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Momentum density for Compton scattering from random alloys*
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We derive an explicit expression for the average momentum density (p(p)) measured by a Compton-
scattering experiment on a disordered binary alloy. Our treatment is based on the use of muffin-tin atomic
potentials within the framework of the average t-matrix approximation. In the case of a perfect crystal the
momentum density is also derived directly from the usual Korringa-Kohn-Rostoker wave functions, and the
formula so obtained is shown to be identical to the crystalline limit of (p(p)).

INTRODUCTION

In view of recent advances in the theoretical un-
derstanding of disordered alloys, realistic calcula-
tions of quasiparticle energy eigenvalues and den-
sities of states in transition- and noble-metal al-
loys are now practical. In a series of articles, '
Bansil and collaborators have considered the de-
tailed application of the average t-matrix approxi-
mation (ATA} to an alloy Hamiltonian based on
muffin-tin atomic potentials. This scheme has the
advantage that the numerical techniques familiar
from the Korringa, Kohn, and Rostoker (KKR}
method ' of band theory in ordered crystals can
be easily extended to the alloy problem. ' Exten-
sive calculations on a. —Cu„Zny Cu„Ni, „,'
and to a lesser extent on nonstoichiometric Cu„H& „
systems' show that a wide variety of electronic
properties can be understood consistently in the
framework of such an alloy theory. Therefore, a
study of the consequences of the muffin-tin ATA
formalism for more detailed properties of disor-
dered alloys is warranted. The present paper is
an attempt to develop the formalism necessary for
calculating momentum densities relevant to Comp-
ton-scattering measurements on disordered alloys.
Application of this theory to the Ag„Pd, „system
and also its generalization to include the positron
wave function will be discussed in subsequent pub-

licationss.

Momentum-density measurements by positron
annihilation and Compton-scattering' techniques
constitute an important tool for studying the elec-
tronic states of solids. In contrast with de Haas-
van Alphen effect related methods, such measure-
ments do not require long electronic mean free
paths and, consequently, they have the unique ad-
vantage that they can be easily extended to disor-
dered solids. In particular, breaks in the momen-
tum distributions have been used to determine the
Fermi-surface geometry in nondilute alloys and
high-temperature structural phase transitions. '

We note that the positron-annihilation and Comp-
ton-scattering techniques have important differ-

ences in both the underlying physical mechanisms
and the state-of -the-art developments. Because
positron-annihilation measurements are sensitive
to the momentum distribution of the conduction
electrons, and high resolutions are currently
available, this method is particularly attractive as
a Fermi-surface caliper. Nevertheless, its util-
ity in testing electronic wave functions is compli-
cated due to the folding of the positron wave func-
tion into the observed profiles and also due to pos-
itron-electron many-body correlation effects. By
contrast, the interpretation of Compton-scatter-
ing experiments is not complicated by the positron
wave function. However, high resolutions (which
are still much lower than those presently available
in positron annihilation) are possible only by the
use of x-ray sources, limiting the applicability of
Compton scattering to low-Z materials.

Conventional methods of energy-band theory have
been used to obtain the momentum-density distri-
butions in a number of ordered metals and semi-
conductors, "and the results are in general agree-
ment with experiment. Central to these theoreti-
cal computations is the calculation of (Bloch} wave
functions in the crystal. In a disordered alloy,
however, due to the absence of translational in-
variance, the electronic wave functions are very
difficult to calculate in practice, except in a few
cases (such as dilute alloys) where perturbation
theory may be applicable. ' Fortunately, physical-
ly observable properties cannot depend on the de-
tailed arrangement of the atoms in the alloy and
may, therefore, be obtained by an average of the
configuration-dependent properties. In Sec. II,
we show that the average momentum density (p(p))
for momentum transfer p (the angular brackets ( )
denote the ensemble average over all atomic con-
figurations} is related to the imaginary part of the
momentum-dependent average Green's function
(G(p, E)). Even though the eva. luation of (G(p, E))
is similar to that of the average spectral density
(A(k, E)) in the alloy, ' one significant difference
in the formal expressions for (G(p, E)) and
(A(k, E)) is noteworthy. It will be seen that
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(A(k, E)) in the perfect crystal and also in the dis-
ordered alloy can be expressed in terms of just
two units of input: (a) the KKR structure functions
B(k, E) and (b) the energy-shell matrix elements
t, (x, x) and t, (x, x) (where x

—= V E and / is an an-
gular momentum index) of the f-matrices of the
constituent A and B atom potentials. '7 By con-
trast, the computation of (G(p, E)), even for a per-
fect crystal, requires the knomledge of off-the-
energy-shell matrix elements t)"' )(k, x). Never-
theless, as discussed in Sec. II, the numerical
evaluation of f,"' )(k, x) is fairly straightforward,
and can be carried out by using formulas developed
by Beeby. '

The momentum density in a perfect crystal is
discussed in detail. Section III derives the rele-
vant formula starting from the conventional KKR
wave functions. We explicitly show that this ex-
pression is identical to the crystalline limit of the
momentum density (p(p)) in the alloy. Several
points of pedagogical interest are clarified in

Secs. II and III. The detailed proofs of some of
the results used in the text are presented in the
Appendices.

and keeping the definition (2. 1}of p(p) in mind, it
is immediately seen that

p(p) = - — « lmc(p, E'),
7t ~ col

(2. 5)

&p(p}& = —— «fm&c(p E'}& .
w oo

(2.5)

We specialize nom to a disordered alloy de-
scribed by the Hamiltonian"

H=P'++ v"' '(r-R„}. (2. 7)

where E~ denotes the Fermi energy.
Equations (2. 1) and (2. 5) are exact and, in prin-

ciple, they are applicable to an ordered as mell as
a disorderedsolid. Ina perfect crystal g (r) are
the Bloch wave functions and Eqs. (2. 1) are easy
to apply. By contrast, in a disordered alloy, the
computation of the energy eigenfunctions, and
hence of p(p), is a formidable task for a given
(arbitrary) configuration of the atoms. As already
noted, the quantity of physical interest is the con-
figurationally averaged momentum density (p(p)).
Using Eq. (2. 5}, this is seen to be

II. FORMALISM

A. Evaluation of (p(p))

Assuming independent particles, the momentum
density p(p) for Compton scattering from a solid
is given by ~) A(B)( )r

The potential at the site R„ is v" (or v ) depend-
ing on whether this site is occupied by an A (or B)
atom. These potentials are assumed to be of muf-
fin-tin type, i.e. ,

i ")')(ir
i
&,

( )

p(p& = g ~.
I
tc.(p) I

(2. la)

.f f «« ' "'""'«.( )«".( ') .
(2. lb)

Here g (r) denotes the electronic wave function,

g (p) the corresponding momentum transform, and
the occupation number for the energy eigenstate

o.. ln writing Eqs. (2. 1), multiple scattering cor-
rections to the brompton profile have been ne-
glected.

For the present purposes we wish to cast Eqs.
(2. 1) in terms of the Green's function

c(E ) =(E+fo'-a)-'. (2. 2)

G(p, p;E')-=G(p, E)=g P P, . (2. 2)

Equation (2. 2) is an operator equation involving the
Hamiltonian H of the system. The momentum
transform G(p, p; E') of the Green's function may
be written in terms of the quantities P (p) and the
eigenvalues E of H. Thus

C(E) = C,(E)+ C,(E)T(E)G,(E), (2. e)

where Go(E):-(E—p ) ' is the free-electron prop-
agator. The operator T can be expanded in a mul-
tiple scattering series in terms of the atomic scat-
tering matrices, f„=v„(1 —Go@„) ', i.e.-,

r=g f„+gQ f„c,f.
n n mff'n

The muffin-tin radius R is chosen such that none
of the atomic spheres overlap. Experience with
perfect crystals, and more recently mith disor-
dered alloys, shows that the form (2. 8) describes
the single-site potential in a close-packed solid
quite well. Finally, we assume the disorder to be
random, i.e. , the probability that an A (or B)
atom occupies any site is proportional to its con-
centration, x (or y= 1 —x).

The techniques of multiple scattering theory mill
nom be applied to obtain a closed expression for
(G(E')). ' The calculation is carried out most
conveniently in terms of the scattering operator
T(E) defined by

Using the identity

lm(E —E +f0') = —v5(E —E ), (2. 4)
+QQ Q t„c)«t Got, +''' . (2. 10)

mPn lint
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Averaging both sides of Eq. (2. 10), (T) is given
by the exact equation

x(tnGotmGot( &+ ' ' ' ~ (2. iS)

(T& = g (t„&+P g (t„&G,(t.)

The average t-matrix approximation (ATA) in-
volves the replacement of the average of the Pmd-
Qct8 occurring ln the successive terms of Eq.
(2. 11) by the corresponding Products of averages
This approximation amounts to neglecting the cor-
rections to the effective scattering from a given
site arising from the fluctuations in this site's en-
vironment. Thus, within the ATA

(where «=- y E)are related to the usual phase shifts
f)I ' '(K) by the equation

. g(B)t"' '(«K)= —K'sin(i"' '(«)e"I '"' (2 16)

The off-the-energy-shell matrix elements
~&' '(P, &) (P+&) are only slightly more compli-
cated. The relevant formulas are discussed in

Appendix A, where it is shown that, for E & 0,

t A(B)(~ ) t A(B )(

= s", 'B'(p, E) cot()I ( '(K)t,"' '(K, «)

(2. 1Va)

lmt, "' )(j),p) = —«
' [s", ' '(p, E) cos() I

' '(K)]',

(2. 1Vb)

+g P E (t.&GO«&GO«I&+" ~,

(t„&=xt„"+(1—x) t„.
(2. 12)

(2. iS)

t"' '(r, r') = Q Y (r)t,"' '(r, r') 1' (r') . (2. 14)

Here, I.=—(l, m) denotes the orbital and magnetic
quantum numbers, and FI. the corresponding real
spherical harmonic. The momentum transform
t,""'(p,4} is defined by"

),""'(p&)=J &rr'f &r, r"&,(pr)'
x t,""'(r,r') j,(q )r. (2. 15)

The energy-shell matrix elements t,"' '(«, «)

The approximations leading to Eq. (2. 12) es-
sentially replace the disordered alloy by an or-
dered crystal of effective scatterers (t&. The
translational invariance having thus been restored,
the series (2. 12) can be summed up exactly. To
this end, we introduce the angular momentum de-
compositions of the I, matrices and the Green's
function. For the t matrices

s", ' '(p, E)= —K

&m

dry j I(jIr)

x v"'B'(r) tf"(B)(r E) (2. i8)

is given in terms of an integral involving the reg-
ular solution ff( ( '(r; E}of the radial Schrodinger
equation in the atomic potential v"' '(r).

The free-electron lattice Green's function may
similarly be decomposed as

2 e"s"G,(r —r' —R„)= Q i I ' 1'B(r)j,(«r)
WO II»

xBBB&(k,E)j,,(«r') 1'B&(r } for r, r'&R~ .
(2. 19)

Here, B(k, E) (suppressing the angular momentum
indices) is the matrix of conventional KKR struc-
ture functions. ' [Note that as long as r, r' &R
B(k, E) is independent of r and r' and, furthermore,
that B(k, E) is periodic in k. ]

Using Eqs. (2. 14)-(2. 19), the momentum matrix
element of the multiple scattering series on the
right-hand side of Eq. (2. 12) can be evaluated in a
closed form. The result, after several lengthy
but straightforward manipulations, is

(T(p, p; E)& =- (T(p, E)) = (471)'t)I Q 1'B(p)((t)(p, p)&5BB, + (t((j), «)& [B(k,E) [1—(t(K, K)) B(k, E)] ' jBB.

x(t, (», p)& ) 1; (p),

where N is the total number of lattice sites. In
writing (2. 20), we have introduced the diagonal
nlat1'1x (t(I(& K}&BB&—=

GAB& (tI(I(& K)& ~

Equation (2. 20) makes clear the nature of an al-
loy's electronic spectrum. Since the poles of
(T(p, E)) determine the qua. siparticle energy levels,
the secular equation is equivalent to the require-
ment that the determinant of the inverse matrix in

(2. 20) vanish, i. e. ,

II«& '-B(k, E)ll =0. (2. 21)

Equation (2. 21) reduces to the usual KKR equa-
tion ' in a perfect crystal, and is, therefore,
called the alloy KKR equation. ' In a perfect crys-
tal it yields a sequence of real solutions E,(k) for
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a given k. By contrast, for the disordered alloy
we obtain complex roots, E;(k) = ZI '(k)+ 2EI '(k).
The imaginary part, E~II(k), determines the half-
width of the appropriate peak in the spectral den-
sity function and physically represents the damping

of perfect Bloch states due to disorder in an al-
p~

The expression for (p(p}& may now be obtained
by the use of Eqs. (2. 20}, (2. 9), and (2. 6). The
result after a few obvious rearrangements is

(P(P)) Im dE
~ + 8 + (422) + ~ + 2 8 rl yL(p) {II(pl p}) 6LL'

1 r - "
(tI(p, K)) (fI(», p))

+2 P LLt fI K, K

«I(p K}) -I - -I (fI (K p}&
+( (

'
))

[(f(K,K}& —If(k, z)]LL. (- (
'

))
I L.(p) (2. 22)

The Fermi energy E~ is to be obtained by calculat-
ing the integrated density of states following the
method used by Bansil et al. for CuNi alloys. In
some cases (such as noble metal based alloys of
polyvalent elements) approximate evaluations of
E~ may be possible by simpler prescriptions. '

It is noteworthy that the free-electron singulari-
ties present in both the first and second terms in
the square brackets in Eq. (2.22) cancel each
other. (The deta. ils of this cancellation are dis-
cussed in Appendix B.) The contributions to
(p(p)&, therefore, arise only from the complex en-
ergy solutions of the alloy KKR equation [cf. Eq.
(2. 21)]. In pa. rticular, the integrand of Eq. (2. 22}
varies smoothly at E=p .

%e emphasize that the effort involved in comput-
ing (p(p)& is comparable to a calculation of the
spectral density function (A(k, E)) in the alloy. It
has a, lready been noted that the evaluation of (p(p)&
requires off-the-energy-shell matrix elements
fI"' '(p, K) [cf. Eq. (2. 22)] with pe K, even for a
perfect crystal, whereas (A(k, E)) can be obtained
in terms of only the energy-shell matrix elements

'(K, K). This difference is basic to the two
computations and may be understood most easily
by specializing to the case of a perfect crystal.
It is well known that, in this case, the momentum
density corresponding to a B)och state of wave vec-
tor k consists of 5-function peaks at momenta
h(k+ K ), where K denotes an arbitrary vector of
the reciprocal lattice. [The weight of the 5 func-
tion at p = If(k+ K ) is proportional to the square of
the corresponding wave-function component. ] By
contrast, as discussed in Appendix C „ the density

of states (per atom)

D(E) =P A(k, Z), (2. 23a)

S,(p, E) = s,(p, E) cot6, (K) I;(p),
Equation (2. 22) then yields

(2. 24)

D(S)-=g A(k, E)=X-'P 6(E-E,(k)) .
(2. 23b)

Note that the summation in (2. 23a) extends to the
entire reciproca. l-lattice space. The (periodic)
function A(k, E) is thus obtained by adding up the
contributions A(k, E) from all the points k+ K„.
[The primes in Eq. (2. 23b) indicate that the sum-
mation is to be carried out only over the first
Brillouin zone. ] As is clear from the second
equality in Eq. (2. 23b}, A(k, E) does indeed in-
clude a unit contribution from each of the energy
eigenvalues. Equations (2. 23) show clearly how

the details of the wave functions drop out in the
computation of the density of states.

8. Crystalline limit

The perfect A(B) crystal limit of (p(p)) corre-
sponds to (f) I, alld 1s coIlsldel" ed liow as a
check on formula (2. 22). [In the following discus-
sion, the superscripts A(B) have been dropped for
simplicity of notation. ] In this limit, it is easy to
show [by using Eqs. (2. 16) and (2. 17)] that the
imaginary part of the term proportional to 5I.~. in
curly brackets in (2. 22) vanishes. By defining
new coefficients

Er 1 1
P(p) =--Im ds, +(4~}2X . .. Z. SL(p, z)ML. L(k, z)SL.(p, z) [~f-I-a~~E+ so' —p +2PLL ~

(2. 26)
where the inverse of Inatrix (f ' —8) ha. s been expressed in terms of its cofactors MLL, . ' As already
noted, the integrand in (2.25) varies smoothly through E=p, and nonzero contributions arise only from the
(rea. l) energy eigenvalues E;(k) of the KKR determinant. Therefore

P(P)=(«)'& Z E 2)2iY ~L(p, E;)ML L(k &;&SL~ (P E;) dE llf '-ills. s, .
SI+Ey I P %1L'

(2. 26)
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In deriving (2. 26), we have used the identity

Im, = —» Z„6(([f -a)), , )i[t - B]l t

6(E- Ei} —II&
' —fill&s sZ=E ~

(2. 27)
It is noteworthy that, in the perfect-crystal lim-

it, by replacing the integral in Eq. (2. 25}by a.

summation over occupied levels, we have explirit/y
removed free electron singularities from p(p) [cf.
Eq. (2. 26)]. By contrast, in the alloy [cf. Eq.
(2. 22)], contributions to (p(p)) come from broad
spectral peaks rather than real poles, and such a
simplification is not possible.

III. KKR EXPRESSION FOR MOMENTUM DENSITY IN
PERFECT CRYSTAL

%e will now employ the KKR wave functions to
obtain an explicit expression for the momentum
density in a perfect crystal of muffin-tin poten-
tials. Even though this expression is given nat-
urally in terms of the eigenfunction coefficients of
the KKR matrix, we will show that it can be ma-
nipulated into the form (2. 26) (which does not in-
volve the wave-function coefficients explicitly).

The KKR wave function P„- (r), corresponding
to the reduced wave vector k and energy E;(k) is
given by the integral equation '

dr' 6-(r r' E )V(r')q.". '(r'), (S.1)

that if the wave function $14&(r) is known within
this muffin tin sphere, its value over the entire
crystal can be calculated by Eq. (3. 1). In the
KKR method g-„"(r) is written as a superposition
of the regular solutions R&(&'; E;}of the radial
Schrodinger's equation. Thus

q-'"(r) = P i'C(*&(k)R,(r, E,.) I;(r) for r&R. .L

(3.3)
Equations (3. 1) to (3.3) readily yield the momen-
tum transform of the wave function

in terms of the s, functions defined in Eq. (2. 18).
The wave function coefficients C~"(k) in Eqs.

(3.3) and (3.4) are not identical to the (more easi-
ly accessible) solutions Cz~"(k) of the (KKR) equa-
tions,

C,"&(k) =V Z,.R'. cot6, (V Z, ) C,"(k) . (s.6)

In order to properly normalize the wave function
(3.3}, we use the identity '

Q [f, (&)'E;, ~E;) 5~~. —B~z4(k, E;)]CL(,&(k) = 0 .
(s. 6)

The coefficients C~('(k) can, however, be ex-
pressed in terms of the coefficients C~"(k) by the
relation"

which involves the crystal potential V(r) and the
lattice Green's function where

drl@„- (r)f =

ei(k+Kz} ~ (r r' }
G"„(r,r'; E) = 7 ' Q („~),

5 fl

(3.2)

In Eqs. (3.1) and (S.2}, v. denotes the volume of
the unit cell. Since the crystal potential vanishes
in the interstitial region [cf. Eq. (2. 8)], nonzero
contributions to the integral in (3. 1) arise only
when r' lies within the muffin-tin sphere at the or-
igin. [In particular, V(r') —= g„&)(r' —R„) may be
replaced by v(r') in (3. 1).] It is clear, therefore,

I

d d'g„- r

(s. 8)
ls the val iatlonal form used by Kolln and
Rostoker. [In fact, the integral equation (3.1) for
P~gr) is equivalent to the requirement [5A(E)/
5(t)~]s z. ——0.] It can now be shown that

-Ifm M C~'(k} —(i~6zi -Bzz ) Cg'(k)
Z=Ss L L'

Using Eqs. (3. I) and (3.9), the normalization integral,

(s. 8)

(c}
C&i; '(k) (t~'6~z. —BJ.z.) C—~(*.&(k),

(s, 11)

dr g„- r =X dr g
' r =NB Cz'} k —t~ &zan, —&~&, C~", k (3.

(s}The first equality in Eq. (3. 10) results from the periodicity of the wave function ()')„- (r).
By using Eqs. (3. 10) and (3.6) in Eq. (3.4), and substituting the resulting expression for (t)'. '(p) into

formula (2. la), we obtain the momentum density,

(pl=(4 )))t( E4I c"'04)s (p, E,.)c'l'()4)s (p, z,.))s. s&, i P 514
1
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p(p) (4 ) N=I I S (p, E, )M (kE~ ;)S , (p, E,) .Q —(t 'S, —B,))M, (k, E),
E,-Ep Ei P LIt LL LL'

(3. 13)

The denominator in Eq. (3. 13) is recognized as the derivative of the KKR determinant [cf. Eq. (2. 26}],
because '

—
Ii t ' —Bll = d . . .—(t 'b ~ —B )= d . „E(t 'll —B )) M

LLs 4 L LL~ LIs l LLi

The equivalence of the perfect crystal limit of (p(p)) [cf. Eq. (2. 26)] and the KKR formula (3. 11}then fol-
lows.

(3. 14)

where the quantities Sz(p, E) have been defined earlier in Eq. (2. 25). '

The equivalence of (3. 11) and (2. 26) may be shown by using the matrix identity

Cg (k) C~'t)(k) = b M~zt (k, E,)/M, ~(k, E;), (3. 12)

which relates the quantities Cz" (k) to the cofactors of the KKR matrix. [j, here, denotes the index of the
coefficient which is set equal to (an arbitrary number) I) in solving the homogeneous set of KKR equations
(3.5). ] A detailed derivation of Eq. (3. 12) is presented in Appendix D.

The substitution of (3. 12) into (3. 11) (followed by the cancellationof the factor M, ,(k, E;)/b from both the
denominator and the numerator) yields

The cases E & 0 and E & 0 will be discussed sep-
arately.

1. E&0
The real (Re) and imaginary (Im) parts of the

quantities t, (jp, p), t, (p, ((), and t, (v, v) are related
by the equations [see Eqs. (3.11)-(3.14) of Ref.
14]

Imt, (P, P) = s,(P, E) Ret, (&,P), (Ala. )

Imt, (j), y) = Imt, (w, p) = s,(p, E) Ret, ( (, g),)(A lb)

Ret, (P, w) = Ret, (z, P) = s,(j),E)s, '(~, E) Ret, ()(, ~),
(Alc)

where

,ip, E)=f d 't, (p l(E), ,
0

(A2)

is the Hankel transform of the function s,(x, E).
As discussed in Ref. 14, s,(r, E)/v(r) satisfies the
radial Schrodinger's equation, and therefore
s,(r, E)/v(r) GG R,(r; E), the radial wave function.
The proportionality constant can be determined by
noting that

s,(x, E) = tan5, (x) . (A3)
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APPENDIX A: CALCULATION OF OFF-THE-ENERGY-
SHELL MATRIX ELEMENTS OF ~'MATRIX

I

But"

tan5, (x) = —z dr rj,(Kx)v(r)R, (r; E) . (A4)
0

A comparison of Eqs. (A2) and (A4) shows that in

order to satisfy (A3}

s,(r, E}= —)(v(r) R,(r; E) . (A5)

It should be emphasized that the phase shifts are
independent of the normalization of the wave func-
tions and Eq. (A4) implicitly assumes that, for
~&R,

R,(r; E) =j ((vr) —tan5, (v) n, (zr) . (A6)

Equations (A lb) and (Alc}, on using (A3) for
s,()(,E), yield

t, (P, ~) = t, (x, P)

= s,(j), E)[cot5,(g)+ i]Ret, (K K}

= s((j)t E) cot5((K)t((KS K) (A7)

where the second equality follows on using expres-
sion (2. 16) for t, (g, v), and is identica. l to (2. 17a).
Similarly, Eqs. (A1a) and (Alc) give

Imt, (p, j)) = s,(p, E) cot5, (x) Ret, (g, )() . (A8)

Equation (A8) is once again trivially shown to be
identical to (2. 17b). [Note that Ret, (j), j)) is notre-
quired for evaluating expression (2. 22) for (p(p)). ]

Z E(0
Since

t()= ( )S( — ')+ f, d v(r)G (, ) ( ) ~

(A9)
and Go(r, r') is real for E&0, Imt(r, r') or, alter-
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Imt, (p, p) = O, p) O, (A 1la)

and, furthermore, because t'j, ( x)x(for imaginary
x) is real and Eq. (2. 15) involves two fa.ctors of

j,(xx),

Imt, (x, x) = 0 .

By contrast, t,(P, x) involves one factor of j,(xx)
and will, therefore, be real (imaginary) for even
(odd) /. The equations presented in Ref. 14 for
E&0 are then easily shown to be equivalent to

t,(p, x) = t((x, p) = —s,(p, z)/x .
In particular,

t, (K K) = —s,(K, E)/Ic = —K
' tan5( (x}

(A12a)

(A.I2b}

as Eq. (AS) is still valid. Because j,(xr) R,(r; E)
[in view of Kq. (A6)] is real, Eq. (A4) shows that
tan5, (and therefore 5,) is purely imaginary.

natively, "
Im t, (r, r') = 0 .

For negative energies, Ref. 14 employs the
(I'eal) function I jI(Kx) instead of jI(lcx) ill Eq.
(2. 15), which defines the transforms t,(p, q). We
will, however, use the same definition (2. 15) for
both E) 0 and E(0. Equation (Alo) immediately
shows that

APPENDIX 8: CANCELLATION OF FREE-ELECTRON
SINGULARITIES IN EQ. (2.22)

The integrand in Eq. (2.22) consists of two
terms, each of which is singular at E =P . The
part of the second term proportional to

(&-»'&'E & (i&»~(((,(», »&&

(t((p K»«((x, p)) ~-
{t,(v, (())

is, in fa,ct, of the indeterminate form (0/0) at
E=p (or p=x). Nevertheless, by expanding
(t,(p, p}) and {t,(p, q)) in powers of p —x (around

p = v), it is straightforward to show that the quan-
tity in large parentheses in (81}is of order (p —x)
and, therefore, that expression (Bl) varies
smoothly at E=P . [The required expansions are
obtained most easily by expanding s", ' '(p) [or al-
ternatively, j,(pr}:cf. Eq. (2. 18)], and using the
result in Zqs. (2. 1Va) and (2. 1Vb) for t,"(s&{p,x)
and Imt," (s(&p, p), respectively. )

It now remains to be shown that

Itm(4v)'fV(V-' g I;(p) I „{p)
qwQ ILr

&&[(t{x,x))-' - Z(p, E)],',, = -1, (82)

where (V-=E-P . [In writing (82} factors like
{tI(P,x)) {t((x,x}) in (2. 22) have been set equal to
unity. ] By considering the structure functions"'a"

(4v)'iV ~ j,(i X+K„!r)j,.(it+ K„ir'}I'1(k+K„)I'i. (k+ K„) . n, {xr')

(BS)

in the limit E p, it is immediately seen that

lim((t) ' —8) = lim(X -A/(V), (84)
A11,e CI I,~ ((VX A)

where

n-0
= I}' ' Q Ar, I,.C1,1,.(X) + O(I}'),

A„,=(4v)'XI;(p) I;,(p), (85)

and the matrix X defined by (84) varies smoothly
at E = p . (The detailed form of X is not important
for the present purposes. ) Using Kqs. (84) and

(85), the left-hand side of (82) reduces to

w111cll al'e valid for' a 111atI'Ix of fo1'111 (85). III view
of Eqs. (BV), expression (86) is seen to be equal
to —l. (d, here, denotes the dimension of the
KKR matrix. )

APPENDIX C: DERIVATION OF EQ. (2.23)

The spectral decomposition of the density of
states (per atom), D(E), is given by

D(Z) =+A(k, E)

Ci~.(I}X A)-
lid& ~ AI I, (&X Ai)I, eg = lh11 ~ Ax1 ~

0~0 LLr qw0 LLr [[qx- A, ll

(86}
where CI,i. is the (I., L') cofactor of the matrix
(I}X-A). We now invoke the relationsa'

ii(VX-Aii = —I}' ' Q AII,.CII,.(X)+ O(I} ) (BVa)
=P QA(k+K„, z) (C Ib)
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—= & A(k, E) . (Clc)
k

The spectral density A(k, E) defined by (Clc) is
periodic in k, and is a more pertinent object than
(the usual spectral density} A(k, E) in crystalline
problems. (Note that the summation of A(k, E)
over only the first Brillouin zone [indicated by
primes in Eqs. (Clb} and (Clc)] yields the total
density of states. )

A(k, E) is related to the Fourier transform of the
Green's function G(E') defined in Eq. (2. 2):

A(k, E) = ——Im g G(k+ K„,E')
pN

(C2a.)

1 , Im dr G(r, r+ R; E') e'"' ~,
N

(C2b)

where the second equality expresses A(k, E) in the
direct lattice space. (The crystal is assumed to
have a unit volume. ) The multiple scattering se-
ries expansion of G in (C2b) [obtained by using
Eqs. (2. 9) and (2. 10)] then yields

A(k, El= —,I Ef d &"' ( l
G, 2 tGGZ, E G, IG, lsG, ,

e e g/e

FEZ G, tG, taG, ,t„G,+ ' ') l
R ) . (C3)

The procedure of simplifying the right-hand side of (C3) may be illustrated by considering in detail the
second-order term

dr dr, ~ ~ ~ dr4e'"' ~ G0 r, r, r, —R, r~ —R Go rz, r3 t r3 —Rz, r4 —R~ Go r4, r+R
m e 8/e

(C4a)
where the operator multiplications are explicitly displayed. Because the crystal is translationally invari-
ant, contributions to (C3) and (C4a) are independent of the site index n Theref. ore, we may set R, =0 and
replace the sum over n by N. A regrouping of terms in (C4a) then gives

P P W 3 ikoRgN ~ dr& dr4 f(r3, r4)GO(r4, r, ) f(r„rz)Go(rz, r~+R&) e' '
&

8&0

+ N Q Z dr, ~ ~ ~ dr4 f(r„r,}G,(r„r,+ R~) t(r„r4)G', (r4+ R~ —R, r, ) e'"' m .
I3&0 m&6

(C4b)

Using the matrix identities, dGO/dE= —Go, dt/dE= —tG ot, and the lattice free-electron Green's function
[cf. Eq. (2. 19}]

P w

Go(r, r', k) -=g Go(r, r'+ Rz, k) e'"' ~,
jS 80

expression (C4b) reduces to

(C4c)

dt(r~, r2)—N dr& dr~
'

Go(r~, r, ; k) —N
dG (r r;k)dr, ~ ~ ~ dr4 f(r„rz) Go(rz, r, ; k) t(r„r4)

dE
(C4d)

The formal manipulations used in transforming the second-order term in (C3) into the form (C4d) can be
performed on any of the higher-order terms. For example, the third-order term reduces to

—N dr2 ~ ~ ~ drs f(r~, r4)GO(r4, r5; k) —f(rs, r~) Go(r2, rs; k)

—N dr, ~ ~ ~ drs f(r„r2)GO(r~, rs; k) t(rs, r4)GO(r4, r5;k) f(rs, r8) Go(rs, r, ;k) .
dE

(C5)

Expressions similar to (C5) can also be obtained for the fourth- and higher-order terms in (C3). The
first-order term, however, yields the expression

N dr, dr& r„rz) Go r~, r, ) —N dr, dr~ r„r~)
d Go r2 r~; k),dz (C5)

in which the first term has a slightly different form from (C4} or (C5). This term may, nevertheless, be
simplified by using the identity
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Im dr, dr~ r» rz Go r~, r» = —Im —Tr l g, g (C7)

where [t(«, «)] denotes the matrix of energy-shell elements of the t matrix and the trace operation (Tr) is
to be carried out in the angular momentum space.

Substituting (C4d), {C5), and (C6) into (C3) and noticing that the second term of (C4d) can be combined
with the first term of (C5) to yield a complete derivative (d/dE) (tGO) (this simplification, in fact, occurs.
whenever any two successive terms are added}, we obtain

A(», «l= —( )«) '(m I, i —, — [T t[((.)]i—,f ») f»( I'»( "(»( — ")

+ dr» r, r» Go r», r;k + dr» ' ' ' dr3 r, r» Go r», rp', k t ra, r3 GQ ra, r";k + ' ' '

x —[t(r", r')G,'(r', r; k)] (Cg)

The r-space integrals in (C8) can be carried out explicitly by using angular momentum expansions
(2. 14) and (2. 19) for t(r, r') and Go(r, r', k), respectively. The result after some straightforward manipu-
lations is

A(k, E) = —(vrX) ' Im Q, a
——(Tr ln[ t(«, «)]}—Tr f [I —t(«, «)E(k, E)] '. E+io'-(k+K„}'

» —[»(», «)«»(i», z)]))

(C9b)= —()«l'» I. . . ~
q@

( II«'(, ) —«»t», «)ll) .
n E+i0' —(k+K„)

In obtaining (C9b), we have used the general matrix identity Tr ln[M ]= ln i[ M ii. Using Eqs. (2.27) for ob-
taining the imaginary part of the determinant in (C9b), we finally obtain

A(k, E) =X Q 5(E —E;(k)),

where in accordance with the discussion presented in Appendix B, the free electron roots have been ex-
plicitly removed. The substitution of (C10) into (Clc) immediately proves the validity of Eq. (2. 23).

APPENDIX D: DERIVATION OF EQ. (3.12)

Equation (3.12) expresses a relation between the
eigenvector coefficients C~( '(k) [for the eigenvalue
E;(k)] and the cofactors Mz~. (k, E;) of the KKR
matrix [t '(v E;, v E,) —B(k, E,)]. It will be re-
called that a homogeneous system of N equations
in N variables [such as Eqs. (3.5)] is solved by
setting one of the variables equal to an arbitrary
constant, deleting one of the equations, and solv-
ing the remaining inhomogeneous system of (N- I)
equations in (N- 1) variables. In the notation of
Eqs. (3.5), (if we set C„'"(k)=I), and delete the
Ith equation) the result is '

C(',)(k)=t M„,!k,E,)/M„.(k, E,.) . (»)

C~("(k) = ti Mi~(k) Ei)/M, i(k, E;) . (D2)

Equations (Dl) and (D2) immediately yield

C(i)(k)C(i)(k) ta rz'( « i} iz( ) i}
( 3)

Mi, (k, E;) Mi;(k) E;)
'

Since the KKR matrix is symmetric, the matrix
M of cofactors is also symmetric. In particular,
M, z, =M&, Therefore, Eq. (D3) implies Eq.
(3.12).

Simiiarly, for the coefficient C], '(k), (by deleting
the jth equation this time) we obtain
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