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Line shape of the plasma resonance in simple metals*
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Energy spectra of plasmons with wave vectors from 0 to kF are reported in aluminum, sodium, and lithium.

The dispersion of the peak position and of the width are given for aluminum and sodium, and it is shown that
free-electron theory with simple damping and exchange corrections can be made to reproduce the shape of the
plasma resonance at all wave vectors studied.

INTRODUCTION

Adequate theoretical understanding of the degen-
erate electron gas is a long-standing problem, still
unsolved at metallic densities. Inelastic electron
scattering, ~ differential in energy loss and momen-
tum transfer, measures directly the Fourier trans-
form S(q, &u) of the space- and time-dependent elec-
tronpair correlation function, the structure factor for
the electrons in the sample. Stated another way,
inelastic electron scattering allows experimental
determination of the frequency- and wave-vector-
dependent dielectric screening function e(q, v),
which describes the response of the electrons in
the sample to an applied charge-density fluctua-
tion. In this paper we report studies of simple
metals by measurements of the shape of the plasma
resonance energy spectrum as a function of wave
vector, up to the Fermi wave vector.

BACKGROUND

Previous measurements of electron energy-loss
spectra versus momentum transfer have been re-
ported by Swanson and Powell~; Ninham, Powell,
and Swanson; Zacharias~; Kloos'; Kunz; Silcox
and co-workers'; and Petri and Qtto. ' Powell and
Swanson analyzed their data on aluminum for the
width and energy of the plasmon as a function of
its wave vector, out to about 1. 5 A ' where the
peak disappeared into the multiple scattering
background. Zacharias measured the plasmon
width and energy in aluminum as a function of
wave vector out to about 2 A ~. Kloos measured
the energy and width versus wave vector with high
resolution in wave vector. petri and Qtto and
Silcox and co-workers report measurements
similar to Zacharias's. Using x-ray brompton
scattering, Eisenberger and co-workers have
measured the large wave-vector behavior of plas-
mons in single crystals of Al, Be, Li, and graph-
ite. ' They show a peak or shoulder with small
or negative dispersion, at wave vectors greater
than the Fermi wave vector, which may be
characteristic of the electron gas rather than any
particular material. ~~

Qur results are sufficiently accurate and tree
of multiple scattering effects to allow comparison
between experimental and theoretical plasmon
line shapes for momenta up to k~.

APPARATUS AND SAMPLES

Plasmon measurements were made with an in-
elastic electron scattering facility recently built
at princeton. ' The primary beam energy of this
device is 300 keV. In all these experiments the
resolution wave between 80 and 150 meV in energy
loss and between 0. 08 and 0.15 A ~ in momentum
transfer. Energy-loss spectra were measured for
fixed momentum transfer at a number of different
momenta.

Most of the data were taken by pulse-counting
techniques, allowing multiscanning and signal
averaging to reduce effects of slow systems drifts
during data acquisition. The noise in the data, is
not noticeably greater than that due to counting
statistics; typically on the order of 1% or less.
Errors due to beam intensity drifts are on the
order of 0. 1% or less in most of the data.

Thin, self-supporting samples were needed for
these transmission experiments. We made poly-
crystalline aluminum samples by coating
microscope slides with a water soluble wax,
Victawet, ' polishing the coating, and evap-
orating aluminum onto the coated surface.
The films were floated off the slide onto the sur-
face of a tray of water, where they could be picked
up with a copper frame. Once attached to the
frame they stuck fast and could withstand gentle
handling. We made measurements on three alurni-
num samples, approximately 1100, 800, and 500
A thick. Surface oxide Bnd contamination was
tolerated because the limiting oxide thickness at
room temperature is approximately 40 A, which
should not cause too great a correction at these
sample thickness. Surface excitations were
detected, but they did not interfere with our mea-
surements. Sodium and lithium were evaporated
in the sample chamber onto thin Formvar sub-
strates. These attenuated the beam by 10% or
less and have no sharp features in their spectra,
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while the alkali samples attenuated the beam by
more than 50%. The inelastic scattering from
the Formvar was too small to be seen in any of
the data reported here. The alkali samples were
evaporated and the measurements made in an O-
ring sealed vacuum of about 10~ Torr. Measure-
ments began the instant the evaporation was com-
pleted, and the first measurements could be re-
peated to monitor sample contamination. In time
chemically shifted core excitations would appear
and the structure below the plasmon —the surface
plasmon and other features —would change. None
of the data reported in this study was affected by aging
in the 8-12 h in which it was taken.

For sample thickness such that a particular
inelastic scattering event is improbable but elastic
scattering is strong, which is a typical situation,
the counting rate for the inelastic process is

N=Ne ~'kl,
where No is the primary beam pa, rticle current
and l is the sample thickness. The scattering
probabilities per unit length are ~ for elastic
scattering out of the beam and 0 for the particular
inelastic process being studied. This counting
rate is maximum for a sample thickness f =1/o
such that the transmitted unscattered beam cur-
rent is 1/e of the incident current. An electron
that is scattered elastically and once inelastically
will contribute to the background in any measure-
ment. For example, elastic scattering with
momentum transfer q followed by forward scatter-
ing creating a zero wave-vector plasmon produces
a peak at the zero wave-vector plasmon energy in
spectra taken at higher wave vectors, as in Fig.
2. The relative strength of multiple scattering
decreases with decreasing thickness.

In previous experiments as in this one, the con-
dition above was approximately satisfied. Early
experiments indicated that evidence of excitations
of the conduction electrons vanished at approximate-
ly the cutoff wave vector. This was due to relative-
ly large backgrounds caused by multiple inelastic
scattering in thick samples. Recent experiments
have seen spectra well beyond cutoff. In this ex-
periment we measure spectral line shapes even
in samples over 1000 A thick. We can use such
thick samples because of the dependence of the
inelastic scattering probability 0 on primary energy
and our very low "no beam" or dark detector
signal of one count per second. 0 is approximately
proportional to eV0, where eVO is the kinetic en-
ergy of the primary beam. Thus there is less
multiple inelastic scattering in our experiment
than in others, because of the higher beam energy.

THEORY

The differential scattering cross section per
atom, per unit energy loss, per unit solid angle,

for fast electrons transmitted through solid
samples, is, in the Born approximation

dQdE N q~ao

which can be rewritten

d20 1 —1
dndE q2

™
e(q, ~) (2)

3
e(q, ) =

y

x 4Z+[1 —(U-Z)2] ln
U —2+1

—[1 —(U+&) In
(3)

q Scd

2kF ' 4ZEF

where y is the ratio of the Fermi energy to the
plasma energy, EF is the Fermi energy, and k~
is the Fermi wave vector. Principle values are
to be used for the logarithms in case of negative
or complex arguments. At excitation energies
such that U»Z+1, the function becomes simply"

where &d~ is the plasma frequency. This predicts
that all of the strength is in an infinitely sharp
peak, at ~=&d~, in the q=0 energy-loss spectrum.
Expanding the full expression in powers of y gives
the small q behavior of the spectra. The peak
disperses and loses strength, and single-particle
excitations appear atlowenergies. ' ' ' Above
the cutoff wave vector q„ the single-particle
spectrum overlaps the plasmon peak as shown in

where tt)f is a many-electron final state and (0 is
the initial state. The sum on j is over all electron:
in the solid, and N is the number of atoms in the
solid. Ef and Eo are the final and initial energy of
the sample. E = hw is the energy loss, hq is the
momentum transfer, and ao is the first Bohr
radius. e (q, u) is the generalized longitudinal
dielectric response function for the solid. For
small momentum transfer (q=w/c), e is equivalent
to the optical dielectric constant. For fast elec-
trons Sq-=P08, where Po is the initial beam
momentum and 6 the scattering angle. Thus,
for forward scattering, 8 =0, an electron scatter-
ing experiment measures the optical dielectric
constant. "'"

The usual starting point in discussing screening
in an electron gas is Lindhard's longitudinal dielec-
tric response function for a noninteracting electron
gas'6
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tional effects, e.g. electron-electron collisions.
In attempting to fit our line shapes with this model,
we have taken Im(E) = hT', Im(G), and Re(G) to be
frequency-independent functions of the wave vector
[Re(E) =8'&u is the energy loss]. To improve the
precision of the model without adding new param-
eters, we include in the dielectric function the ef-
fect of the polarizability of the atomic cores, ~'~4

47ty„„. The resulting dielectric function is

e (q, u + II') —1 = N/D,

X= 4 + iI') [e~ (q, (e + iI') —1+4w y „„],
FIG. 1. Cutoff wave vector q, for a plasmon, at or

beyond which it can decay into a single pair excitation.

Fig. 1. Fox' q»q„ the Compton scattering limit,
the plasmons will entirely disappear leaving only
the single-particle spectrum. For q&q, the plas-
mon is no longer a well-defined excitation, but
manifests itself as an enhance ment in the single-
particle spectrum.

In this description of conduction electrons, there
is no damping; each excited state is treated as
long lived. The interaction between electrons is
approximated by making each electron move in
an average potential produced by all the rest, as
in the Hartee approximation. Exchange and cor-
relation effects are left out.

The first modification of the Lindhard dielectric
function indicated by the data is damping. The
plasmon has finite width at all wave vectors.
Even for small wave vectors, the wings of the
plasmon and single-particle peaks ovex lap, so
that they are not strictly separable. Strictly
speaking, there is no well defined cutoff wave
vector. Modifying the Lindhard dielectric func-
tion as shown by Mermin o adds simple phenomeno-
logical damping in a collision time approximation.
Sharp features are broadened to a width equal to
the imaginary part of the energy.

Correlation and exchange can be included approxi-
mately by a simple local-field correction

e(q, &u) —1
1 —G(q, (u)[e (q, &u) —1]

If G is a complex number, its imaginary part pro-
duces damping, but not the same as Mermin's. ~'

A preliminary estimate of G(q, co) indicates that
at finite frequency its imaginary part is nonzero.

%e have tried to fit our data with damping from
Mermin's collision time mechanism only and with
damping from both mechanisms. From a very
simple point of view the colbsion time can be
thought of as describing the electron-phonon inter-
action and interband transitions, and the complex
exchange damping can be taken to describe addi-

Typical data for aluminum are shown in Figs.
2 and 3, for sodium in Fig. 4, and for lithium in
Fig. 5 Figures 6 and 7 show the sample to sample
reproducibility for our data in aluminum and
lithium. The large width of the lithium plasmon
at all wave vectors, probably due to a stronger
cxystal field, makes detailed curve fitting relative-
ly unprofitable, so we concentrate on. aluminum
and sodium. The data show clearly many important
multiple scattering features, found in all electron
energy-loss data, which must be subtracted from
the data before any analysis can be done. %e
shall discuss these features in our sodium data.
Due to our high beam energy and thin samples these
effects are small enough to be easily removed.
At q = 0, in addition to the sharp plasmon peak
near 7 eV, there are surface plasmons at lower

TABLE I. Parameters used in. fitting plasmon line
shapes in Na and Al.

0
Fermi wave vector (A ~)

Fermi energy (eV)

Plasma energy (eV)

Ion core-polarizability
contribu~~o~ to the

dielectric function.
0. 14

Al

0. 05

ei, (q, (u+iI') —1+4n)(„„
el (q, 0) —1+4zy

where eg(q, (d + f? ) ls the Llndhal d Innctlon, Eq. (3).
The Fermi energy is chosen to be consistent with
photoemission bandwidths, ~5 band structure cal-
culations, and with soft x-ray emission band-
widths. ~v The plasma frequency is chosen to give
the observed zero wave-vector plasmon energy.
The values chosen for these are ljsted in Table I.

DATA AND ANALYSIS
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FIGI 2. Electron. -energy-loss spectra of aluminum at
various momentum transfers. Statistical uncertainties
are smaller than the plotted points.
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energy. These are clearly separated from the
bulk plasmon and, as momentum transfer in-
creases, lose strength more rapidly than bulk
excitations. %e ignore these surface excitations
in our analysis.

As momentum transfer 5q increases, the plas-
mon disperses to higher energy and broadens.
Beginning at q = 0.68 A ~ and clearly in the data
at q = 0.85 A ~, there is a peak at the zero wave-
vector plasmon energy with approximately the
zero wave-vector width. This is due to double
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FIG. 3. Electron-energy-loss spectra of aluminum
at large momentum transfers. The scatter in the points
is due to statistical fluctuations.
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scattering involving a lattice scattering event and
a plasmon scattering event with wave vector q'.
Direct measurements show that the strength of
the lattice scattering (at zero energy loss, with
the 0. 1 eV resolution used bere) is independent
of wave vector, so the resemblance to the zero
wave-vector plasmon spectrum is entirely due to
the (q') weighting from the inelastic cross sec-
tion. These double scattering features involving
the lattice and a bulk plasmon can easily be re-
moved from the data because they are highly
localized in energy. Similar features involving
a surface plasmon are less localized and more
difficult to subtract, but are also considerably
weaker.

Triple scattering involving the lattice can be
seen in the highest wave-vector spectrum from
sodium, at twice the zero wave-vector bulk plas-
mon frequency. Triple scattering involving the
lattice and a bulk and a surface plasmon is too
weak, even at the highest wave vector, to signifi-
cantly modify the shape of the observed spectrum.

E NE RGY LOSS

FIG. 4. Electron-energy-loss spectra of sodium at
various momentum transfers. In the large-q curves, the
scatter in the points is due to statistical fluctuations.
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FIG. 5. Electron-energy-loss spectra of lithium at
various momentum transfers. In the large-q curves, the
scatter in the points is due to statistical fluctuations.

FIG. 7. Spectra at 0.28 and 1.07 A ' momentum trans-
fer for two different lithium samples g and B) are com-
pared. Despite noticeable differences in the multiple
scattering background above the plasmon peaks, there is
little difference between samples at plasmon peaks.
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FIG. 6. Spectra at 1.51 A ' momentum transfer for
two different aluminum samples, with counting statistics
shown by boxes at the right. Despite the large change
in multiple scattering background above the pl. asmon
peak, there is little difference between the samples at
the peak.

Multiple inelastic scattering is the most difficult
effect to subtract in data taken at large wave
vectors. The peaks at 13-14 eV in the 0. 85- and
1.02 A ' spectra are due to double plasmon scatter-
ing events. These, and presumably higher mul-
tiples as well, give a background which increases
with energy in the vicinity of the plasmon. Clearly,
at 1.02 A there is a dispersed plasmon at about
8 eV, but its shape cannot be seen without a reli-
able background subtraction.

Observation of many spectra from samples of
various thicknesses, mainly aluminum, has made
it clear that the shape of the double plasmon peak
at wave vector qo, which must be represented by
a three-dimensional convolution of single scatter-
ing spectra (one energy loss, two momentum
transfer directions), can be qualitatively repro-
duced by a one dimensional convolution in energy
loss of the single plasmon spectrum for wave
vector q0/2. It is the q weighting in the cross
section that makes this the dominant contribution.
For energies lower than the two-plasmon peak
energy, the one-dimensional convolution has an
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energy dependence close to AE3, where E is the
energy loss, for all wave vectors qo.

A background AE~ has therefore been subtracted
from the data before fitting with the modified
Lindhard-1V|ermin spectrum. The constant A and
the other fitting parameters are determined by a
weighted least-squares alogrithm. The procedure
yields two useful results. First, a background
subtraction is performed, by the same method at
all wave vectors, in as unbiased a manner as is
possible. The subtracted data can be analyzed for
position and width of the plasmon. Second, a
model of the data using only a few parameters is
obtained by fitting the data with the modified
Lindhard-Mermin function, and those parameters
have a very simple q dependence.

RESULTS

Figure 8 shows the dispersion of the plasmon in
sodium, plotted using variables natural for the
small wave-vector limit of the Lindhard dielec-
tric function. Two simple measures of peak posi-
tion are used and both give similar results.
Figure 8 also shows the width of the plasmon in
the sodium at various wave vectors. The width
increases linearly with q~ at all wave vectors, but
the rate of that variation increases sharply at
about the cutoff wave vector q, . This is consistent
with the simple picture of the Landau damping

Oi
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50.
0.0 0.4 0.8

(qr&F)

4c
t

I

1

I I

0.4 0, 8

(qxkF)

FIG. 8. Above: Dispersion of the sodium plasmon.

q is the plasmon wave vector and &z the Fermi wave vec-
tor 0. 92 A '. E is the energy of the plasmon, circles
from the peak and crosses from the average of the half
height energies. The dispersion of the peak is E~~
=].9.4(q/kp) ev + [E(z = P)] . below: Full width at half-
height W of the sodium plasmon. The cutoff, marked by
the verticle dashed line, is calculated with an exchange
correction (Ref. 28).
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FIG. 9. Full width at half-height W of the aluminum
plasmon. q is the plasmon wave vector and kF the Fermi
wave vector 1.75 A; The cutoff shown by the vertical
dashed line is calculated with an exchange correction
(Ref. 28).

turning on at q„opening up a new decay channel.
Figure 9 shows the width of the aluminum plas-

mon at various wave vectors. The behavior is the
same as in the sodium data. In each case the
measure of width used is the energy difference
between half-peak intensity points. The wave
vectors at which the curves change slope are con-
sistent, in each material, with the cutoff wave
vector calculated including an exchange correc-
tion to the dispersion. Without the exchange
correction the calculated cutoff wave vectors
are larger than the values at which the width curves
change slope.

Figure 10 shows the energy of the aluminum
plasmon as a function of wave vector q. The posi-
tion of the peak (measured with a constant energy
resolution of -0.1 eV) is a simple linear function
of q, while the average of the two half-peak ener-
gies disperses more slowly for q &q, (again, cal-
culated with an exchange correction). This is
easily understood. In aluminum the shape of the
plasmon spectrum is symmetric at small wave
vectors but becomes increasingly asymmetric
above q, . The high-q spectra show more scatter-
ing strength at an energy AA~ below the plasmon
peak than at k~~ above. The resolution with
which spectra are measured must be considerably
finer than the widths of these asymmetric plasmons
to locate the peak energy correctly. Measure-
ments obtained by varying the energy resolution of
the apparatus to keep up counting rates at large
wave vectors must be corrected for these asym-
metry errors even if the peak is used as the mea-
sure of position. '

We show the dispersion of the plasmon in lithium
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FIG. 10. Dispersion of the aluminum plasmon. q is
the plasrnon wave vector and kz the Fermi wave vector
1.75 A ~. E is the plasmon energy, circles from the
peak and crosses from the average of the half-height
energies. The dispersion. of the peak is E~~2
=290(q/k+) eV2+ tE(z= 0)] . The vertical dashed line
marks the cutoff wave vector, calculation with an ex-
change correction (Ref. 28).
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FIG. 12. Fitted values of Im(E), Re(G), and Im(G)
with standard deviations computed by the least-squares-
fitting program, for aluminum. Only spectra inct, uding
background over a broad range about the plasma energy
are shown. . These were used to deve1op the simple model
of the q dependence shown by the solid lines. The dashed
line for Re(G) is from Vashishta and Singwi (Ref. 28).
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FIG. 11. Above: Dispersion of the lithium plasmon.
q is the plasmon wave vector and kF the Fermi wave
vector, 1.12 A . E is the plasmon energy, circles from
the peak and crosses from the average of the half height
energies. The dispersion of the peak is approximately
E~~ =43(q/k+) eV2+ fg(q = 0)], Below: Full width at
half-height W of the lithium plasmon. The error brackets
include estimated uncertainties in the background.

in Fig. 11. The background in this data was
estimated, since the fitting function was not used.
The variation of width with q~ is clearly more
complicated here than in Na or Al.

Because of the method by which the inelastic
multiple scattering background was subtracted, it
is not simple to estimate uncertainties in the re-
sults discussed above. The scatter of the aluminum
results, from samples of different thicknesses
and ages, is probably the best indication of the
precision of our conclusions. Figures 6 and 7
demonstrate the reliability, in our data, of any
consistently applied background subtraction at all
but the highest wave vectors measured.

The modified Lindhard-Mermin fitting function,
while not perfect, does give reasonable agreement
at all wave vectors measured. The parameters
which give the best fits show considerable scatter,
but indicate very simple wave vector dependences.
Figures 12 and 13 show the results for aluminum
and sodium. As can be seen all parameters are
piecewise linear in q~. Simple analytic expressions
for the straight lines drawn are given in Table II.

Spectra calculated with parameters obtained
from Table II fit the data more poorly in some
cases, better in others. On the whole, they do
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LIJ
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Sodium:
0.22+9. 6Z eV, Z &0.076
0. 95 eV, Z «0. 076

Re(C) =2. 02Z'

$
—l. 79Z, Z & 0. 076

f —0, 136, Z «0. 076

TABLE II. Simp1. e parametrization of the fitting varia-
bles used in the modified Lindhard-Mermin dielectric
function. Z is q/24F.

20

0.4 Q. 8

Aluminum.
0. 53+ 30. 9Z +0. 2 eV, Z & 0. 067
2. 60+0. 2 V, Z «0. 067

He(G) =2. 5Z +0. 05

—2. 12Z + 0.2, Z & 0. 067
—0. 142 +0.2, Z ~0. 067
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FIG. 13. Fitted values of Im(E), Re(G), and Im(G)
with standard deviations computed by the least-squares-
fitting program, for sodium. The solid lines are the
simple model of the q dependence, developed from the
points shown, with the constraint that it be similar to
the aluminum model. The dashed line for Be(G) is from
Vashishta and Singwi (Ref. 28).

a complex exchange correction becomes evident.
The calculation with a real exchange parameter
cannot correctly reproduce both the position and
width of the peak because its asymmetry is too
great. The calculation with a complex exchange
correction has a much more appropriate shape.
Its most noticeable failure is that its peak strength

about as well as the "best" fits. The uncertainties
in the aluminum parameters are derived from the
scatter of the "best" fits about the straight lines drawn
in Fig. 13, so that roughly '70% of the fits fall
within the uncertainty limits.

A simpler fitting model may be used. Requiring
Im[G(q)] = 0 reduces the dielectric function used
to the Lindhard-Mermin function modified only by
core polarizability and static exchange corrections.
The agreement with the data is, however, signifi-
cantly poorer. The elements of the fitting exer-
cise are displayed in Figs. 14 and 15, which show
aluminum data at wave vectors 0.SO and 1.47 A ~

and calculations made with the model discussed
above. In the fits using a real exchange correc-
tion, the imaginary energy is smaller than it is
with the complex exchange correction, and the
exchange parameter G assumes essentially the
same value as He(G) in the fits with complex ex-
change corrections.

At 0.90 A ~ there is little difference between the
best fits obtained with real and with complex ex-
change parameters G. The simple model of Fig.
13 fails to reproduce the position as well as the
best fits. At 1.47 A ~, the reason for introducing
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FIG. 14, Measured and calculated spectra at a wave
vector of 0. 90 A in aluminum. Top: The measured
spectrum 8 and the part due to background, determined
by the fitting procedure described in the text. Bottom:
The data after background subtraction (points) and the
calculated loss functions. Solid line, the best fit with a
complex exchange coefficient. Dashed line, using param-
eters from Table II. Dot-dashed line, best fit with a
real exchange coefficient.
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FIG. 15. Measured and calculated spectra at a wave
vector of 1.47 A ~ in aluminum. Top: The measured
spectrum S and the part due to background, deter mined
by the fitting procedure described in the text. Bottom:
The data after background subtraction. (points) and the
calculated loss functions. Solid line, the best fit with
a complex exchange coefficient. Dashed line, using
parameters from Table II. Dot-dashed line, best fit
with a real exchange coefficient.

to wing strength ratio is not quite high enough to
match the data. The model of Fig. 13 is essential-
ly the same as the best fit at this wave vector. The
features pointed out here are found in all the data
taken in aluminum and sodium, and the agreement
between the data and the calculation here is typical.

The osci1.lator-strength sum rule

Im[ —e(q, (u) ~](ed(u = —'my~,

where w~ is the plasma frequency, was used to
test the data. For wave vectors from 0. 9 to 1.6
A in aluminum the sum remained constant to
within 5 j~ of its average value. The sum was
consistent with the known plasma frequency,
which proves our background subtraction is cor-
rect in the total area it accounts for in the data.

COMPARISON KITH OTHER EXPERIMENTS AND THEORY

The data of Kloos' for a,luminum show a small
wave- vector (q) deviation from the expected quadratic
dispersion, and in lithium he saw a deviation from
the simple quadratic dependence of the width on q
at small q. The q resolution in the present ex-
periments is not as good as that of Kloos. ' In
aluminum the anomaly Kloos observed occurs for
q smaller than our resolution. In lithium we agree

with Kloos, finding a minimum in the width of the
plasmon at about 0. 5 A ~. This is probably due to
scattering of the plasmon at grain boundaries, as
suggested by Krishan and Ritchie. ~'

More recently Petri and Qtto' have reported a
deviation from quadratic dispersion in aluminum
for 0~ q~0. 6 A ~. Data from the present, experi-
ment show no such effect.

The present measurements, made in polycrys-
talline samples with wave vectors up to the Fermi
wave vector, show no na, rrow small dispersion
peak as seen by Eisenberger et al. 9' nor any
identifiable precursor of that peak, although a,

slowing of the dispersion of the center of gxavity
of the entire conduction-electron spectrum is ex-
pected, and seen in aluminum. It is due to the
asymmetry of the spectrum, with greater strength
at low energies, which is caused by single-particle
excitations, and it increases with wave vector.

Zacharias' and Petri and Qtto' both show the
dispersion of the plasmon in aluminum at small
wave vectors q,

(d = (d~+ D (I/wl) IP .
Petri and Otto find z =0.401, Zacharias's graph
is consistent with ~ = 0. 40, and we find ~ =0. 42
consistent with the otheI values when the scatter
in the data is taken into account. In sodium we
find o. =0. 24.

Zacharias fits his dispersion curve for the
aluminum plasmon with an exchange correction
like ours, but constrained to be real, in a Lind-
hard-Mermin dielectric function with wave-vector-
independent damping. Using the small wave-
vector form G(q) =y q, which seems from our
data to be valid over the entire range from zero
to the Fermi wave vector, Zacharias found y = 0.63,
exactly the same as our result and 2. 4 times
larger then the value given by Vashishta and
Singwi. In sodium we find y =0. 51, which is
larger than the value of Vashishta and Singwi by
a factor of 1.8. %e have observed that increasing
the damping decreases the dispersion coefficient
~ in the Lindhard-Mermin model for the spectra,
if the peak energy is taken to be the plasmon ener-
gy. The simple relation between ~ and y which
obtains when there is no damping must fail in all
real metals, as it does for the sodium and alumi-
num data reported here and the aluminum data of
Zacharias.

CONCLUSION

The wave-vector dependence of the plasmon
characteristic energy-loss function has been
studied in Li, Na, and Al. Analysis of the few
Na and many Al measurements shows that, when
due care is taken to treat multiple scattering
problems adequately and when data are taken with
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sufficiently fine energy resolution, the wave
vector (q) dependence of the width and peak energy
of the plasmon are simple. The behavior of the
plasmon width at the cutoff wave vector is qualita-
tively understood, although the small q plasmon
width has never been fully explained. eo The dis-
persion of the peak behaves as predicted by
Lindhard's dielectric function out to q=4+, the

Fermi wave vector.
A simple model for the shape of the spectrum

at all wave vectors up to k& is given, based on a
modified Lindhard function. It is hoped that the
sucess of this model may stimulate additional
interest in the quest for a theoretically adequate
model dielectric function consistent with all the
available electron gas excitation data.
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