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Electronic states of substoichiometric compounds and application to palladium hydride*
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A theory for the electronic states of substoichiometric compounds based on the coherent-potential
approximation is described. Extensive numerical calculations have been carried out on palladium hydride.
These results and the applicability of the theory to this system and other systems will be discussed.

I. INTRODUCTION

A common type of disorder that occurs in ionic
crystals made of relatively heavy metal ions and
light anions is substoichiometry. To a first ap-
proximation the metal-ion sublattice in such a
crystal is perfectly periodic, but the anion sublat-
tice has a number of vacant sites.

For' example, palladium hydride can be made by
diffusing hydrogen into palladium metal. '
Throughout this process the palladium lattice re-
mains fcc and the hydrogen fills the octahedral in-
terstitial sites until, upon filling all these sites,
stoichiometric PdH which has the NaCl structure
is obtained. There is a, lattice-constant change
upon the formation of a hydride phase, but to a
good approximation substoichiometric PdH can be
viewed as a periodic fcc metal lattice with hydrogen
atoms distributed randomly over some fraction of
the octahedral sites.

The technique for calculating the electronic
states of substoichiometric crysta, ls given here is
a rather straightforward application of the coher-
ent-potential approximation (CPA). Calculations
of electronic states for binary alloys using this ap-
proximation ' have shown good agreement with ex-
perirnent. The only previous calculation on sub-
stoichiometric crystals used the virtual-crysta, l
approximation, which is known to be a rather low
level of approximation and, indeed, led to anom-
alous results. Actual calculations will be shown
for palladium hydride over the full range of hydro-
gen concentrations, and these results will be dis-
cussed in connection with the known properties of
this system.

II. THEORY

The Slater-Koster interpolation scheme is fre-
quently used by band theorists to obtain more de-
tail from ca.lculations on periodic ionic crystals.
The procedure is to write out the results of a hy-
pothetical tight-binding calculation based on a. set
of atomic functions (t( (r —r; —R, ) which represents
the nth atomic function centered on the ith atom in
the p.th unit cell of the crystal. The matrix ele-
ments of the Hamiltonian

and the overlap integrals

'( «() « f,
«.«4=.( ; —&.—)(«( —;—&.),

(2)
are treated as parameters which are adjusted to
make the tight-binding results agree with the eigen-
values given by a first-principles band-theory cal-
culation at some finite set of k points in the Bril-
louin zone. Eigenvalues for other k points ean be
obtained easily from the tight-binding matrices if
matrix elements corresponding to interactions of
atoms that are beyond the first- or second-neigh-
bor shell are ignored. Experience has shown that
the eigenvalues so obtained are in reasonable
agreement with first-principles band-theory re-
sults.

It is well known that many nearest-neighbor in-
teractions as well as atomic wave functions cor-
responding to excited states must be included to
make a real tight-binding band-theory calculation
converge. There have been speculations in the lit-
erature that there should be a set of localized
functions that could be used instead of atomic func-
tions in calculations on solids which are adapted to
the crystal structure in such a way that more rapid
convergence would be obtained. It can be argued
that the parameters obtained from a Slater-Koster
interpolation fit are just the ones that would be ob-
tained in a tight-binding calculation based on this
set of optimal localization functions. We find it
helpful to take this view in the derivations of the
CPA equations below.

Although the CPA equations for calculating the
electronic states of a random substitutional alloy
for the general case of muffin-tin potentials are
known, the only calculations on three-dimension-
al systems that have been carried out use some
form of the tight-binding model. It is therefore
convenient that the tight-binding model is common-
ly used in band-theory calculations on ionic crys-
tals.

In order to formulate tight-binding CPA equa-
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tions in a form such that the interpolation param-
eters H(i p, , jv)~a and &(ill, jv)~ can be used direct-
ly we first introduce a set of abstract vectors
i i, p, , a) such that

(r~i, y, , o() =(ti (r r;——R„), (&)

and an a.ssociated set i j, p, o() such that

equal to the energy E plus a positive imaginary
quantity that is allowed to go to zero at the end.
For the nonstoichiometric crystal already de-
scribed,

H =g e',
~
1, p, , n) (1, li, p ~

+Q o~
~
2, ii, a) (2, p, , p ~

9& p &~j» p)=&;i%.&u(i ~ (4) + Q U(i p, ,jv)„~i, il, n) (j, v, p~,
With this notation the Hamiltonian can be written
1n operato1 fo1 m:

01

H=+H(ip, ,jv), ~i, p, , a)(j, v, P~

H=Ze(ip). &~i', p, (l)(i, u, Pl

+Q U(ll, gv)., [i, I, ~)(i, v, el

where the matrix elements H(ip. ,jv) a are called
e(l')l)~ if the atomic indices are the same and

U(ii(, jv) a otherwise. Unless otherwise indicated
summations will be taken over all repeated indices.

We now specialize the notation to crystal struc-
tures with just two atoms per unit cell. This is
sufficient for treating many substoichiometric ma-
terials, and the generalization to more complicated
structures is straightforward. We recall that the
metal-ion sublattiee, which we call sublattice I, is
periodic; that is, e(lp, )~ = e', (i is the same for all
unit cells. There will be either an anion or a va-
cancy on the second site in a unit cell. For the
cells that have a vacancy we set e(2ii) (i equal to
infinity because this will prevent any electron from
hopping onto that site. The elements &(2p, ) i( take
on the values e z if the p, th cell contains an anion
on the second site. The off-diagonal elements
U(ip, jv)~(i are the same in the nonstoichiometric
crystal as they are in the periodic crystal. This
does not lead to any difficulties since the electron
cannot hop onto a vacant site and therefore the val-
ues of the hopping integrals to that site are irrel-
evant. In the terminology of disordered-systems
theory this means that we can ignore the problems
of off-diagonal disorder for this ease.

Application of the CPA to this system leads to a
periodic model Hamiltonian H which has the prop-
erty that quantities calculated from the Qreen's
function

G(Z) = (Z —H)-',

such as the density of states

p(E) = —(1/v) lim lm Tr G(Z),

are very good approx1mat1ons to those that would
be obtained using the actual nonperiodic Hamiltoni-
an. As usual, the limit nota, tion means that Z is

where the only unknowns are the matrix elements
o i( that replace the e(2i()~ on the anion sites. To
obtain them from the CPA, the scattering opera-
tors that describe scattering from an anion or va-
cancy in the central cell of an otherwise periodic
crystal with the 0 z on the other anion sites must
be found. If there are m atomic functions centered
oil all ailloil site we collstl'uct all tl xB Illa'tl'lx G
from the matrix elements of the Green's function
with respect to these functions,

G'.,(H)= »m(2, 0, ~~@2,0, P), (10)

and also mxn matrices & and 0 with elements e ~

and v~. It can be shown that the desired scatter-
ing operators can be written in the form

i"=p v"., ~2, 0, o)(2, 0, p~,

and the scattering matrix for the anion whose ele-
ments l, (i would be used in Eq. (11) is

[1 (ea o)G8 j l (~8 o) (12)

The scattering matrix for the vacancy is as above
but with E -~, so

vv (GR)-

If C is the concentration of vacancies or the frac-
tion of unfilled anion sites, the CPA equations for
the a z are

Cv'+(1- C)v"= 0 (14)

and a",(k) by

W

~ ii (k) i ~ (r(-ri & ir 8& &(
~

If the sum of the number of atomic functions cen-

ol'

o = e' —C(G') ' . (15)

Since 6 is a function of g, this matrix equation
must be solved by iteration.

The model operator IJ is periodic so lattice
Fourier transforms can be used to find the matrix
elements 6~8. We define matrix elements &~8 by

e '(( = e'(i for i = 1 and i'
i(

= o (( for i = 2, W ~isa(k) by

W~~(k) = e'"'(" '&'p e'l' ( U(ip, jO),a,
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tered on the metal-ion sites and those on the anion
sites is m, the mxm square matrix H(k) has ele-
ments

H"q(k) = e~]]5,,+ W~)~~(k), (18)

while the elements of the m xm matrix 4 (k) are
given in Eq. (17). The equation for an element of
6 is

«*.,(«) =((/{))«J ««((««(«) - «(«)]- ]...„
(19)

which means that we form the m x m matrix Z4 —H
for each k in the Brillouin zone, take its inverse,
find the element in the 2, o, row and 2, P column,
and then integrate over the Brillouin zone. Of
course, in practice one chooses a large but finite
set of k's in the Brillouin zone and carries out a
weighted sum rather than the integral in Eq. (19).

The self-energy matrix elements 0~& are found
from Eqs. (15) and (19). It is clear from Eq. (15)
that they depend only on the energy, and it turns
out that they are complex. It can be seen from the
above that the k dependence of H(k) and d(k) arises
from terms that are independent of the concentra-
tion since we do not have to consider off-diagonal
randomness in this problem. Partly for this rea-
son the iterative solution of these equations turns
out to be quite tractable in practice.

Since the atomic functions (f) (r —r, —R„) are not
orthogonal, care must be used in finding the den-
sity of states after the CPA equations have been
solved. The f irst step, it can be shown, is to
construct the matrix

metric PdH. In an early stage of these calcula-
tions" we used our own Korringa-Kohn-Rostoker
band-theory calculations on Pd and PdH as a start-
ing point, but some more elaborate first-principles
calculations on these materials have been reported
by Papaconstantopoulos and Klein' and they are
used in the present calculations. In fitting to the
first-principles values we reproduce their essen-
tial features very well, but we have not striven for
the kind of accuracy that is normally obtained in
band-theory applications. One reason for this is
that we want to keep our model Hamiltonian as
simple as possible to facilitate the CPA calcula-
tions. Another reason arises from the fact that
in the present stage of development of band theory
there will be sizable differences in the bands ob-
tained for a given material from calculations
which use different starting assumptions, even
though the various calculations are equally legiti-
mate,

Our interpolation Hamiltonian is taken directly
from the paper by Slater and Koster. v In this cal-
culation we set the overlap matrix equal to a unit
matrix. We treat nearest-neighbor and next-near-
est-neighbor interactions in PdH and just nearest-
neighbor interactions in Pd, and the two-center ap-
proximation is made. On the Pd sites we put one
s function, three p functions, and five d functions,
and we put one s function on the H site. In Fig. 1
we show the E-versus-k curves for Pd that we ob-

—f,6

5(Z)=(l/()) f«k«{k)[Z«(k) —«{k)] ',
which differs from the Green's-function matrix
by the introduction of an additional d(k). The den-
sity of states of the metal ion is

p„(E)= (- I/v) lim Im Q S,"(Z),

and for the anion site

(21)
L2

p„(E)= (- I/g) lim Im Q S",(Z) . (22)

This partial-density-of-states function describes
the occupation of the atomic sites with electrons
having energies between E and E+ dE. The total
density of states of the system is

—0.2

p(E) = p~(&)+ p~(E) . (23)
—-0.2

III. CALCULATION ON PdH

The first problem that arises in applying the
preceding theory to nonstoichiometric PdH is to
find a set of interpolation parameters that will re-
produce the energy bands of pure Pd and stoiehio-

FIG. l. E-vs-k curves along the f100) symmetry
line (I' to X) and the Illl] symmetry line (I' to I.) for Pd.
The heavy solid lines were obtained from our interpolation
Hamiltonian and the dashed lines show the results de-
scribed in Bef. 12 when they differ enough from ours to
be seen.
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TABLE I. Parameters for interpolation Hamiltonian
in notation of Ref. 7.

Palladium-palladium

so= 0.7000
d() =1.3700
Pp= 0. 3859
(ssa) = —0. 0598
(ppo') = 0.1500
(pp~) =- o. o25o
(ddt = -0.0494
(dd7j) = 0.0197
(du) = —o. oo18
(sf o') = 0. 0900
(pdcr) = 0. 0
(pd&) = o. o
(sd~) = O. O667

hydrogen-hydrogen

so=1. 0000
{ss~)=o. o

hydroge n-palladium

(sso) = 0. 0876
(sP~}= O. 162O
(sdfT) = 0. 1200

tain usi. ng the first 13 interpolation parameters in

Table I. The E-versus-k curves for PdH shown in

Fig. 2 is obtained by adding one more parameter
which fixes the position at which the hydrogen band
would appear in the absence of the palladium and
three parameters that describe the interaction of
the hydrogen s state with the palla. dium s, p, and
d states. As can be seen by comparing these fig-
ures, the primary effect of adding hydrogen to pal. -
ladium appears to be to convert the lowest-lying
palladium conduction band to a palladium-hydrogen
bonding band which has a lower energy over all.
The palladium-hydrogen antibonding band appears
in the neighborhood of 1.0 Ry in Fig. 2.

It can be seen from Table I that the interaction
between the hydrogen s state and the palladium p
state s is very strong. This is not surpr ising when
it is realized that the energy of the isolated hydro-
gen atom, 1.0 Ry, falls in the energy region where
the palladium bands are dominated by p states.
Figures 1 and 2 also illustrate the point that the
agreement with the first-principles bands of Papa-
constantopoulos and Klein is adequate.

The densities of states for Pd and PdH have been
calculated by summing the eigenvalues from the
interpolation Hamiltonians that fall between E and
E+ dE and also by taking the trace of the Green's
functions for the pure systems. It has been found
that adequate detail is obtained if an integral over
the Brillouin zone is replaced by a weighted sum
over 40S k points in the irreducible 48 portion of
the zone. Of course, it is necessary to add a
small imagina. ry part 5 to the energy when using
the Green's-function method. %e obtain good
agreement between the densities of states calcu-
lated by the two methods using 5= 0.002. In Fig.
3 we show the densities of states of Pd and PdH
calculated by the Green's-function method, since
this is the method that can be carried over into al-
loy calculations.

Starting from this description of the pure ma-
teria, ls, the periodic model Hamiltonian II and the
Green's function for substoiehiometric PdH for any
concentration of vacancies, C, can be found from
the CPA equations of Sec. II. Since there is only
one atomic state associated with the hydrogen atom
Eq. (15) becomes a scalar rather than a matrix
equation. The CPA self-energy o(E) is just a com-
plex function of the energy for this case, and the
iterative solution of Eq. (15) is relatively easy.

We found o(E) for PdH with 5%%uo, 10%, 15%, 20%,
30%, 40%, 60%, and 80'%%uo vacancies over a range of
energies from —0. 3 to 0. 7 Ry. The densities of
states were found from Eqs. (20)-(23) and the in-
tegrated densities of states were obtained by nu-
merical integration. From these we were able to
get the Fermi energy and also the total number of
electrons on the palladium and hydrogen sites.

In Fig. 3 we show the densities of states and
Fermi energies for Pd, PdH, and a number of sub-
stoichiometric compounds. It is clear that no rigid
band model would give these results, and that the
Fermi energy moves to higher energy with increas-
ing hydrogen content. The densities of states as-
sociated with hydrogen sites is shown in Fig. 4
for PdH and two substoichiometric compounds.
These results illustrate that one cannot identify
just one band on the E-versus-k curves of Fig. 2
as a hydrogen band. They also show that there are
changes in the distribution of states associated
with these sites and not just a scaling of the mag-
nitudes of the distributions.

The hydrogen concentration or ratio of hydrogen
to palladium atoms, H/Pd = 1 —C, has been used to

—&.0
L,

—0.6

L5

—0.2
L2

Lt ~—0

FIG. 2. E-vs-k curves for stoichiometric PdH with
same conventions as Fig. l.
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FIG. 4. Average density of states on the hydrogen
site vs energy for stoichiometric PdH (dashed) and
also substoichiometric compounds with a ratio of filled
hydrogen sites H/Pd equal to 0. 60 (solid) and 0.20 (dots).
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ber of uncertainties in doing this for a disordered
system, but they are relevant to the discussion.
In Fig. 5(a) we show the density of states at the
Fermi energy for PdH systems over the full range
of hydrogen concentration. These results coupled
with those shown in Fig. 3 indicate that the Fermi
energy falls in a range of high density of states and
p(E&) is roughly constant for hydrogen concentra-
tions below about 0. V. For higher values of H/Pd
the Fermi energy moves out of the d bands and

p(E&) falls to values typical of simple metals. The
exact value of H/Pd at which this transition takes
place and the steepness of the drop in p(Ef) de-
pends sensitively on the details of the band-theory
results. Specific-heat measurements of Mackliet
and Schindler'4 can be interpreted as indicating that
the transition is completed as H/Pd goes from

FIG. 3. Density of states vs energy of Pd and
PdH and also five substoichiometric compounds. The
fraction of hydrogen sites that are filled is shown on the
left as a percentage. The vertical line on each curve
shows the Fermi energy and the dotted portion of the
curves show the regions of unfilled energy states.

30
)

20

label these drawings as this is a more common

terminology than the concentration of vacancies, C.

IV. DISCUSSION

Interest in PdH has increased in recent years
owing to the discovery that palladium and certain
of its alloys become superconductors when they are
charged with hydrogen. " In particular PdH be-
comes a superconductor when the hydrogen concen-
tration becomes grea. ter than 0. VV and its super-
conducting transition temperature T, approaches
10 K as H/Pd approaches 1. Even higher T,'s are
measured in Pd-Ag-H systems. There are also
experiments on the resistivity, magnetic suscep-
tibility, specific heat, and optical properties of
PdH which are interesting. ' '

The present calculations have not been used to
obtain estimates for T, because there are a num-

'l5

E 5

(a}
0

~ 0.6

0.4

0.2—
I

(b}

0 0.20 0.40
Hjpd

Q.BG 1.00

FIG. 5. Density of states at the Fermi energy of var-
ious PdH compounds versus the ratio of filled hydrogen
sites expressed as a decimal fraction. The total density
of states is shown in (a), while the average density of
states on the hydrogen site is in (b}. Note the change of
scale between (a) and (b}.
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FIG. 6. Density of states of Pd, Ag, and a number of
PdAg substitutive alloys. The percentage of Pd atoms
replaced by Ag atoms in the alloys is shown on. the left
of the curves. The Fermi energy is shown with a verti-
cal line and the unfilled states are shown as a dashed
line.

0. 57 to 0. 07. In any case the Fermi energy should
be outside the d bands in the range of hydrogen
concentrations for which PdH is a superconductor.
It can be seen from Fig. 5(b) that the density of
states on the hydrogen site increases to about its
maximum value for H/Pd in the superconducting
range. This lends further credence to the mech-
anism for superconductivity in PdH discussed by
Papaconstantopoulos and Klein' rather than the one
put forward by Bennemann and Garland. The
former authors used band-theory results for stoi-
chiometric PdH and came to the conclusion that the
major contribution to the electron-phonon interac-
tion parameter which determines T, arises from
the hydrogen. Our results indicate that the rela-
tive magnitudes of the densities of states that they
based their arguments on remain qualitatively cor-
rect for the substoichiometric crystals which show
superconductivity.

Samples of PdH containing enough hydrogen to be

superconducting have the structural phase called
the P phase. The assumptions used in this calcula-
tion concerning structure are quite good for this
phase, which is generally described as a NaC l
structure with randomly distributed vacancies at
the hydrogen sites. Samples with hydrogen con-
centrations less than about 0.6 are in a two-phase
region of the phase diagram where the 13 phase is
in equilibrium with the e phase, which is essen-
tially pure fcc palladium having a lattice constant
about 4% smaller than that of the P phase. Our
calculations are suspect for values of H/Pd in this
range, but they should be at least indicative. Quite
different lattice constants were used for the Pd
and PdH calculations that we have taken as a basis
for this work, and, as is seen in Figs. 1 and 2,
the major features of the bands are not particular-
ly sensitive to this.

The existence of the two-phase region does make
the interpretation of some of the experimental data
for PdH more difficult. The experiments we are
aware of are consistent with the results we have
obtained, however. Our calculations show that
each electron that is added to the solid with the ad-
dition of a hydrogen atom is divided between the
palladium and hydrogen sites in the ratio of 3 to 2,
and this ratio remains quite constant over the
whole range of hydrogen concentrations. This does
not mean that a modified rigid band model can be
used, though, because the density-of-states func-
tion for the palladium site changes with hydrogen
concentration.

In some of the early discussions of the electron-
ic structure of PdH it was thought that adding a hy-
drogen atom to a unit cell would have the same ef-
fect as replacing the palladium atom with a silver
atom. In Fig. 6 we show a resume of results pre-
viously obtained for PdAg alloys with silver con-
centrations equal to the H/Pd concentrations in
Fig. 3. It can be seen that the way the densities
of states vary is quite different for the two sys-
tems.

It would be possible to carry out more elaborate
CPA calculations on PdH. This would be justified
if the results of optical or other experiments which
could give rather direct measurements of the elec-
tronic structure of P-phase PdH become available.
The technique outlined in this paper has proved to
be quite tractable, and it should be possible to use
it to calculate the electronic states in other sub-
stoichiometric compounds.
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