states is a
band- structure effect. Near the point K in k
space, the Si two-dimensional band structure has
a gap between —V. 2 and —9. 5 eV which is below
the Al conduction band. In Fig. 8 we show a
schematic diagram of the projected band structure
of the bottom two bands of Si together with the pro-
jected band structure of Al. The Fermi levels of
the two materials have been set equal. The low-
est gap at K is the gap that we are discussing.
Silicon surface states existing in this gap cannot
be matched with any Al states because there are
no Al states with the same energies and k vectors.
A contour map of the charge density of the inter-
face states at K at —8. 5 eV is shown in Fig. 9.
The charge density is s-like and highly localized
on the outermost Si atoms. The charge is almost
completely confined in region IV. Similar states
with the same energy and character have been
found in Si surface calculations. However the
cha.rge for states found in surface calculations is
less localized.

%e have studied the electronic structure of a
metal-semiconductor interface using an Al-Si sys-
tem as a prototype. A jellium-semiconductor
model has been constructed for the Al-Si inter-
face. The electronic structure of the interface
was then calculated using a method involving self-
consistent pseudopotentials. The model and
methods of calculation used in the present paper
have wider application than just the Al-Si system;
these techniques can be extended straightforwardly
to calculate the electronic structure of other
metal-semiconductor interfaces.

Four different types of states are found to exist
near the interface. The characteristics of these
states have been analyzed in detail in terms of
their charge densities. Our local-density-of-
states results indicate a high density of "gap"
states in the Si thermal gap near the Al-Si inter-
face. This implies a pinning of the Fermi level
by these gap states which is consistent with experi-
mental results. It is important to note that, in
the present calculation, we have used a statistical
exchange model for the exchange potential. Hence
both the valence bands and conduction bands see
the same screening potential. Also, from examin-
ing the structure of the local density of states,
there does not seem to be a merging of the valence
band with the conduction band near the interface.
Therefore, the pinning of the Fermi level can be
explained without invoking Inkson s argument of
merging of the bands due to the difference in the
screening of the valence band and the conduction
band at the interface. Furthermore, it is not very

Al-Si Interface
States at K at —8.5 eV

}Y

FIG. 9. Charge density contours for the interface
states at K in the saxne plane and normalization as in
Flg 1 (a),
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meaningful to talk about a band picture as a func-
tion of distance away from the interface on such a
microscopic scale.

The present calculation is for a, high-density
metal, Al, in contact with Si. For metals with a
low density of s-p electrons, interface states can
coexist with gap states in the energy range of the
Si optical gap, such as in the —7. 2- to —9. 5-eV
gap in the present calculation. Under such condi-
tions, one expects that an even higher density of
extra states will appear near midgap' ' ' and
the Fermi level is again pinned in the thermal gap.
This may be an explanation of why surface states

continue to exist in the GaAs gap when an overlay-
er of ' Cs or Pd is placed on GaAs. Both Cs and
Pd are metals of low s-p electron densities.
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