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Infrared reflectivity of nniaxial microcrystalline powders
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The Fresnel reflection coefficients for an absorbing uniaxial crystal are derived in a convienient form for the

case in which the optic axis has a general orientation with respect to the plane of incidence. In the region of a
strongly absorbing vibrational mode the dominant reflection mechanism of a microcrystalline powder is

assumed to be a composite regular (mirror) reflection from the properly aligned faces of crystalline fragments

in which the orientations of the optic axes are random. The angle-of-incidence dependence of the transverse-

magnetic reflectivity from the v3 mode in microcrystalline sodium nitrate is modeled and compared with

experimental data.

INTRODUCTION

The determination of transverse and longitudinal
frequencies in crystals by a study of the near-
normal-incidence ref lectivity spectra has been a
fairly standard technique, particularly in its ap-
plication to strongly absorbing internal and exter-
nal modes. The analysis is usually accomplished
by describing the complex dielectric constant in
terms of a classical damped-harmonic-oscillator
model. The crystals studied have usually been
isotropic; if anisotropic systems are considered
only special orientations of the crystallographic
axes are permissible in order that the usual ana, ly-
sis be valid. In particular if the system is uni-
axial the ref lectivity must be measured from a
face which is either perpendicular or parallel to
the optic axis.

It has been pointed out in the literature that the
polarized infrared ref lectivity spectrum of a
microcrystalline powder provides information
about the frequencies of the transverse and longi-
tudinal modes in the corresponding bulk single
crystal. ' The ref lectivity in a microcrystalline
sample exhibits a maximum in the vicinity of the
longitudinal-mode frequency of the single crystal;
however, the frequency of this ref lectivity maxi-
mum increases with increasing angle of incidence.
Furthermore the low-frequency ref lectivity "wing"
eventually exhibits a minimum at sufficiently
la-. ~e angle of incidence, while the minimum in
the high-frequency ref lectivity wing, although
always present, becomes more pronounced as the
angle of incidence is increased. It is therefore
of interest to investigate the angle-of-incidence-
dependent ref lectivity of a microcrystalline pow-
der.

REFLECTIVITY OF ABSORBING UNIAXIAL CRYSTALS

Before describing the infrared ref lectivity of a
microcrystalline powder in any detail it will be
necessary to consider the ref lectivity of a single

absorbing uniaxial crystal whose optic axis has an
arbitrary orientation with respect to the crystal
face from which the ref lectivity is occurring.
The problem of the ref lectivity of an absorbing
uniaxial crystal has been treated by Mosteller and
Wooten' as well as Flournoy and Schaffers, for
the case in which the optic axis is perpendicular
to the reflecting crystal face. A calculation of
the ref lectivity in an absorbing uniaxial crystal in
which the optic axis has a general orientation with
respect to the plane of incidence and the reflect-
ing face has been given by Berek' and later by
Damany and Uzan. The latter authors point out
that the general solution is very tedious and give
explicit equations for a few experimental geome-
tries.

The ref lectivity equations will be rederived
here in a form which is particularly convenient for
treating anisotropic media. Consider a reflection
experiment as described by the coordinate system
in Fig. 1(a,). A plane, monochromatic, electro-
magnetic wave is incident on a crystal face de-
fined by the xy plane; the plane of incidence is the
xz plane, and the optic axis of the cry..tal is in-
dicated by the vector A. The orientation of the
optic axis A with respect to the coordinate system
(x, y, z) is described by the two polar angles n and

P as shown in Fig. 1(b).
It is well known that two types of waves, an or-

dinary wave and an extraordinary wave, can be
propagated in a uniaxial crystal, The description
of these has been given in sufficient detail ' and
will be only briefly summarized here. The ordi-
nary wave behaves as if the medium were isotropic.
The electric field E' and the electric displacement
D' are collinear and are perpendicular both to the
direction of propagation as given by wave vector
k' and the principal plane defined by the optic axis
A and the wave vector k'. The direction of prop-
agation is identical to the direction of energy flow
and is governed by Snell's law. In an extraordi-
nary wave the direction of energy flow as given by
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FIG. 3. Fields in an extraordinary wave propagating
in a uniaxial crystal as a result of incident TE electro-
magnetic radiation.

FIG. l. {a) Coordinate system and experimental ge-
ometry of the reflection experiment. {b) Orientation of
the optic axis with respect to the plane of incidence.

figure could have also been drawn for the trans-
verse magnetic (TM) case which is also treated
here.

the Poynting vector 5' does not coincide with the
direction of wave propagation k'; the electric field
E' and the electric displacement D' are also not
collinear but differ by the same angle as do S'
and k'. The vectors S', k', D', and E' all lie in
the principal plane defined by k' and the optic axis
A. The situation is shown in Figs. 2 and 3, in
which a transverse electric (TE) wave is incident
on the crystal face at an angle of incidence 8, and
is reflected at an angle 8„. The incident wave ex-
cites both an ordinary transmitted wave (wave
vector k'), Fig. 2, and an extraordinary trans-
mitted wave (wave vector k'), Fig. 3. A similar

Ordinary Wave

DIELECTRIC TENSOR FOR AN ABSORBING UNIAXIAL
CRYSTAL

The optical and dielectric properties of a me-
dium can be completely characterized by the di-
electric tensor Y and the conductivity tensor 0,
both of which are symmetric second rank tensors.
It is assumed here that the medium is nonmagnet-
ic so that the magnetic permeability p, =1. The
dielectric tensor can be transformed to principal
dielectric axes and has the principal values &x=go,
a~=co, and c~=&,. It is further assumed that the
principal axes of the conductivity tensor coincide
with the principal axes of the dielectric tensor.
The principal values of the conductivity tensor are
then included in with the principal values of the
dielectric tensor by writing the principal values
of the dielectric tensor as complex quantities,

where &u is the circular frequency in rad/sec.
The various field vectors are proprotional to

e" "",where k is the complex wave ve ctor.
The complex-wave-vector surface can be decom-
posed into two surfaces with the complex Fresnel
equation. The spherical wave surface

FIG. 2. Fields in an ordinary wave propagating in a
uniaxial crystal as a result of incident TE electromag-
netic radiation. . (kx+ k'r)/e, + le /e, = (~/c)' (2b)

corresponds to the propagation of the ordinary
wave and the ellipsoidal wave surface
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corresponds to the propagation of the extraordi-
nary wave.

In general the principal dielectric axes of the
crysta, l will not coincide with the set of laboratory
fixed axes with respect to which a particular re-
flectivity measurement is being made. There-
fore it is necessary to write down the transforma, -
tion equations between these two sets of axes.
Referring to Fig. 1(a) a vector r in the laboratory
fixed system is related to a vector 8 in the crys-
tal fixed system (principal dielectric axes) by
r= M p, where

os@ —sinnsinp sine cosp

0 cos p sinp . (3)

—sin& —cos Q sin p cos cv cos p

The dielectric tensor in the principal-axes system is

0 0

0 g, 0

0 0

and in the laboratory fixed system is

sin icos p

e =M ~ e ~ M =col +(e, —eo) ~
sinnsinPcosP

sinn cos n cos p

sinn cosp sj.np

sin~ p

cos e cosP sinP

sinn cos~ cos p

cos A cosp s ln p

cos ~ cos p

FIELDS IN THE TRANSMITTED WAUES

In order to describe the electric and magnetic
fields in the transmitted waves it is necessary to
invoke two of Maxwell's equations, which for the
field vectors proportional to e" ""can be
written

D= —(c/u)kxH,

H = (c/&u) k x E,
a.nd two of the constitutive equations,

D =™&.E,

(Ga)

(6b)

(Gc)

(6d)

o

The latter follows since p. = l. At this point it is
useful to note that the right-hand sides of the two
Maxwell equations are written in the form of vec-
tor cross products while the right-hand sides of
the two constitutive equations are written as a
tensor operating on a vector. In isotropic media
this ca,uses no problem in the applica, tion of bound-
ary conditions across the interface of two media
since the dielectric tensor in those cases is a con-
stant diagonal tensor and Eq. (6c) resembles Eq.
(Gd) in that the right-hand side becomes a scalar
times a vector. In anisotropic media consider-
able simplification may be achieved if the operator
k x is written as a tensor, i.e. ,

D= —(c/(u)™k H,

H = (c/&u)k E.
(Ba)

(Bb)

E' = E P' = E'(k'. A)/
I

k'. A
I

. (lo)

The magnetic field H' is in the principal plane and
is orthogonal to both k' and E'. As in the case of
the electric field the magnetic field may also be
written as the product of an amplitude H' and a
unit vector in the direction of H',

H' =H'(k' P')/Ik'P'I. (11)

From Eq. (Bb)

H'=(c/(u)k' E'=(c/( )E'k' I" (12)

Equations (11) and (12) may be equated to identify

E' = (~/c) 0'/Ik' P'I, (13)

and from Eq. (9)

Ik' &'I =Ik' k' Al/lk

Finally the amplitude of E' may be written as a
function of the amplitude of H',

Ordinary transmitted wave

A unit vector normal to the principal plane de-
fined by k' and A is

I'=(k'xA)/lk xAI =(k 'A)/Ik 'Al

Since the electric field in the ordinary transmitted
wave is perpendicula. r to the principal plane it may
be written

—k k„0
The two Maxwell Eqs. (Ga.) and (Gb) now become

E'=(~/c)H lk'Al/lk'k Al

The electric and magnetic fields are now

(16)
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-0 (~/c)H' —.-E =——=k'Alk' k' Al
0HH'=, , = k'. k' A.Ik'k' AI

(16a)

(16b)

H"=H"( c-os8, x —sin8, z),

with E"=H" and 8, = 8„(law of reflection).

Transverse magnetic case

(22b)

H'H'=H'P'= k' ' A.
I
k' ~ A I

Using one of the Maxwell equations [Eq. (6a)j

c —,-, (c/(u)H'—D' = ——k' ~ H' =—, k ~ k' ~ A.
Ik' Al

(16)

(19)

The electric field may be written with the aid of
Eqs. (6c) and (19) as

Extraordinary transmitted wave

A unit vector normal to the principal plane de-
fined by k' and A is

p - (k' y A)/
I
k x A

I
= ( k .A)/ I

k ~ A
I

(1'7)

Since the magnetic field is normal to this plane it
may be written

H' =H'y,

E' = E'(- cos 8; x+ sin8,. z), (23b)

with H' = E'. Analogously the magnetic and elec-
tric fields in the reflected wave are

H"=H "y,
E" = E '(cos 8„x+sin8„z),

with E"= H" a,nd 8, = 6)„.

Reflection amplitudes

(24a)

(24b)

Although this experiment is not explicitly shown
it can be easily visualized by interchanging the
electric field vector and the magnetic field vector
in the incident and reflected waves in Fig. 2. It
follows that the magnetic and electric fields in the
incident wave are

(c/&u)H' —,—,E' = c ' D' = —-=-, —=-— e ' ~ k '
~ k '

~ A.
I
k'

FIELDS IN THE INCIDENT AND REFLECTED WAVES

(20) The ref lectivity R as measured in a particular
experiment is equal to the square of the modulus
of the reflection amplitude,

The electric and magnetic fields are referred to
the laboratory fixed set of axes specified by the
unit basis vectors x, y, z in Fig. 2. It is nec-
essary to distinguish two types of reflection mea. -
surements which can be made at a given angle of
incidence. In one case the magnetic field is per-
pendicular to the plane of incidence (xz plane)
while the electric field lies in this plane. The
electromagnetic wave is then referred to as a
transverse magnetic (TM) wave (also a P or paral-
lel polarized wave). The other case occurs when
the electric field is perpendicular to the plane of
incidence and the magnetic field lies in the plane.
This is a transverse electric (TE) wave (also an s
or perpendicularly polarized wave). A generally
oriented wave incident on the crystal may be con-
sidered as a linear superposition of a TE wave and

a TM wave.

2&rz, var= &vE. TMI (25)

The reflection amplitudes are determined for the
TE and TM cases by the application of the two
boundary conditions that the tangential components
of the electric field and the tangential components
of the magnetic field be continuous across the in-
terface between two media, .

Transverse electric incident wave

The continuity of the y component of the electric
field and Eqs. (16), (16) and (20)-(22) leads to

(cu/c)H' (c/&u)H(k''A) — (z ' 'k''k'A)
I
k' 'k' AI ' Ik' Al

=H'+H", (26a)

recalling that E' = H' and E"= H". The continuity
of the x component of the magnetic field gives

Transverse electric case

Et Ety

H' = H'(cos 8,. x —sin8, z).

(21a)

(21b)

Referring to Figs. 1 and 2 the electric and mag-
netic fields in the incident wave are

H'
Ik' k' ~ A I

" Ik' A I

= K' cosa,. —H" cos 8„,
while the continuity of the y component gives

(26b)

E" = E"y, (22a)

It is well known that E'=H' when the wave is in-
cident on the crystal face through air. Again re-
ferring to Figs. 1 and 2 the electric and magnetic
fields in the reflected wave are

H' H

I
k' ~ k'A I

' Ik'A I

(k'k' ~ A) + — - (k' A) =0.
(26c)

These equations can be solved for the ratio of the
magnetic field amplitudes H" and H', which is the
reflection amplitude r~E:
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H" ((d/c)(k' A), (c/(a))(& ~ k'k' A)„(k' k' ~ A), (k' A)~ ~ ~

H' Ts, (k' ~ k' A), (k'A)„(kRA k' 'A) (k'A)„

((A)/c)(k' ~ A)R (&/(A))(e 'k' k'A), Ik' ~ k' A), (k' X)„
(k' k' A)„(k' A), '

',k''k' A)„(k'A)„
~

~ (27)

Transverse magnetic incident wave

The continuity of the x component of the electric
field and Eqs. (16), (18), (20), (23), and (24) leads
to

(~/c)H' —,— (c/~)H' —,—,—,—-- (k' A), ——,— (e ' k' k' A),Ik' k' AI " Ik' AI

field gives
H' H~

lk' k''Al ' Ik' Al
(k' ~ k' ~ A) + — (k' A) = H'+H',

(28b)
while the continuity of the x component yields

= H" cos 6„—H' cos 8, . (28a)
k' ~ k' ' A)x+

)
k' A I

(k' ~ A)„=0. (28c)

The continuity of the y component of the magnetic The solution for the reflection amplitude rT„ is

R" (k' ~ A)„(k' ~ k''A)„( /")(k' Al, ( / )(k ' k'k' A),
)+

~ ~

H'
rM (k' A), (k' k' A), ' (kR ~ k' A), (k' A),

lk'. A)„(k'i'A)„( /, )(2 AI. ( / )( - .k'. R..A), )'. (k'A), (k'k' A). ' (k' k' A), (k' A),
(29)

Before Eqs. (27) and (29) can be used it is nec-
essary that the components of the wave vector for
both the ordina, ry wave and the extraordinary wave
be obtained. The solutions for these are given by
Eqs. (18), (19), and (22) of Ref. 6 and are direct-
ly applicable here since the coordinate system as
defined here (Fig. 1) is identical to that of Ref. 6.

MICROCRY STALLINE REFLECTIVITY

Electromagnetic radiation reflected by a partic-
ulate surface is usually considered to consist of
contributions from regular reflection and diffuse
reflection. Regular reflection refers to the re-
flection of an electromagnetic wave incident on the
interface between two media and is completely
described by the Fresnel reflection coefficients
which depend on the properties of the electromag-
netic wave and the optical constants of the two
media. Diffuse reflection occurs when the incident
radiation penetrates into the interior of a. particu-
late sample and a portion returns to the surface
after partial absorption and multiple scattering at
the boundaries of the individual particles. There
is no general theory which adequately describes
diffuse reflection; however, an excellent review
of reflectance spectroscopy has been given by
Wendlandt and Hecht in which various treatments
of diffuse reflectance under different conditions
are discussed. There is some evidence that for

strong absorbers regular reflection is the domi-
nant reflection mechanism. Therefore as a first
approximation the following somewhat naive model
of ref lectivity in a microcrystalline powder will
be adopted. The size of the microcrystals is as-
sumed to be sufficiently large such that their op-
tical constants are similar to bulk-crystal optical
constants. Regular reflection is assumed to be
the dominant reflection mechanism and occurs
from those faces of the microcrystals which are
appropriately aligned with respect to the incident
electromagnetic radiation. The optic axis of each
microcrystal has some general orientation with
respect to the reflecting fa,ce, hence the need for
the general ref lectivity solution previously given.

An additional problem concerns the proper
orientation averaging of the microcrystals in the
powder. The simplest assumption is that the
fragments are randomly distributed with respect
to the orientation of their optic axes to the plane
of incidence. In this case the proper orientational
averaging is a simple rotational averaging:

& /Z I/2
R(k;, )= —f R(8(, ~, a, p) cosp dp do(.

0 0 (30)
For a doubly degenerate mode the integration
need only be over 8 of the sphere. However, it
might be expected that owing to preferential frac-
turing along cleavage planes a microcrystalline



IN FRARE D RE F LE CT IVITY OF UNIAXIA L. . . 2347

RTM

RTM

I
I

t
I
I
I

I

I
I

I
1

I
I

Na NO~
\
t
1
\

t

%II

Col

Expt

lw
I

I
I
I
I
I

't

I
I I

1

I
I

I
t
I

I
r

ei = 45'

I I I I
I I I I I

l600 I500 l400 i300 l200 IIOO

inclusion of a weighting factor favoring those val-
ues of n and p corresponding to the occurrence of
preferred cleavage faces.

A comparison of the calculated angle-of-inci-
dence dependence of the rotationally averaged re-
flectivity with the data obtained by Bates for the

v3 asy m metric stretching mode of s odium nitrate
is shown in Fig. 4. The optical constants for
sodium nitrate were generated from a damped-
harmonic-oscillator model choosing a longitudinal
frequency of 1455 cm ', a transverse frequency
equal to 1353 cm ', and a damping constant of 10
cm '. The values selected were those chosen in
conjunction with another study' involving the op-
tical constants of bulk single-crystal sodium ni-
trate and no attempt was made to refine the values
of those parameters to fit the data here. The or-
dinary and extraordinary refractive indices used
here were those obtained by Tandon, " 1.587 and
1 ~ 336, respectively.

As the angle of incidence increased from 10' to
75' Bates found that the position of the largest
TM ref lectivity maximum increased from 1448 to
1460 cm '. The calculation here also predicts an
increase in the maximum from 1434 to 1454 cm '.
The existence of considerable TM ref lectivity in
the vicinity of the longitudinal frequency for par-
ticular experimental geometries has been observed
and discussed. " Apparently the TM ref lectivity
maximum in a uniaxial microcrystalline sample
can be explained in terms of sufficient numbers of
crystalline fragments presenting the appropriate
crystal faces to the incoming beam. The behavior
of the high-and low-frequency ref lectivity "wings"
as discussed in the Introduction is also rather
nicely described by these calculations. As is
evident in Fig. 4, this rather crude model fails to
describe the fine structure in the ref lectivity band,
particularly the existence of several ref lectivity
maxima which are especially evident in the spec-
tra observed at lower angles of incidence. This
is hardly surprising in view of the rather extreme
simplifying assumptions made, especially the
neglect of the diffuse ref lectivity contribution to
the observed ref lectivity. Therefore the results
of these calculations might best be viewed as pro-
viding rather satisfactory qualitative agreement
with the experimental measurements of the re-
flectivity from a uniaxial microcrystalline powder.
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