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Equations of state for bicritical points. I. Calculations in the disordered phase
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Equations of state are calculated for anisotropic spin Hamiltonians suitable for describing the spin-flop

transition in materials such as GdA10, and MnF, . Crossover scaling functions for the specific heat,

nonordering susceptibility, and parallel and transverse susceptibilities are derived to first order in e =- 4 —d

directly from renormalization-group recursion relations.

I. INTRODUCTION

Consider a continuous spin Hamiltonian for two
coupled spin fields, s =s(R) =[s,. (R)] and v=n(R)
=[a,(R)], of the form

m tt-m

dH —Q l&s, l'+ —Q l&n, l'

+-,'r(l s I'+ Iu I'}—
2

[(n —~)l s I' —mlo I']

where
m ff -m

Isl'=ps'. Iol'= g o2
i =I i =1

and where the components s; and o; vary between
When we Fourier transform (1.1) into mo-

mentum space, the momentum integrals will, as
usual, be cut off by a spherical Brillouin zone of
unit radius. Such Hamiltonians (including fixed-
spin-length versions) have long been of interest
in theoretical studies of critical phenomena. ' '
Assume for concreteness that the quartic couplings
are isotropic (u =w=v), and consider the case n =3
and 1=1; then, for &=0, Eq. (1.1) should have a
critical point with Heisenberg critical exponents.
For g positive, (1.1) should display Ising-like
critical behavior, and with g negative an X~-like
transition should result. '4 If we take g to be a
variable parameter, (1.1) displays three distinct
types of critical behavior as g varies, and provides
an interesting example of crossover from one vari-
ety of critical behavior to another. A phase dia-
gram in the (T, g) plane is shown Fig. 1(a). Note
that there is a line of first-order transitions
separating the X~ and Ising ordered phases. This

connects to a unique bicritical Point, at the juncture
of two critical lines.

Recently Hamiltonians such as (1.1) have become
of much more immediate experimental interest.
Henormalizati on- gr oup arguments have shown'

that the Hamiltonian for a uniaxial antiferromagnet
with a magnetic field applied along the direction of
anisotropy can be renormalized into the form (1.1).
Such systems are known' to exhibit a first-order
transition from an Ising antiferromagnetic state to
a "spin-flopped" ordering in strong enough magne-
tic fields [see Fig. 1(b)]. It is now expected' that
the phase diagrams shown in Fig. 1 are quite
closely related. In fact, knowledge of the critical
properties of (1.1) together with a, phenomenological
scaling treatment of spin-flop transitions lead to a
number of concrete predictions' about the spin-
flop bicritical point. One of the most striking of
these is that the critical lines should enter the bi-
critical point with slopes tangent to the first-order
line" rather than at some angle as predicted by
mean-field theory. ' We note that work by Aharony
and Bruce'~ indicates that (1.1}may also be an

appropriate description of systems with displacive
phase transitions.

Although the existence of spin-flop transitions
has been known for a long time, " the detailed
critical behavior of such systems has only recent-
ly come under close scrutiny. The experiments of
Bohrer, "for example, indicate that the critical
line does indeed come into the bicritical point
tangentially, and also test other predictions of
the scaling analysis. ' In view of the experimental
interest in spin-flop transitions, and the existence
of theories'' which give concrete predictions for
the critical exponents, it seems appropriate to
attempt a calculation of the scaling functions as-
sociated with bicritical points.

A phenomenological theory of bier itical points"
is simply expressed in terms of the variables g
and
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t =(T —T~)/T~, (1.2)

where T, is the bicritical temperature [ the vari-
able r plays the role of temperature in (1.1)]. It
is expected that the singular part of the free en-
ergy should behave asymptotically close to the
bicritical point as"

F&(t g) =t 4(glt ) (1.3)

where n = n(n} is the bicritical specific heat index
and P is the crossover exponent. ' Equation (1.3)
differs from a scaling description of an ordinary
critical point in that @(z) is expected to have
singularities describing the critical-line behavior.
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FIG. 1. (a) Phase diagram for the Hamiltonian (1.1).
A (bold) line of first-order transitions separates an
Ising-like ordered phase from an A Y-like ordered phase.
Two lines of continuous phase transitions meet the first-
order line at the bicritical point (T&,g=o). (b) Sche-
matic phase diagram for a uniaxial antiferromagnet in
a magnetic field H along the easy axis. A (bold) line of
fir st-order transitions separates an ordered antiferro-
magnetic phase from an ordered spin-flop phase. Two
lines of continuous phase transitions meet at the bi-
critical point.

A similar scaling hypothesis applies to the sus-
ceptibility and other thermodynamic functions as
well. ' The purpose of this paper is to present
calculations of functions like 4 (z} in the dis-
ordered region (see Fig. I) of the bicritical phase
diagram.

We will discuss here the Hamiltonian (1.1) only
under the simplifying assumption that u =v=u.
This equality is generated asymptotically by the
initial iterations of the recursion relations close
to the bicritical fixed point, provided the total
number of spin components n is less than a critical
number nx (d) =3.1 in three dimensions. This
initial relaxation occurs [ to 0 (e)] even when ge 0
because g does not enter the recursion relations
for u, v, and w to 0 (e}.' When g becomes large,
it does effect u, u, and so, but we will stop inte-
grating the recursion relations before this hap-
pens (see below}. By setting u =v=w, and con-
sidering n& 3, we ignore only transient effects
which do not contribute to the universal part of
the scaling function in the disordered phase.
Note, however, that this restriction neglects
entirely the interesting possibility of a tetra-
critical point, which arises when u'&uv, and
which involves a third, intermediate ordered
phase. ''" This will be considered in a separate
paper. "

Our procedure is to work directly with renor-
malization-group recursion relations" to 0 (e) (e
=4 —d, where d is the dimensionality of space}.
A naive perturbation theory (which assumes u, w,
and v are small) will not work for (1.1) in the
critical region because of problems at small mo-
menta. " A rather direct and intuitive way to
overcome this difficulty is to use the recursion
relations to integrate the Hamiltonian out of the
critical regime. Perturbation theory on the par-
tially renormalized noncritical Hamiltonian pre-
sents no divergence problem. The behavior of
quantities calculated with the renormalized Ham-
iltonian is then related to the behavior of quantities
deep within the critical region.

Although this program has previously been
carried out for (1.1) with g set to zero (and u =w

=v)," its implementation for nonzero g involves
some novel features. The recursion relations
map the unrenormalized Hamiltonian & into a
Hamiltonian R;(I). The basic idea behind this
approach is to choose I =I *(t,g} such that 3C(t*}
is noncritical. We note, however, that there are
both longitudinal and transverse correlation lengths
associated with (1.1) for nonzero g. Consider for
definiteness the case g&0, so that the ~-compo-
nent s spin field will eventually order as the tem-
perature is lowered. Integr ating the recur s ion
relations until both the longitudinal and transverse
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correlation lengths are of order unity requires a
complete solution of the full nonlinear differential
recursion relations. We circumvent the analytic
difficulties inherent in such an approach as fol-
lows: The recursion relations are first integrated
until the transverse correlation length is of order
unity. It is straightforw'ard to solve the recursion
relations in this regime. At this point, the a' spin
field can be systematically integrated out of the
problem for fixed values of the s spins treated as
parameters entering the potential. One is left with
an m-component isotopic Hamiltonlan ln the spins
s which could still be close to criticality. How-
ever, the isotropic recursion relations can then be
integrated as in Ref. 18 until the Hamiltonian is
fully noncritical, The repeated use of the recur-
sion relations to force first the transverse and
second the longitudinal correlation lengths to be
order unity in renormalized Hamiltonians leads
to the crossover sealing functions in a rather
stra, ightforward fashion.

In Sec. II we first discuss the anisotropie spin
recursion relations and their solution. We review
results appropriate to the isotropic case (g=0),
and discuss expectations from phenomenological
crossover scaling theories. Section III presents
explicit ealeulations of the longitudinal suscepti-
bility and the free energy for the Hamiltonian (1.1).
From the free energy expressions for the specific
heat and nonordering susceptibility (two derivatives
of & with respect to g) are obtained. Our results
are then compared with Feynman-graph and series-
expansion w'ork, and are finally extended to allow
for the mean-field behavior far from the critical
point. In Sec. IV we summarize what has been
accomplished. Appendix B shows how the tech-
niques developed here can be used to calculate the
transverse or perpendicular susceptibility for bi-
critieal systems.

mentum integration method of Wilson" which gives'

r, =( », .8»„.~(r, ),4&.„~(r,.)) (2.2)

where b is the spatial resealing factor, and

&(r, )=J (r;+r') ',

2 (r .. ) f (»=, .t) )- (r, .r )-
(2.4)

The symbol j, denotes a d-dimensional momentum
integration over the shell E) ' & ~(E~&1.

Writing h =e, with «&1, (2.2)-(2.4) can be ex-
panded in & and rewritten in differential form,

d/»
, =2, +4)(, 2, , q, +F „r,) (2 6)

= 6 Q] g
—4K4 2Q

~ Q» Q'( + 4Q ~ .Q ] g

.2»„.„»,,P ....., r*„),

(2.6)
where r( =r((E) and u;, =u(&{E) are couplings ap-
pl oprlate to l enol mallzatlons lnvolvlQg a spatial
re scaling e', (E, = {1+r,.) ', and K, = 1/8v 2.

Consider first the isotropic case r; =r (all l}
and u„=u (all E and j), when (2.5) and (2.6) reduce
to differential equations derived by Wegner and

Houghton, "namely,

(2.'7)

u,', = E2' u, , —8 u, ~ u„.B(r(, r, )- 16.u'„.B(r, , r,.)

B.„.„a(r, , r, ) (gr, ...,a(r. ..)).

(2.3}

II. RECURSION RELATIONS, ISOTROPK RESULTS, AND

CROSSOVER SCA LING
with

8Q BQ
(1 +rP (2.8)

A. Anisotropic spin recorsion relations
A =4K, ()2+2), B = 4K(n +)8. (2.9)

Consider a more general version of the Hamil-
tonian (1.1), namely,

R= —— d R Q [rq s2+ (Vs;)2]
2

, 2 F ...",,;).
»2 j=1 u(l) =u(0)e" /E)i (E), (2.11)

These equations were solved approximately to
leading order in e and u(l) by Nelson and Rudnick,
who found that'0

t(l) —= r(l) +2'Au(E) ——2' Au(E)r(E) in[1 + r(E)]

E (0)e2)/q (E)A/s

Henormalization-group recursion relations were
first constructed for (2.1}by Fisher and Pfeuty'
to O(e) using the approximate recursion formula.
Their results can be redrived using the exact mo-

Q(E) =1 +Bu(e" —1)/e .
Note that (2.10) can be rewritten as

(2.12)
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u, , ( t)- u„*=&/8 +O(c'), (2.14)

so equality is generated asymptotically. Setting
all u,.&

=u„* from the start eliminates these tran-
sient effects, which do not affect the universal
part of the scaling functions. '~''2 It mill be in-
structive to relax this condition and put u;, =u,
where u is an arbitrary starting parameter. To
lowest order in &, this isotropy at quartic order
is preserved under iteration, even if the initial
r; are unequal, u(l) being given by (2.11).

Various forms of quadratic symmetry breaking
in (2.1) were discussed by Fisher and Pfeuty. '
Here we concentrate on one particular case, that
of m-dominant anisotropy (extension to other
forms of symmetry breaking is straightforward).
We will take

r, =r], =O(c), t =1, . . . , m

r, =r, =O(e), t =m. +1, . . . , n
(2.15)

which together with the assumption u;& =u, reduces
(2.1) to a special case of the Hamiltonian (1.1). For
this case, Eqs. (2.5}take the form

dr)) 4K, (m+2)u 4K, (n —m)u= 2+)( + +
dE 1+&}I 1+&~

dr~ 4K, (n —m+ 2)u 4K,mu
=2+g + +

dl 1+x~ 1+&~I
(2.17)

It is convenient to define new variables

r, =[ mr()+ (n- m)r. ]/n, (2.18)

in terms of which (2.16) and (2.17) can be rewritten

d 2+s+A~-A++ +&+ +
+&)] 8

(2.19}

" = 2&~ —8K'&~ + 8K4u
++a + +tl

(2.20)

Using the isotropic solution (2.11) for u, these
equations may be solved immediately by techniques
developed in Ref. 18, provided the texms in large
parentheses are neglected. These preliminary
solutions can then be used as the starting point
for an iterative solution of (2.19) and (2.20). To

r(l) = t(l) ——,'Au(t) +-,'Au(l)t(t) ln[ 1+t(l)] (2.13)

to leading order in u(l) =0(&). The solutions (2.10)
and (2.11) are valid provided r(l) does not get
larger than order unity. "

We will not solve (2.5) and (2.6) here for the
case of general quadratic coupling u„. For all
&, of order & and approximately equal, and a&4
—O(e),"however, the recursion relations drive
the u„- toward an isotropic "Heisenberg" fixed
point, '4

leading order me find

t(t)=—r, (t) —', tt (t) ——,'rt (t)(—r„(t)tn[( r„(t)]

t(0} 2) jq (t){tt +2}/{tt

g(l}= r,—(l}—4K,u(t)f r, (l) in[ 1+rj. (t)]

—r() ln[1+r(] (t)l t

=g(o) "/Q(t}' '""', (2.22)

where {t}(t)is given by (2.12). Remembering that
r]](0), r (0), and u(0) are O(e), we see that

t(0) = r, +-,' Au, g(0) = r, . (2.23)

}{,=2 —[(n+2)/(n+8)] c, }{,=2 —[2/(n+8)]c

(2.27)

are eigenvalues first found to O(e) by Fisher and
Pfeuty' and by Wegner. 4 The solutions presented
Rt}ove Rl'e vRlld pl'ovided Ileltller r)) (l) llol' rg(l)
becomes much larger than order unity. When
either r) (l) or r (l) becomes of order unity, we
will cut off the renormalizations and apply a direct
graphical technique (see below). That (2.24) and
(2.25) are indeed solutions of the basic equations
(2.16) and (2.1'7) may be checked by direct substitu-
tion. We note that the crucial feature which allows

These variables play the role of the & and g vari-
ables used in the scaling description of crossover
discussed in Sec. 1. The equations (2.21) and
{2.22) may be inverted to give implicit expres-
sions for r, (l) and r, ) (l), namely,

r~(t) =t(l)+{m/n)g(l) ——,'Au(t)

+ 2mK, u(l)r )) (t)»[1+r() (l)]

+ 2(n —m+ 2)K,u(t)r~(l) in[1+ r~(l)],

(2.24)

r)( (l) =t(l) [(n prt)/n]g(l) ——,'n4u(t)

+ 2(m+ 2)K,u(l)r)) {l)in(1+ r) (l)]

+2(n —m)K, u(l)r~(t) ln[1+r, (l}] . (2.25)

These purely algebraic equations can, of course,
be solved to leading order in u(l) to give r, )(l) and
r, (l) explicitly in terms of the functions u(l), t (l),
and g(l).

The fullc'tlolls t(l) Rlld g(l) col'I'espolld 'to elgell
perturbations about the isotropic fixed point, which
is given by u =u„and &~ =g* =O. In the vicinity of
this fixed point we have

(2.26)
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systematic e expansion solutions of (2.24) and
(2.25) is that u(l) is slowly varying, i.e. , du/dl
=O(u'(l), eu(l)) .

B. Results for the isotropic case

1 n+2
y =y(n) =1+—

2 n+8

14 —n
o =n(n} = — e

2 n+8

(2.34)

Once the recursion relations have been solved,
we can proceed to calculate various thermodynamic
functions. First, however, we review the solu-
tions for the isotropic case," to which our results
must reduce when g=0. Furthermore, as ex-
plained in Sec. I, we will eventually relate the
Hamiltonian (2.1) (with g&0) to an isotroPzc
m-component spin Hamiltonian. At this point,
it will be convenient to use the results tabulated
in this section directly.

Essential to the idea of using recursion relations
to calculate equations of state are relations be-
tween quantities calculated with the initial Hamil-
tonian & and those calculated with the renormalized
Hamiltonian X(l*). The susceptibility obeys a
straightforward relation to 0 (e), namely, '8' "'

X (r, u} = e" X ( r(l), u (I }) . (2.28)

F(r, u) = e ~' G (I')dl'+e 4'F(r(l), u(t}),
0

(2.29)

where

The analogous expression for the free energy"' ' '
is more complicated, namely,

are susceptibility and specific heat indices ap-
propriate to an n-component isotropic system.

X (t, g}= t 4(g/t ) . (2.35)

At fixed positive g, the susceptibility should be
singular as t approaches some critical point t, (g),
with exponents appropriate to an ~-component
isotropic system. To describe this behavior,
the scaling function f(z} should have a singularity
at z &0 of the form

(2.36)

as z -z, where y =y(n). To obtain the analogous
(n-m}-component divergence for negative g,
another singularity is requir ed at z & 0 of the
form

C. Review of crossover scaling

Before plunging into the actual calculations of
the crossover scaling functions, it seems ad-
visable to review briefly expectations from phe-
nomenological scaling theories. ''' As discussed
in Sec. I for the free energy, thermodynamic func-
tions (we consider the susceptibility as an exam-
ple) should assume a homogeneous form near the
bicritical point, (t, g}=(0, 0), namely,

G (I) = —,
' nff (jn[1+r(t)] ——,'} . (2.30)

+(z) (z —z) ~ (2.37)

1 n
16 4 —n u

(2.32)

where

R =(1 —Bu/e)t'~'+Bu/e, B=4K~(n+8), (2.33)

and where

In Ref. 18, these relations, together with the
isotropic recursion relation solutions (2.10) and
(2.11), were used to calculate the free energy and
susceptibility in the disordered phase. Equations
(2.28} and (2.29}were evaluated" at a special
value of l =l *(r, u) chosen so that r(l *)was of order
unity. The noncritical functions X(r(t), u(t)} and
F(r(l), u(l)) were then evaluated by standard
graphical techniques. The results for p and the
singular part of the free energy F, were, to O(e),

t - yg(ff +2)/(ff +8) (2.31)

and

t2- n
g(4-tt) / (& +H)

16(4 —n) u

as z —z with y =y(n —m). It follows that the two
critical lines are given by the relation'

g=z 't~ . (2.38)

It is often convenient to display the singularity in

@(z), explicitly replacing, for example, (2.35)
with

X(t, g)=t '(z' z) '&(z) . - (2.39)

III. BICRITICAL CROSSOVER SCALING FUNCTIONS
A. Ordering susceptibility

As discussed in Secs. I and II, we will calculate
quantities such as the ordering susceptibility (i.e.,
the susceptibility corresponding to fluctuations of
the parallel spins, assuming g& 0) by first inte-
grating the anisotropic recursion relations (2.16)
and (2.17) until r~(l) is of order unity. Choosing
l = t,*(r, g, u) such that r, (l,*)= 1, the susceptibility
we wish to calculate is related to the susceptibility
of the Hamiltonian K(l,*) through a relation like
(2.28), namely, "

X(r„,r„u) = e& (rX„(l,*),r„(l,*),u(E;)) . (3.1)
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t(l,*)+ (m /n)g(l, *)= 1 . (3.2)

The susceptibility on the right-hand side of this
equation can be calculated by first integrating the
g spin field out of the problem, treating s spins as
constant parameters of the potential acting on the
0 spins. We are then left with an m-component
isotopic effective Hamiltonian, which can then
serve as the starting point for the calculation
sketched in Sec. IIB. In principle one then inte-
grates the recursion relations for the isotropic
system until l reaches L,* chosen such that the
isotroPic system is noncritical. In practice it
will be easier to simply use known isotropie re-
sults, "such as (2.31), directly.

The first task clearly is to calculate l,*(t, g, u).
Consider Eq. (2.24) for r~(t). To leading order in

u and & the condition for L,
* can be written as

y =2/X, +O(e') . (3.11)

The susceptibility entering the right-hand side of
(3.10) is by definition (in the disordered phase)

x(, t(;), .((,"))=f &((( (5) (&)),,„„, (((2)

where the expectation is meant to be taken with
respect to the Hamiltonian X(l,*) (see Appendix A).
Since r (l~)}= I, the transverse correlation Length

is now of order unity and the o spins can be inte-
grated out of (3.12) with impunity. This is done
to leading order in Appendix A, with the result
that g(r(t*, ), r~( I)} is given in terms of an expecta-
tion taken with respect to an isotopic effective
Hami ltonian

For simplicity, we now take u =u„* and note that
(3.2) takes the simple form

te ~'~ ''' +(m/n)ge 2(~ ' ~' =1 (3.3)

(3 4)

We will generalize our resul. ts to an arbitrary
[O(e)] initial value u at the end of this section.
For every initial vaLue t and g, (3.3) determines
a function

e '=L, (t, g)

m

Xcff= — d Si + P
J' S +ZC

where

r'„"=r„(l*,) + 4(n —m)K u(l;)

(3.13)

It is straightforward to show that L,(t, g) satisfies
a homogeneity relation

L,(t, g) = b L, (b 't, b 'g)

t -x /), gg(g/t (() (3.5)

where (t)(z) =L(l, z) and (t) is the anisotropic spin
crossover exponent given by"

(t) =A.,/A. , = I+2en/(n+8}+O(e') . (3.6)

Substituting (3.5) into (3.3) gives an equation for
4(z),

(t) ) (z) + (m/n)z(t) '(z) = 1 (3.7)

where z =g/t is the crossover scaling parameter.
Developing (t(z) as

(3.14)

Setting u =u„*, evaluating the integral. in this ex-
pression, and using (2.25), various cancellations
occur and we obtain

r'„"=t(l, ) —[(n —m/n)]g(l, *)—2(m+ 2)K,u„*

+ 2(m+ 2)K4u„*r, (l*,) ln[1+r((l*,)] . (3.15)

[We have neglected a term -u&) (I,*) Lnr)(t,*) which,
since r~(t,")= I+O(u„*), is O(e'). ]

The couplings r')P and u„* in (3.13) form the start-
ing parameters for an isotropic m -component
Hamiltonian. For that system, the temperature-
like parameter entering the solutions is" (see
Sec. IIB)

)t)(z) =(t'o(z}+ e)t))(z)+. . . ,

it is easy to see that

(3.8)
t"'= r'„"+2(m + 2)K4u„*

—(m + 2)K,u W))"'Ln(1+ r))") . (3.16)

LL),(z) =[1+(m/n)z] (3.9)

The function g, (z) can also be calculated straight-
forwardly, but will not be needed in this order-&
calculation.

Inserting (3.5) into (3.1) gives

X(r„,r), u„*}= t (I) (z)y(r))(t,*),r) (t,*}), (3.10)

where we have made the identification

From (3.16) and (3.15), we easily see that to first
order in E,

t'""= t(l,*) —[(n —m)/n]g(l, *)+O(e')

=
LL)

& —[(n —m)/n]zg 2+0(e') . (3.17)

With A, and Aa given by (2.27) and (})(z) by (3.8) and

(3.9), this can be rewritten to O(e}
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e(n+2)//2(n+ 8)
1+—z — z 1+—z

n n n
(3.18)

where

(3.19)

and

2x —n —2 m n n
A(x) =1-— ln 1+ x + x ln (1 —x) -=1+ e4„(x) .

2 n+8 n-m n+8 n- m
(3.20)

Note that lim, ,h, (x} is finite. We recall from Sec. IIB that the m-component isotropic system will be
critical when t' =0. Since t' vanishes when z=g, we discover a line of critical points in the (t, g) plane,
given by

) gl/ 4g/0 (3.21)

This result, with z given by (3.19), is in agreement with direct Feynman-graph calculations. ""
Inserting (3.18) into the basic isotropic result (2.31}, recalling our choice u =u„, and using (3.10),

the ordering susceptibility may be written

g =t «(I —x) «P(x),

where

(3.22)

e m+ 2 ln(1+ [m/(n —m)]x)
R„ (3.23)

(3.24)

(1 —g) ' ' = 1+ ~e ln(1 —x) + O(e ), (3.25)

in (3.24) should give agreement with the results of
a "naive" graphical calculation.

It is straightforward to compare Eq. (3.22) with
Feynman-graph results by expanding for small x.
For example, when x or z is small we can write

y —t «[1+Az+O(z')],

where A is given by (3.22) and (3.23),

(3.26)

(3.27)

and we have normalized g such that g= I, "' as
x-0. Note that even though two singularities have
been factored out of g in (3.22), the residual func-
tion P(x) still contains a singularity of the form
(1 —x)'" related to the "correction to scaling" ex-
ponent first discussed by Wegner. " In a Feynman-
graph expansion, " this singularity would appear
as various powers of the logarithm In(1 —x). Al-
though it is possible to unambiguously exponentiate
the leading singularity displayed in (3.22) using a
Feynman-graph approach, "more information is
required in order to exponetiate factors like
ln(1 —x} and obtain the P(x) function displayed in

(3.25). Note that expanding factors like (1 —x)'/'
as a power series in c,

-d lny
d ln)

against lnt, where

t = t/t, (g) —1

(3.28)

(3.29)

is the distance from the critical line at a fixed
value of g. Our result for y„-, is compared with the
corresponding plot given by Singh and Jasnow" in
Fig. 2. Although the asymptotic values y(3) and

y(2) for the two plots are different, we note that
the over-all shapes of the bvo functions are quite
similar. Our values for «(3) = 1.23 and «(2) =1.20
are, of course, correct only to first order in e,'
thus it is not surprising that the graphs have dif-
ferent asymptotic behavior. It is interesting, how-

This is precisely the result obtained to O(e) from
a Feynman-graph approach. "'

The susceptibility for an anisotropic spin sys-
tem (with fixed length classical spine) has been
calculated by series-expansion techniques. Pfeuty,
Jasnow, and Fisher' first produced the anisotropic
spin crossover scaling function for the case n =3,
m =1, while Singh and Jasnow"" have extended the
original work to treat the cases n=2, m =1 and
n=3, m =2. One way to compare (3.22) and (3.23)
with their results is to plot the effective critical
exponent y, «. , defined by
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HEISENBERG TO XY

CROSSOVER
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t I I I I I t ' t I i I t I l

FIG. 3. Comparison of the function P(x) to O{~) with
series-expansion work {Ref. 26). This function de-
scribes crossover from Heisenberg {n =3) to Ising (u =1)
critical behavior. Thr result of mean-field theory is
given by the straight line P(x) =1. Curves (i), (ii), and
(iii) are different; possibilities for P(x) based on the
series work. 26 The remaining curve is the result to O{e),
which comes in with a square-root cusp at x =1.

-5-4-5-2 -I 0 I 2 5 4 5 6 7 8 9
logIo t

FIG 2 Comparison p ff -dlngdlnt for the cross-
over from Heinsenberg (n =3) to Xl' (n =2) critical be-
havior I.calculated here to O{c)t with the results of
series expansions (Ref. 26). The c-expansion results
are plotted with a value of g chosen to make the cross-
over regime occur at approximately the same value of
log&OII as for the series results. The shaPe of the curves
should be universal.

crossover sealing amplitudes has been obtained by
0(e') Feynman-graph techniques 2'

The transverse susceptibility, that is, the sus-
ceptibility corresponding to fluctuations of the
perpendicular spin field v (when g&0), can also
be calculated with the methods employed in the
subsection. The calculation is sketched in Appen-
dix B.

ever, that our O(e) calculation produces the same
dip (although much more pronounced!) in y,,« as
was found by the series-expansion work.

A much more sensitive test of our results is to
compare the function P(x) with the analogous quan-
tity gound from series work. In Fig. 3, we have
plotted the P(x) funchon found by Singh and Jas-
now" together with the function given by (3.23) for
n =2, m =1. The mean-field-theory result' is
P(x) = 1, and our result differs almost negligibly
from this. In fact, it is clear that our expression
for P(x) gives a correction to mean-field theory
which goes in the wrong direction. (This is also
true for n = 3, m = 1, but not for n= 3, m = 2.) The
situation here is evidently similar to the first-
order-in-epsilon result for +(n),

a(n) =-,'e[(4 —n)/(n+3)],

which for n =3 gives a posiI~ve correction to the
mean-field-theory result, although results from
series expansions, etc."give e = -0.10. It ls
hoped that the agreement will improve when the
calculations are extended to 0(z'). We note that
quite good agreement with series estimates of

B. Free energy, specific heat, and nonordering susceptibility

The free energy may be straightforwardly de-
termined using the result for ),* derived in the
ealeulation of the susceptibility. The relation
analogous to (3.1) relating the free energies of the
initial Hamiltonian and the Hamiltonian 3C(l,*) is""

E+
1

F(r, , r„u)= e "G„(l)

+ e "~@rI, (f,*),r, (l,*),n(E,*)),
(3.31)

where the first term can be thought of as a. line
integral along a r enorma. lization-group trajec-
tory. " The kernel of the anisotropic spin tra-
jectory integral is

G.,(l) = ,'rnK, ]ln[l+r „(l)]———,')
+-,'-(n —m)K [in[1+r, (E)] ——,'j. (3.32)

Making the same choice for /,* as in Sec. IIIA,
the free energy on the right-hand side of (3.31)
ean be evaluated by first integra. ting out the o spin
field just as in the ease of the susceptibility. We
will be left with the free energy of the m-com-
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ponent isotxopic Hamiltonian (3.13) which is given
by (2.32).

In Appendix C we integrate out the cr spins in

(3.31) and evaluate the trajectory integral to ob-
tain

l )tc

I"(r, 1 r„u) = --,'mZ, e "r'„{l )dl - ;(n —m—}K,
0

e "r,'(l)dl

+e-" ~ (n —m)Z r'(l*) inr, (l;)+e-"~Z."(r,~", u(l,*)), (3.33)

where p') is the singular part of an m-component isotropic free energy, rt(" is given by (3.14), and we
have suppressed certain nonsingular terms. Again, making the simplifying assumption u =u„*, we use the
expressions (3.4), (3.5), (3.8), and (3.9) determining l,*. Since r, (l,*)=1+0(e), the term proportional to
r'{l,*)lnr (l~~) in (3.33) drops out entirely to leading order. The trajectory integral contribution may be
evaluated exactly to give

--,'K, e "[mr'„(l)+(n —m)r,'(l)]dl
0

=-—ff (n+8)t' ' + z' —— — + z-' in[1+(m/n)z]1,, n (n —m)m, e n (n —m)m
4e 4

I 4 —n n(4+n) 2 n+ 8 n(n+ 8)
(3.34)

where we have dropped analytic terms proportional to t' and g . These terms allow the free energy to go
smoothly into logarithmic behavior where n or m approaches 4. Since these values are outside the range
of physical interest, the neglected terms need not concern us.

The final term entering in (3.33} is easily evaluated using the known expression" for an isotropic free
energy. The effective temperaturelike parameter entering the results is again given by (3.18). Combining
the various terms entering (3.33}we obtain our basic result for the free energy,

F(r)„r„u„*)=-t' [Q,(x)+(1 —x)' "Q,(x)],
with

(3.35)

q, x)= + x' — + x' ln 1+
4 —n (n-m)(4+n) 4 —m 2 n+8 (n —m)(n+8) n —m

—e (1 —x)' 26, (x}—zln 1+ x
4 —m ?? ~ ?R

(3.36)

1+ 2&t) (x)+— » 1+ x A„——ln 1+ x
2 n+8 -m " 2 8 —PR

(3.37)

We recall that x=z/2 g/t~z=, and that A„(x) was defined in Eq. (3.24}. No particular normalization has
been used here, except to suppress for simplicity an overall factor Jf,(n+8}/e.

Other quantities of interest may be obtained using the formalism developed in this subsection for the free
energy. Two experimentally measurable quantities are the specific heat, defined by

(3.38)

and the nonordering susceptibility

(3.39)

Although C and g~ may be obtained from (3.34) by straightforward differentiation, the results to 0(c) are
more easily obtained from (3.33}. When differentiating this expression, the g and t dependence of I, can
be ignored, since the right-hand side must be independent of the precise value of l, (it is tedious, but
straightforward, to verify this explicitly). Vfe find that the specific heat and nonordering susceptibility
can be written as (with u =u„*)

1 e(»y-&)&dl L(n m)K ( xy e2)iq lnzr (t-g) + (z) ~ u)&pc(s)(rc(r -(tg)) (3.4
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1 m(n-m)
X, =2

g
1)1

1 'n —m'(212-a&t dt {n m)m
ff e( 212 -n) (1lnr (tn)

(2 X2 -4) «« t ( S) t'~ cff
I} y tt I&

where C„''(r, u) is the specific heat of an n-component isotropic system~

C(n)(~ s)
n tt(4-n)j(n+s)

8(4-n) u 8 4-nw '

The quantity R =R(r, u) was defined in Eq. (2.33). This equation follows from (2.32) by differentiating (and
neglecting higher-order terms resulting from the differentiations). Substituting this result into (3.40) and

(3.41) and setting t = t"', we determine the crossover scaling expressions for C and y„

C=t " —— In 1+ x +(1 —x) Q, (x)4-n 2 n+8 n fPg

y, =t' -'~ { ) —— { ) ln 1+ x + (1 —x) Q, (x)(4+ n)n 2 (n+ 8)n n —m m

B m 6 m
I 1

m
2 n+8 n-m 2 n+8 n-m

(3.43a)

&4-n m—(1 —x) 1-- ln
2 n+8 n- rug

(3.44a)

m +( P(; I t 4+12"I I m E4 —m'I I m
4 4 ~ A. 2 n+8 n —rn 2 m+8 n-rn

—(1 —*1" 1 —— 1 1+- *)
e 4+n /Pl

2 n+8 n —pn

As usual, (x=n(n), a=n(m), and x=g/t e We.
have neglected constant, background contributions
to (3.43) and (3.44) and dropped an overall factor
2K,(n+8)/e. Note that y, crosses over to a speci-
fic-heRt-l1ke slngulR1 behRvlol on the CX'1tlcRl line
as predicted by the general bicx'itical scaling Rnal-
ys1s.

C. Results f'or arbitrary isotropic quartic couplings

Fox simplicity, calculations in Secs. IIIA and

III 8 were carxied out with the initial quartic cou-
pling constant set to its n-component isotropic
fixed-point value M=u*„. It is, however, both
straightforward and instxuctive to do the calcula-
tion for an arbitrary initial coupling of ordex e.

Using the recursion 1'ela't(on solution (2.24), we
see that, in general,

x«r «~

~ (&*)=J. 1 [{1 I3M/e)e n(n+ Ih/e](n+2v(n+8)

(m/n)ge1&"
f(1 g / )

n P / ]2/(n+sj

where 8 is defined by (2.33). On defining

t/It( + y( + ) /(pl

we can rewrite (3.48) as

t e"'1 + (m/s)ge'2'& = 1

(3.49)

which is identical in form to {3.3). It follows im-
mediately that the solution of (3.45) to leading or-
dex' 1s

e'& =t '~1&4 (g/t ~) (3.51)

Rnd that our results for y, F„C, and ~ may be
extended to arbitrary u [of O(e)] merely by the re-
placements (t, g) - (t, g), and u„* u(t 1n)-

For the susceptibility we find

(3.48)

by an iterative procedure. As a first estimate of
l,*(t,g, u) we use the solution of (3.45) when u=u„*,

e'~ = t 't 1$(z) (3.47)

Substituting this into the denominators of Eq.
(3.45) leads to the requirement

te11i 1n/ft( +2)/( n+a) +n( / ) 12( n/R2~(n+n&- I
(3.48)



246 DA VID R. NELSON AND E YTAN DOMANY

y =t &(1 —x) &P(x), (3.52) XY TO ISING CROSSOVER

where x=g(t ~x, and the function P(x) is now given
by (3.23) with x replaced by x. For a fixed g, y

diverges at some t= t„' the effective susceptibility
exponent, defined by

jeff

I.35—

l,30—

SERIES

-d lny

d ln)
(3.53)

I.25-
with t= (t —t, )/t, is shown for n =2, m =-1 in Fig.
3, where it is compared to the results of high-
temperature series expansions by Singh and Jas-
now. " Both curves rema. in initially at an Ising
value of y„,-, and then cross over in a range of
about one decade to bicritical XY values of y, , ,

The curves then exhibit a final nonuniversal cross-
over to the mean field value y„,- =-1. Evidently,
extending our calculations to allow for deviations
of the irrelevant va. riable M from its fixed-point
value leads to results qualitatively similar to those
of series expansions (where a large number of ir-
relevant variables, of course, deviate from their
fixed-point values).

IV. SUMMARY AND CONCLUSIONS

It has recently been recognized that anisotropic
spin Hamiltonians such as (1.1) actually occur in
nature"" with the anisotropy parameter g ex-
pexirnentally adjustable by applying a magnetic
field" or pressure. '" Theoretical calculations of
the universal scaling functions a.re thus of imme-
diate experimental interest. For example, ex-
periments which, in principle, a.re capable of de-
termining the scaling function for the nonordering
susceptibility y, have already been carried out for
the spin-flopping antiferromagnet GdA103."

%'e have presented here calculations to first
order in e =4 —d of the longitudinal and transverse
susceptibilities, the specific heat, and the nonor-
dering susceptibility for the disordered phase of
systems with bicritical points. Although the e-
expansion results for the longitudinal susceptibility
are clearly inferior to the existing series-expan-
sion calculations, ~"27 they do provide a definite
improvement over mean-field theory (see Fig. 4).
Furthermore, the closed-form expressions ob-
tained here give information about the singula. rity
structure of the crossover scaling functions. For
example, the "corrections to scaling" singularity
in P(x) tace Eqs. (3.23) and (3.24)j was not detected
by the series work. Although series results for the
specific heat and nonordering susceptibilities are
not presently available, an account of such work is
in preparation. "

The real utility of the renormalization-group
techniques developed here will probably lie in cal-
culations of the bicritical crossover scaling func-

I.20-
c-EXPAN

I. I 5-

I. I 0-

I.05-

-5-4-3-2 -I 0 I 2 3 4 5 6
log )o t

I I l

7 8 9 IO

FIG. 4. Plot of y,« ——-d lnX/dint to 0(e} compared with
the results of series expansions (Hef. 27} showing the
effect of introducing an irrelevant variable. The pre-
diction of mean-field theory is given by the horizontal
line y,« ——1. The e-expansion result is plotted with g
and the deviation of the irrelevant variable u from its
fixed-point value chosen to make both crossovers occur
at approximately the same place on the log&ol axis as
for the series result. The shape of the curves before the
crossover to mean-field theory sets in should be uni-
versal. Because there was no provision in the numerical
analysis for expanding in epsilon quantities of the form
1/(1+ac}, the large t asymptote of the ~-expansion result
is actually slightly less than 1. The true asymptote, of
course, should be precisly unity.
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On expanding s(R) and tr(R) in Fourier compo-
nents, "

s, (R) = e""s,(q),
Q

(A3)

ffSs, (R)21tr, (R') e + r~s A(s, (R), trr(R'))
(»x(n =

ffX s, (R)So, (R ) e "-'~"'

APPENDIX A: LONGITUDINAL SUSCEPTIBILITY

xttt =f dR(8(0) «(Rt) «& . (Al }

The angular brackets here denote the thermody-
namic average defined by a functional integral, "
namely

The longitudinal susceptibility associated with a
Hamiltonian 3C(l) is given by

cr;(R) = e'q R8 q)
q

Lf- means (2rr) f dq], and (Al) becomes

X(f) = Q (s;(q)s;(q'))~t~ 5(q+q')
a=a'= 0

The Hamiltonian X(l ) can be decomposed

X(l ) =3C,(s) + X,(tr}+3C„(s,o),
with

(A4}

(A5)

m

—,'[r, t(l,*)+q'] g s, (q)s, (-q)
B

m

—u(l,*)Q
i, j=l

-X, ((r)

kBT

q2 Q3

s, (q}s,(q, ) s, (q, ) s, (q, ) 5(q+q, +q, + q, ), (A6)

n-m n-m

lt~, ttl) qi g;(«t&&;(-«t- ttl)p f f, t&tl;(«t&&&(&&t&&(&t) «(&t~ &t, &t. &4), t&'7)
q q2 q

m n-m
=-& ttlt pg f && t&t)t, t&t t«;t&t i;t«. )&&i&& «, ~ &t. &tt.

B k=1 j=l Q Ql Q2 Q3

Denoting f f 21s,(R)Ss, (R) by Tr, Tr„expectations
of the form X(l) = g (s, (q)s, (q'))z 5,.(q+q'), (All)

q=q'=0

Tr, Tr+(s)e
may be rewritten as

(A9)
with X,«given by Eqs. (3.13) and (3.14) in the text.

Tr A(s)e" ' ' Tr e~2"+ r &' "
S 0 (A 10)

The (T-spin filed can now be integrated out by eval-
uating

2 ~+ Xroe

diagramatically, expanding in u(l f), to give a func-
tion of s only. Terms independent of s cancel out
in averages like (A4), and the s-dependent terms
can be reexponentiated and used to renormalize
X,(s). Specifically, we find

APPENDIX B: TRANSVERSE SUSCEPTIBLITY

The transverse susceptibility, which for g&0 is

(B1)

may be calculated by the method sketched in Ap-
pendix A. Expectations like (Bl) are of interest
because an equation analogous to (3.1) holds for
the transverse susceptibility to O(e}, namely

(r„,r„u) = e"ill, (rit(l ~~), r (l f), u(l,*)). (B2)
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2lThe prefactor e"~ is given by EQ. (3.4) in the text,
and we are left only with the task of determining
)(,(l,*).

On inserting the Fourier expansions {A3), {81)
becomes

= P &o(((L)o;((L')}&c,(,,.) 5((L+Q')
q=C] =0

where 3C, (s, o) is given by (A5)-(AB). The basic
Quantity entering (83) may be rewritten in the no-

tation of Appendix A as

&o; ((L)(f; (Q') &r, (,,.)

)Cg(s) T ( ) ( i) )C2(a)+)Cx(s, a)

Tr e3(:g(s}Tr erc2(o}+T(.')&(s, o}

The denominator can be evaluated exactly as in
Appendix A, while the term

Tr o (q)(x (q')e"2"
in the numerator can be calculated in a similar
fashion. Combining these two results, we find that

)(,(1}= «-, '{l)(n -m)+r,-'(l)(n- m+2)u(l)fC,
m

x q'(fq [r, (l)+q']+r, '(l)4(n —m)u(l) p s, (Q)s,.(-Q
0 i=x

{S5)

to leading order, with 3C,(( again given by (3.13) and (3.14),
Setting L= l,* and u =u„* in the above, this result may be rewritten

m

)(,(1}= (1+2(n —m)!~„*P s,.((L)s, (-Q)
j = ] 'f] SC(,ff

Thus our result for the transverse susceptibility is

)(, = e"![1+2(n —m}u„*E (r'„",u„*)], {»)
where E (r, u) is related to the singular part of the
m-component free energy F ' (r, u) by

()F"(r, u)
m

Thus E (r, u) is simply the energy of an m-compo-
nent isotropic system, which can be obtained im-
mediately from (2.32).

The basic result (87), when combined with (3.15)
and the isotropic result (2.32) for F (r, u), shows
explicitly that }(~ should have a singularity on ap-
proaching the bicritical line of fixed points of the
form

)(,l-~ [A(x).a(x)(L —x)1-"™],

as expected. ' As in the case of the longitudinal
susceptibility, (87) can be evaluated further by
substitution of the isotropic resuLt for E (r „,u„*)
and the expression for I,*derived in Sec. H.

APPENDIX C: FREE ENERGY

In order to evaluate the free energy, we must
consider the trajectory integral expression {3.31),

F(r„,r„u)= ' e-"[ G„(i) +G, ( )1] di

+e "(F(r„(l,*),r, (l f), u(l,*)), {Cl)
where, for convenience, the kernel of the trajec-
tory integral has been split into two parts,

G „(l) = ~ff, ILn[L+ r „(l)] ——.']
and

G, (l) = (n-m)Z, [ln[1+r, (l) J —,'j . —

The crucial problem is to evaluate the renormal-
ized free energy F(r!!(l,*),r~(l,*),u(lf )), given in

the notation of Appendix A by

F(r!,(l,*),r, (l,*),u(l,*))-=ln(Tr, Tr,e "~ )('sr) .

{C4}

Decomposing X(l,*) as in Appendix A, this can be
rewritten as

F(r (l w) r (l 0) u(l e)) —Ln(Tr e)c&(s) Tr e F2(o)+ 3c &(8 0)) {C5)

As in the case of the longitudinal and transverse susceptibilities, it is straightforward to calculate
Tr e 2 '+ ~)& "}perturbatively to produce a function of s only. The s-independent terms generated by
such a procedure do not cancel in this case, and we find
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C( „(l;&, (l;,&, q(l,"&)=l( — )r(, J q r'rqr(q*+", tl;)& q ("(,'", (l;)&,
0

where

F (r "&u(1 fq')) = ln(Tr, e '" 'f) }

(CB)

(C7)

We have retained terms only up to O(u(l f)o) in (CB) since the free energy itself is O(u(l,*) ').
The trajectory integral terms in (Cl) were evaluated for the isotropic case in'an appendix to Ref. 18. Us-

ing techniques identical to the manipulations described there, it is straightforward to show that

l

e "G,(l) dl+ e "~ -,'(n —m)K, q'dq ln[q'+ r, (l;)]
0 0

= ——,', (n —m)Kq+ r')(n —m)Kq ln(1 + r~) + r')(n —m)r~ —8(n —m)Kqr' ln(1+ r, )

1
e "r,'(f) df+-r')(n -m}K,e "'f r,'(l,*) . (CB)

In addition, it follows that

e '6 „(l)dl= —,', mK, (e 'f —1) —()mK [e 'f in[i+ &(((l,*)J —ln(l+r„})

—kmK, [e-" „(li+) -~„]-kmK, [e "f'r('((l,*)»[1+&(I(f,*}]— ((»(1+&(I))

1
——,'mK, e 'r'&((1 }dl, (CB)

while the relationship between the full free energy E (r'„",u(l, )j and the singular part of the free energy
(2.32) is

(&cff fq(f qr}j fr (s)(ycff (f (1 q )j 1 mK + f mK + lmK ln(1 +@cuff) + fmK &cff fmK (ycffp ln(1 + rcff) (C 10)

Multiplying this expression by e ~'& and then mak-
ing use of (CB) and (CB)-(C10), we conclude that
(Cl) is in fact given by Eq. (3.33) quoted in the
text. Various analytic contributions to the free en-
ergy [such as terms like —r')(n —m)K, ln(1+r~) and
('fmK, r(( in (CB) and (C9)] have been deleted from
(3.33) for simplicity.

Note added in Proof. We have recently received
a report of work by H. Horner [University of
Heidelberg (unpublished)] . Using a different ap-
proach, he has calculated to O(e) the parallel and
perpendicular susceptibilities for the case n =2,I =1.
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