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Effects of spin-orbit interaction upon impurity scattering in dilute alloys
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An earlier treatment of impurity scattering in dilute noble-metal alloys based on exact solutions of the

Schrodinger equation for a lattice of muAin-tin potentials, is extended to take into account relativistic effects.
For a nonrelativistic impurity in a relativistic host, the effects of spin-orbit interaction upon the host Fermi
surface and impurity-induced Dingle-temperature anisotropies are calculated. Experimental Dingle-temperature
anisotropies of Au(Cu}, Au(Zn}, and Au(Ag} are analyzed to yield phase shifts that describe scattering of
conduction electrons at the Fermi level by the impurity atoms. For a relativistic impurity in a nonrelativistic
host, Dingle-temperature anisotropies and spin-flip relaxation rates for conductionclectron spin resonance
are discussed, A model calculation shows that host-lattice backscattering effects contribute significantly to
the spin-flip scattering time T, . Dingle-temperature anisotropies and spin-flip relaxation rates for Cu(Ge}
and Cu(Au} are analyzed to yield the spin-orbit parameters of the impurity atoms in these alloys.

I. INTRODUCTION

In a recent series of papers, 5 an accurate pro-
cedure has been developed for the nonrelativistic
analysis of impurity scattering in dilute alloys.
This analysis is based upon an exact treatment of
impurity scattering for the muffin-tin model of a
single impurity in an otherwise perfect host lat-
tice, by an extension of the Green's-function or
Korringa-Kohn-Hostoker' (KKH) method of band-
structure calculation. In this treatment, impurity
scattering is completely determined by the "atomic"
phase shifts of the host atom Bnd of the impurity
atom, together with the appropriate structure fac-
tors. It is well suited for semiempirieal analysis
of experiments involving impurity scattering of
electrons at the Fermi level, and has been suc-
cessfully applied to the analysis of Dingle-tem-
perature anisotropy data, for dilute substitutional~ 4

and interstitial alloys in noble-metal hosts. The
impurity-atom phase shifts inferred from these
data contain information about effective impurity
potentials for various metallic environments.

The purpose of the present paper is to discuss
the qualitative and quantitative modifications of
this nonrelativistic description of impurity scat-
tering that are introduced by spin-orbit interac-
tion. The spin-orbit interaction is the interaction
between the spin of a conduction electron and the
effective magnetic field generated by its motion
through a spatially varying atomic potential. In
the muffin-tin model the potential variation, and
therefore the spin-orbit interaction, is confined
within the muffin-tin spheres. The corresponding
relativistic phase shifts for the host [q",/(E)] and
impurity [q'»(E)] atoms are then characterized by
both orbital (l) and total (orbital plus spin; j = l + ~)

angular momenta. It is convenient to define a
spin-orbit parameter for each nonzero orbital
angular momentum, proportional to the difference
between the j= $+ ~ and j=1- & phase shifts:

/ (@ %y 1+1 /2 (@ ~l, I-1 /2 (@ ~

where (a) denotes )/ or i for host or impurity
atoms, respectively. The extent to which 6,"'
deviates from zero is a measure of the strength
of the spin-orbit interaction on the atom (a). The
potential gradient is greatest in the spatial region
near the atomic core; its magnitude depends upon
the nuclear charge of the atom and on how ef-
fectively this charge is screened by the electrons.
The spin-orbit parameter is thus expected to be
appreciable for elements of large atomic number
such as Au (Z =79) and to increase for elements
across the periodic table, such as for Ga, Qe, and

As, corresponding to the addition of s and p elec-
trons which incompletely screen the additional
nuclear charge.

The qualitative effects of spin-orbit interaction
can be summarized as follows. As a consequence
of the coupling of spin with orbital motion of the
electron within the muffin-tin spheres, the rela-
tivistic eigenstates of the lattice containing a single
impurity differ from the nonrelativistic eigen-
states in two respects. Firstly, they are char-
acterized by the double-point-group representa-
tions (f'y) rather than the single-point-group rep-
resentations (I"y) of the crystal symmetry. Sec-
ondly, for a lattice with inversion symmetry as
considered here, the e1.ectronic eigenstates of the
host lattice remain doubly degenerate, correspond-
ing to the two generalized spin orientations (8 = &, y)

of the electron in a magnetic field. However,
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since the strength of the spin-orbit interaction on
the impurity atom is generally different from that
on the host atom, the impurity can induce transi-
tions between Bloch states of the host lattice of
opposite generalized spin (e. g. , 0 —k) as well as
of the same generalized spin (e. g. , & - t). This
spin-flip process contributes to the linewidth of
conduction-electron spin-resonance measurements;
both process es contribute to the invers e lif ctime
of a Bloch state as measured in Dingle-temperature
experiments.

In the present paper, the impurity is assumed to
be substitutional and the lattice is assumed to have
cubic symmetry. Our relativistic treatment of
impurity scattering is based upon an exact solution
of the Dirac equation for the muffin-tin model, as
developed in more detail in Ref. 3. All relativis-
tic interactions are thus included in the present
treatment although attention is focused upon the
spin-orbit interaction. Brown and Morgan have
shown that the mass-velocity and Darwin inter-
actions introduce appreciable effects upon im-
purity scattering in heavy-noble-metal alloys.
However, unlike the spin-orbit interaction, the
effects of these interactions can be expressed as
corrections to the nonrelativistic phase shifts.
We shall illustrate the relativistic analysis for
some dilute nonma. gnetic noble-metal alloys,
considering s eparately thos e effects associated
with a relativistic host and those effects associ-
ated with a relativistic impurity. By comparing
the results of relativistic and nonrelativistic
analyses, the importance of the spin-orbit inter-
action in characterizing experimental data is as-
sessed for various alloy systems. Two different
types of experiment are considered: the anisot-
ropy of the Dingle temperature and the relaxation
of conduction- electron spin polarization .

The outline of the paper is as follows. In Sec.
II, the relativistic theory of impurity scattering
is briefly reviewed and the appropriate forms of
the transition matrix are presented. In Sec. III,
impurity scattering in a relativistic host is con-
sidered. Relativistic and nonrelativistic analyses
of Dingle-temperature data for dilute alloys of gold
are presented and compa. red. In Sec. IV, scatter-
ing by a, relativistic impurity in a nonrelativistic
host is considered. Analyses of both conduction-
electron spin-resonance relaxation rates and
Dingle-temperature anisotropies are presented
and discussed, with reference to dilute alloys in a
copper host. The results and conclusions of this
work are discussed in Sec. V.

II. REVIEW OF THEORY

The transition matrix Te, e(E) describes the rate
lc'R

of change of the probability amplitude for finding
an electron in the Bloch state @s@'~ (k', r) under

the influence of the perturbing impurity potential,
given that it was initially in the Bloch state 4~s "(k, r).
Relativistic expressions for the T matrices
appropriate for a single substitution impurity in
an otherwise perfect lattice of muffin-tin potentials
were derived in Ref. 3, following earlier non-
relativistic treatments of Dupree, Morgan, '
Harris, ' Coleridge, ' and Coleridge and Lee. '

The relativistic T matrix can be written as a
sum of partial-wave double-point-group components
in the form

(E) = 2 f tyros(k'i E)(& & )ty, t'y'f t'y'ry( k~ E) ~

r pre

(2)

Here we have introduced a tilde notation to dis-
tinguish relativistic functions from their non-
relativistic counterparts. The kernel of this ex-
pression contains two terms. Information about
the impurity phase shifts is contained in the diag-
onal phase-shift matrix $, whose elements are

$,&(E) = [cot r)",&(E) —cot ri', ~(E)] ' .
4V

is the integral over the volume [(2v)'/0] of the
Brillouin zone of the inverse of the KKR secular
matrix M(k, E) ':

~ At

X[& [~ yt(E):
(

q3 d K[M(kp )E] I ~r~ y
7TJ

(4)
The basis functions f~»r„-(k, E) are proportional
to the Bloch-wave amplitudes V fp-„(k, E), which
are components of the normalized eigenvector of
M(k, E) that corresponds to its zero eigenvalue
X(k, E) =0:

f Ur-„(k, E) = exp(ik Rz)Vtp„-(k, E)

(5)

It was shown in Ref. 3 that the sum over partial-
wave indices l, j in Eq. (2) may be truncated at
the lowest angular momentum for which the cor-
responding host phase shift is negligible. In the
present Fermi-surface studies of noble-metal
hosts, host phase shifts q",&(E~) are included for
l ~ 2. The corresponding single- and double-point-
group representations which enter the analysis
are listed in Table I. It will be seen that the
relativistic kernel (( —g") ' is diagonal for all
representations, except for the representation
I',' for which it is a two by two matrix in partial-
wave indices lj and l'j' equal to 2, —,

' and 2, —,'. It
is convenient to describe the k dependence of the
diagonal part of the T matrix by defining a set of
partial-wave factors
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TABLE I. Single- and double-point-group representa-
tion for l ~2.

Single-point-group
representations 1

Double-point-group
representations I

r'
6

I 15

r'
8

I8

r 8

I8,

Gr), ,~, (k, E) =QfP —„"(k, E)f8,'r,"(k, E) . (6)

The double group representations I'y are formed
from direct products of representations I'y of the
single-point group of the lattice and the two
dimensional representation of electron spin n~,

For cubic symmetry the unitary transforma-
tion U', ~r"y" between double-point-group and single-
point-group lattice harmonics has been worked out

by Onodera and Okazaki. ' In order to study the
scattering properties of a relativistic impurity in
a nonrelativistic host, it is convenient to express
the nonrelativistic host parameters in terms of
the double-point- group repr esentations. The
transformation of the amplitude factors takes the
form (with 8 =—m, ):

IU AI ~V

r'y'(E) =
, P Urr~ (Ut ~ ry, ) &tt'(E) ~

I y~s
(8)

The coefficients for the transformation of the
Brillouin-zone integral Eq. (8) and for the anal-
ogous transformation of the partial-wave factors
defined by Eq. (6) are given for l ~2 in Table 11.

The impurity wave function can be described
in terms of a set of Friedel phase shifts. The
Friedel phase shift P„r(E) is related to the eigen-
value exp[2fg„r(E)] of the kernel of the scattering
matrix:

[(&-P*)(&-x') '] .

Here g' denotes the complex conjugate of the
matrix y . The Friedel phase shifts evaluated at
the Fermi level E~ describe the displacement of
conduction charge in the vicinity of the impurity,
which, according to the Friedel sum rule, ~5 de-
pends upon the valence difference Z between the

f, r-„-(k, E) =Q (UI~r"„" )*f,r„(k, E) .
ry

Similarly, the Brillouin-zone integrals for the non-
relativistic host can be transformed to the double-
point- group representation:

impurity and host atoms according to

h dg kg

2 vks 2 vm, (cu) „)fVs (k) ~ 6~

x — ~ ImT-'-' EJ,-kk

Here m, (~) is the experimental cyclotron mass of
the orbit, k~ is Boltzmann's constant; k„with
polar coordinates (k„P), is the component of the
wave vector k in the plane of the orbit, measured
with respect to the center of the orbit; and the
notation 0, denotes a unit vector. The evaluation
of this expression for a nonrelativistic impurity
in a relativistic host and for a relativistic impurity
in a nonrelativistic host will be discussed in Secs.

TABLE II. Expressions for double-point-group repre-
sentations (Ref. 13) of host lattice coefficients in terms
of single-point-group representations (Ref. 14) in ab-
sence of host spin-orbit interaction.

0 $ 0 —,
' r',

r-,

1 g 1

2 — 2 2 r0

2 — I"
2

r'

Brillouin-zone
integr als
-r

I ~ gs

r15

r1
X11

—(2X» +3X»1 r12 r25

5 (3X22 + 2X 22

—( v &~5)(X22 —X22 )
r2s

Xr2s
X22

Partial-wave
factors

GrGIf It jo

Gr1
00

1Gr1s
11

2Gr15
11

2 (G 12+ G 25')
5

(9G22 +4G22

-(v6»)(G22 3G22 )

1Gr2s
3 22

6'(E,)=- P d(r) j„;(E,)=Z, (10)
vP

where d(I ) is the degeneracy of the double-point-
group representation I'.

Assuming incoherent scattering from a finite
atomic fraction Ci of impurities, the T matrix,
evaluated at the host Fermi level E~, may be ap-
plied to the analysis of several types of experi-
mental data on dilute alloys. The experiments
considered here measure Dingle-temperature
anisotropies and longitudinal relaxation rates for
conduction-electron spin resonance.

The Dingle temperature X(u) is a measure of the
damping of de Haas —van Alphen oscillations for
orbit w. The damping due to impurity scatter-
ing of electrons at the Fermi level may be ap-
proximated by the orbital average of the inverse
lifetime of each Bloch state 4's+'e(k, r) included in
the orbit, evaluated in zero magnetic field. Express-
ing this inverse lifetime in terms of the imaginary
part of the diagonal element of the T matrix cal-
culated for incoherent impurity scattering, the
Dingle temperature is given by
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III and IV, respectively.
The longitudinal relaxation time T, observed in

conduction-electron spin resonance is the time
constant for the exponential decay of conduction-
electron magnetization when the magnetic field is
switched off. Its inverse can be calculated from
the Fermi-surface average of the spin-flip scat-
tering rate ':

1 4p Cl
T, E n(E~) (2ri)

dSrr

IhVs (k) I IEVs (k') I

(12)
Here dS-„denotes integration over the Fermi sur-
face. D(E~) denotes the number of states of given
spin per unit energy of the host metal at the Fermi
level, normalized to the volume of a unit cell 0:

0 ~ dSg

(2ri)' . I lr V (k) I

(13)

1/Tr will be evaluated for a, relativistic impurity in
a nonrelativistic host in Sec. IV.

III. IMPURITY SCATTERING IN A RELATIVISTIC HOST

Of the three noble-metal hosts, spin-orbit effects
are expected to be largest in gold. Although a
nonrelativistic analysis of Dingle-temperature
anisotropies can be carried out for dilute gold
alloys, 2' a relativistic analysis is expected to
better approximate the physical situation. In par-
ticular, one would expect the relativistic treat-
ment to give more reliable values for the impurity
phase shifts.

In order to proceed with an analysis of Dingle-
ternperature data, the atomic phase shifts at the
Fermi level of the host metal must first be de-
termined. This is conveniently achieved by fitting
a model Fermi surface generated by a KKR band-
structure calculation to the experimental Fermi-
surface areas determined by de Haas-van Alphen
measurements. Lee and Heine' have shown that
equally accurate fits to de Haas-van Alphen data
may be obtained for a wide range of values of the
Fermi energy parameter FF, and that these cor-
respond to different forms of the muffin-tin po-
tential. In the present work, the Fermi energy
parameter was chosen to be EF=0.53 Ry, equal
to that determined in an ab initio band-structure
calculation by Christensen. The experimental
de Haas-van Alphen frequencies for six symmetry
orbits of gold were taken from the data of Coleridge
and Templeton, 2' and the lattice constant a was
that quoted by Halse. The error in the experi-
mental parameters is dominated by the uncertainty
in the lattice constant, and amounts to a few parts
in 104.

Setting the spin-orbit pa, rameters 6," and Az

equal to zero, and considering only partial waves
for l ~ 2, the best nonrelativistic fit to the three
Fermi-surface areas X,», B~», and Bipp& re-
sulted in average fractional errors in the hole
and turning-point orbits of 14 parts in 10'. A
relativistic model Fermi-surface, however,
could be found within the experimental error.
Starting from the spin-orbit parameters calculated
from the potential of Christensen, we found that,
by making small adjustments to the spin-orbit
parameters, the average fractional error in the
fit to the hole and turning-point orbits could be
reduced to less than 2 parts in 10'. In this way,
estimates of the spin-orbit parameters in gold
were obtained. Unfortunately, the sensitivity of
the shape of the gold Fermi surface to the spin-
orbit parameters is weak, presumably because no
degeneracy of the energy bands close to the Fermi
level is split by the spin-orbit interaction. A

more thorough investigation of the sensitivity of
the shape of the gold Fermi surface to the spin-
orbit parameters will be warrented only when
more accurate data become available. It will then
be necessary to consider also the effects of f wave
contributions to the anisotropy of the Fermi sur-
face.

The relativistic T matrix Eq. (2) must be used
to evaluate the impurity-induced Dingle tempera-
ture in a relativistic host from Eq. (11). The re-
sulting expression for the Dingle temperature may
be written

h2

2', (id) rr' trs

Ar ~V

Wrr r, y, (rd) fm((( —X )ry, r r )
iver; i'y'

(14)
where the dimensionless "host orbital parame-
ters" Wr(v) are orbital averages of the partial-
wave fa,ctors G"(0, Er) of Eq. (6), and are de-
fined by

a 2 - dPk~Wr r
Wr~ r...(rd)—= —

) ( ( )) „- G,. ..~. (k, E ) .
EF

(15)
In order to carry out a phase-shift analysis of
Dingle-temperature anisotropies, the host orbital
parameters W" defined in Eq. (15) and the Bril-
louin-zone integrals P defined in Eq. (4) were
evaluated numerically for gold as described in
Ref. 4. The results are presented in Tables III
and IV for the nonrelativistic and for the relativis-
tic Fermi-surface parametrizations, respective-
ly. 2' The relationship between the present nota-
tion and the notation of previous papers for non-
relativistic host orbital parameters Wr(rd) is
discussed in Appendix A.

Once these host parameters are known, the im-
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TABLE III. Nonrelativistic host parameters for Au

(Ez = 0. 53 Ry, a = 7. 682 115 bohr).

or, 1rls 21„
R, (EF) (rad)

Re [X» (EF)]

rm(Xgrr (EF)

w,",(~)

+1OO

T110
D11O

R11O

Tioo

0.249 562 0. 063 150 —0. 242 562

0.291 731 0. 062 153 —0. 314 925 —0. 303 971

0.041 666 0. 002 100 0. 051 887 0. 073 557

0
0. 159872
0. 172 353
0. 145 213
0. 104 120
0. 120 548
0. 153467

0, 010 052
0. 015 584
0. 020 809
0. 018 204
0, 022 511
0. 019635
0. 019094

0.
0.
0.
0.
0.
0.
0.

066 888
401 440
333 425
329 724
280 056
366 281
321 453

0. 073 561
0. 853 738
0.746 617
0. 759 363
0. 547 697
0. 703 482
0. 729 645

The notation for the orbits is as follows: Xfff and

Bfff refer to neck and belly orbits, respectively, per-
pendicular to the [111]axis. +fop and Rfpo refer to belly
and rosette orbits, respectively, perpendicular to the
[100] axis. Df fo is the dog's bone orbit perpendicular to
the [110]axis. There are two turning-point orbits Tf f o

and Tfpo ln the (110) and (100) zones, respectively. The
host orbital parameters defined in Eq. (15) are related
to those in Table II of Ref. 2 according to

t aA(w)/ap& )
= (m/12) ~(7l sin'g)) Q W))(h)).

purity phase shifts t)', &(Er) can be determined from
least-squares fits to experimental Dingle tem-
perature X(w) and cyclotron mass m, (u) data,
according to Eq. (14). In the analysis presented
here we have assumed for simplicity that the im-
purity spin-orbit parameters d, (E~) are negligible
so that ri', &(Ez) = ti', (Ez). This is a reasonable
assumption for the dilute alloys considered here
except, perhaps, for Au(Ag). With this assump-
tion, the impurity atom is characterized by three
phase shifts, rjo(Ez), gI(E~), and re(Ez), which

were determined by fitting the data to Eq. (14)
using a nonlinear least-squares-fitting procedure
described by Bevington. 23

The analysis of Dingle-temperature data alone
does not generally lead to a unique set of impurity
phase shifts. ~'4 The earlier nonrelativistic anal-
ysis (Ref. 4) resolved this ambiguity by fitting
the Dingle-temperature data with the constraint
that the calculated residual resistivity of the alloy
should agree with the experimental value. In the
present work, the impurity phase shifts were
deduced from the fits to the Dingle-temperature
data by requiring consistency of the corresponding
Friedel phase shifts with those determined in the
earlier work. 4'~4 We have carried out relativistic
and nonrelativistic analyses of experimental Din-
gle-temperature anisotropies in dilute alloys of
Au(Ag), Au(cu), and Au(Zn), as mea. sured by
Lowndes, Miller, Poulsen, and Springford.
Only Dingle-temperature data for the five symme-
try orbits that were measured were included in the
fit, since these data are not complicated by phase
smearing due to sensitivity to small crystalline
misorientation. '

The results of the phase-shift analyses are given
in Table V. For each of the three gold alloys,
the best fit to the data involved discrepancies
substantially larger than the quoted experimental
errors, the largest fractional error occurring for
one of the hole orbits, either Rfpp or Dllp This
result suggests that the quoted errors of the ex-
perimental data may underestimate the actual
errors for these orbits. The following compari-
sons can be made between the relativistic and the
nonrelativistic analyses. First, the fit to the
data in the relativistic analysis is marginally better
than that in the nonrelativistic analysis, even
though the number of fitting parameters is the
same. However, the inferred impurity phase
shifts qI(EF) differ between the two analyses by
as much as 30%. For Cu and Zn impurities, the
relativistic analysis yields a Friedel sum which

TABLE IV. Relativistic host parameters for Au [E+=0.53 Ry, a =7.682115 bohr].

1"lj, l 'j'
~h (E

(rad)

Re (Xgy ~,.g. )

-r
Im (g~g gt yi)

r,' 0~2, 02 r-61-,', 1-,' I 812, 1-', rS 22, 2-', r8 2-,', 22

0. 266 985 0. 168 650 0. 014 420 —0. 206 771 —0. 267 214

0. 048 624 0. 012 422 (x102)~ 0. 042 218 0. 083 520

0.317 356 0. 162 035 0. 014366 —0. 261 584 —0. 345423

I'7 2—,2-

—0. 267214

0. 012 052 0. 092 460

0. 003 847 —0.325 963

-r a

+fop
Tff0
Dffo

Rfoo

0. 000 503
0. 187 258
0.200 900
0. 169064
0. 121 645
0. 141 628

0. 021 308
0. 028 491
0. 042 072
0. 035 023
0. 046 118
0. 038 259

0. 011 834

(x 102)&

0. 036 586
0. 060 350
0.077 705
0. 068 726
0. 083 401
0. 074 342

0. 042 082
0. 338 565
0. 274474
0. 277 510
0. 216 063
0. 297 186

0. 083198
0. 629233
0. 554 585
0. 555 233
0. 438 733
0. 542 856

—0. 002 343
0. 091 302
0. 089 518
0. 092 610
0. 052 856
0. 063450

0. 018 242
0. 345 889
0. 326 006
0, 328 659
0. 224 972
0, 268 450

~See footnote of Table III for orbital notation.
For convenience the numbers quoted below are 100 times the coefficient.
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TABLE V. Phase-shift analyses of Dingle-temperature data for dilute gold alloys. Impurity phase shifts [T]'(EF)]
listed correspond most closely to those determined in Ref. 4 to be consistent with residual resistivity measurements.

Experiment

Au(Cu)

Nonrela- Relativ-
tivistic istic

fit' fit~ Experiment

Au(Z n)

Nonrela- Relativ-
tivistic istic

fit fit' Experiment

Au(Ag)

Nonrela-
tivistic

fit'

Relativ-
istic
fit'

Orbit Dingle temperatures ( K/at. %)

~F00

Tffo
Deco

Rioo

T100

4. 53(2)
10.10 (9)
9.16 (22)

8. 59(11)
9.82 (100)

4. 53
10.14
9. 98
9.37
8. 22
9.22
9. 53

4. 53
10.14
9. 93
9.43
8. 22
9.18

24. 5(15)
38. 7(15)
35.6(15)

36.3(i5)
39.8(15)

25. 66
40. 23
37. 10
36. 96
33.53
38.41
36.57

25. 67
40. 33
37. 02
37. 36
33.63
38.30

2. 83(3)
9.27(io)
9. 82 (55)

7. 62(18)
9.03(24)

2. 83
9.39
9. 89
8. 78
7. 57
8. 21
9.21

2. 83
9.40
9. 85
8. 70
7. 53
8. 23

Impurity phase shifts (rad)
gg (E~)

L=0
l=1
l=2

—0. 20
0.22

—0. 15

—0. 14
0. 19

—0. 16

0.51
0.42
0. 064

Friedel sum [Eq. (10)]

0.45
0.39
0. 070

—0, 36
—0. 077
—0. 21

—0. 35
—0. 065
—0.26

0. 30 0.29 1.28 1.24 —0. 23 —0. 36

~Reference 25.
Using host parameters of Tables III.

'Using host parameters of Tables IV.
See footnote of Table III for orbital notation.

is in slightly better agreement with the Friedel
sum rule [Eq. (10)]. In Au(Cu) and Au(Zn), the
impurity phase shifts are quite comparable to
those predicted for the same atoms in a copper
environment at a similar Ferlni energy (EF
=0. 55 Ry), as will be discussed in Sec. IV below.
The impurity phase shifts for Au(Ag) determined by
the present analysis are comparable to the phase
shifts for a pure silver lattice evaluated at the
same value of the Fermi energy parameter. ~6 In

fact, they are uniformly smaller than the pure
silver phase shifts, indicating that the effective
silver potential for Au(Ag) is less attractive than
that for Ag(Ag), as expected owing to the stronger
binding of the conduction electrons in gold. How-

ever, the sum of the corresponding Friedel phase
shifts is in rather poor agreement with the sum
rule [Eq. (10)] both in the nonrelativistic and in
the relativistic analyses. In order to check
whether this might be due to our having neglected
spin-orbit interaction on the impurity atom, the

calculation was repeated assuming spin-orbit pa-
rameters /3I(E~) calculated from Christensen's
silver potential. ~0 We find that agreement with
the Friedel sum rule is not improved. The dis-
crepancy is surprising because the lattice con-
stants of pure Ag and pure Au differ by only 0.2%,
which suggests that distortion of the lattice by the
impurity should be negligible, and if this is so the
Friedel sum rule should be accurately satisfied.

IV. IMPURITY SCATTERING BY A RELATIVISTIC
IMPURITY IN A NONRELATIVISTIC HOST

The evaluation of the T matrix for a relativistic
impurity in a nonrelativistic host is most easily
accomplished by using the unitary transformations
[Eq. (7)] to express the relativistic host parameters
in terms of the single-point-group representations.
Using the transformations listed in Table II, the
explicit expression for the Dingle temperature
(including only partial waves for / ~ 2) is

2

'~(~)
2 ( ) 2y (~00 (&) ™(50,1/2 X00 ) + ll (~) ™[3(~1,1/2 X 11 ) + (51,3/2 X 11 ) ]

where

+ F22' (01)™&[4.5/2 X22
' —5(4.5/2 4,3/2)1/&)+ ~22 '(01) ™8(4,5/2 X22 ') '

+ 3 [4,3/2 X22 + 5 (42, 5/2 k2, 3/2)]/+) )

[(~ 253/2 X22 )(~ 2, 5/2 X 22 ) 5 (k 2, 5/2 ~2, 3/2)(X 22 X 22 (17)



EFFECTS GF SPIN-GBBIT INTERACTION UPON IMPURITY ~ ~ .

is the determinant of the 2x2 matrix ($ —X 8).
The orbital variation of the Dingle temperature
associated with It)-wave scattering involves only a
single term, and is therefore independent of the
spin-orbit parameter 6,'(Ez). Physically, this is
because the p-like partial waves are not split by
either the single- or the double-point-group sym-
metries of the cubic crystal field. The d-like
partial waves, are however, split; by the crystal
field into single-point-group representation I"»
and I"2, , which characterize the host wave func-
tions, and into double-point-group representations
I 7 and I"8 which characterize the impurity wave
functions. The recombination of the outgoing
scattered wave with the backscattered waves char-

acterized by different symmetry groups causes the
orbital variation of the d wave contribution to the
Dingle temperature to be weakly dependent on the
d wave spin-orbit parameter nz(EF). Since the
Dingle temperature is a measure of the total scat-
tering rate, including spin-flip as well as no spin-
Qip processes, it is not surprising that it is
generally only weakly dependent upon the impurity
spin-orbit parameters nI(E~).

On the other hand, the rate of spin-Qip scat-
tering induced by the spin-orbit interaction de-
pends strongly on the spin-orbit parameters.
The longitudinal relaxation rate for conduction-
electron spin resonance [Eq. (12)] may be evaluated
in terms of the unitary transformations [Eq. (I)]

) ~ Imp(/ Imp(, )
tr;l&

As As Aa

I/i/r~(f/r'/'r~)q(f/'&/1r1"i)q I/ PPq"q(t. r)-1 p "r e)-1

Evaluating this expression for partial waves l ~2, the explicit form of the spin relaxation rate is

(&i,3/a 4 i/2) (™4i")
Ti Tl'8'5)(E~) 9

&~2 5/2 ~2 3/2~ / 125 )2 ~2 5/2 ~22 125

4, 5/2
—&2225

(19)

It is evident that the spin relaxation rate is directly
dependent upon the impurity spin-orbit parameters
&I(Ez) through the factors ($s s/2

—4, &/a) and

($z, /2
—$2 z„)'. The d-wave term has an additional

contribution due to crystal-field splittings. In the
absence of backscattering by the host lattice, this
expression for I// T~ reduces to that derived for a
free-electron model of the host lattice":

IIT'I [4C/ /+@+(Ey')] [tt sin (n$ 3 /2 r/I $ /g)

+ —', sin (7)2 5/p g2 3/2)]

In order to estimate the magnitudes of spin-orbit
effects in a series of copper alloys, we have con-
structed approximate muffin-tin potentials for
substitutional Ni, Zn, Ga, and Ge impurities in
copper lattices by superposition of atomic po-
tentials. ' The potentials were adjusted, by a small
constant shift to represent screening effects, so
that the Friedel sum rule [Eq. (10)]was satisfied.
The relativistic impurity phase shifts r/, /(Ez) for
these potentials were calculated by numerical in-
tegration of the Dirac equation, 27 as brieQy dis-
cussed in Appendix B. The results in Table VI

show clearly the anticipated increase in the magni-
tude of the spin-orbit effects across a single row
of the periodic table. From these estimates of
the impurity phase shifts, and the known host
parameters of copper, reproduced for convenience

(E+) in radians

Impurity
conf lgura'tlo n

Ni
(3d'4s')

Cu~
(3d"4s')

Zn
(4s )

Ga
(4s 4p )

Ge
{4s'4p')

~0,1 /2

~l, f/2

~f,3 /2

~2,3 /2

~2,5/2

& (EF)

—0.173 —0.076 0.616

0. 040

0. 028

0. 130 0.418

0. 130 0.386

—0.273 —0. 119
—0. 336 —0„119
—1.1

0. 009

0. 008

l. 0

1.010

0. 917

0. 856

0.032

0, 031

l. 251

1.457

1.381

0. 051

0.051

Cu phase shifts fitted to Fermi-surface data of pure
Cu, Refs. 18 and 28 (see Table VII).

Equation (10).

TABLE VI. Calculated relativistic phase shifts for sub-
stitutional impurities in Cu (EF ——0. 55 By): neighbors of
Cu in 4th row of periodic tabl. e.
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TABLE VII. Nonrelativistic host parameters for Cu
(E~ = 0. 55 Ry, a = 6. 8087 bohr).

or, 1ri5 2r„ 2 r2y

g](Ep) (rad)

Re[x, (Ep)]

Im [Xrfg (&~) ]

Wrr, (&)

0. 075 529 0. 129 800 —0. 118591

0. 076 069 0. 124 118 —0.132 327 —0. 128 621

0.003183 0. 013 922 0, 015 023 0. 015 637

~choo

T110

Deco

Rioo
~1oo

0
0. 011437
0. 013169
0. 012 115
0. 008 165
0. 007 986
0. 012 579

0. 073 960
0.109 983
0. 121 561
0. 116146
0. 142 338
0. 133708
0. 118148

0. 020 204
0. 106 946
0. 099 387
0. 098 356
0. 083 011
0. 091 557
0. 098 458

0. 018 715
0. 186 669
0. 145 394
0. 158 150
0. 115622
0. 147 468
0. 151 229

See footnote of Table III for orbital notation.

in Table VII, 28 the spin relaxation rates 1/T, have
been calculated for these alloys. The total density
of electronic states 2S(Ez) was estimated from
specific-heat data of Martin. ~ The results are
presented in Table VIII, where they are compared
with the corresponding relaxation rates calculated
from the free-electron formula [Eq. (20)], and

with the experimental relaxation rates measured
by Monod. ' It is interesting to note that the value
of the spin-flip relaxation rate calculated from
Eq. (19) differs significantly from the value cal-
culated in the free-electron approximation from
Eq. (20), indicating that host lattice backscattering
contributes significantly to conduction-electron
spin relaxation. When backscattering effects are
included, our results agree well with the experi-
mental data for Ga and Ge. This agreement is
independent of small shifts in the impurity po-
tentials. The agreement between calculation and

experiment is understandably poorer for Ni and

Zn. First, we have neglected spin-orbit interac-
tions in the Cu host. The estimated spin-orbit
parameters for copper are significantly smaller
than those of Ga and Ge, but comparable in magni-
tude to those of Zn. Second, the spin-orbit inter-
action of Ni is mainly of d-wave character. Strong
exchange interactions among the d electrons are
responsible for the magnetic properties of pure
Ni. Even if there is no local-moment formation
in Cu(Ni), one might suspect that j is no longer
:~ good quantum number inside the Ni muffin-tin
sphere. It has been shown by Yafet ' that the spin-
flip scattering rate due to spin-orbit interaction
can be enhanced in the presence of a local moment.
Whether the spin-flip scattering rate can also be
enhanced by an incipient local moment, or by elec-
tron-electron correlations in general, is an inter-
esting problem for further investigation. For com-
pa.rison with these fourth row impurities, we have
estimated the inverse spin-flip relaxation time
1/T, for Cu(Au), approximating the relativistic

TABLE VIII. Spin-orbit induced spin-lattice relaxa-
tion rate for conduction electron spin resonance.

1/T& (10 sec /at. %)

Alloy

Cu(Ni)
Cu(Zn)
Cu(Ga)
Cu(Ge)
Cu(AU)

Present
cale ulation

24. 9
0. 8
3.0
7.1

50+10

Free electron
calculation"

10.4
1.4
5. 5

8.4
50 ~10

Experiment'

44. 9 ~3. 5
1.5 &0. 2

3.3~0.4
6. 9~0. 7

Equation (19).
b Equation (20).
'Philippe Monod, Ref. 30.

phase shifts by those of pure Au. Our results
suggest that the scattering rate in Cu(Au) is rough-
ly an order of magnitude larger than in Cu(Ga)
and Cu(Ge) (Table VIII).

The construction of accurate effective impurity
potentials was not the focus of the present work.
The spin-orbit interaction is strongest in the
spatial region of the atomic core, where the po-
tential is well described by any reasonable atomic
potential, and we therefore expect that our calcu-
lated spin-flip scattering rates should be rather
insensitive to inaccuracies in the constructed
potentials. On the other hand, Dingle-tempera-
ture anisotropies are expected to be sensitive to
the details of the effective impurity potentials.
Ideally, one would like to analyze Dingle-tempera-
ture anisotropy and spin-flip scattering data si-
multaneously in order to infer the relativistic
impurity phase shifts, thereby obtaining the great-
est possible amount of information about the im-
purity potential. This we have done for Cu(Ge),
using the Dingle-temperature data of Poulsen,
Randles, and Springford 2 and the spin-flip scat-
teringdataof Monod, 3O as well as for Cu(Au) using
the Dingle-temperature data of Poulsen ef al. '2

and the spin-flip rate estimated as described
above. Our results are given in Table IX. We
find that the Dingle-temperature and the spin-flip
scattering data can be fit simultaneously to give
reasonable values of both the impurity spin-orbit
parameters and impurity phase shifts. We find
that the quality of the fits to the Dingle-tempera-
ture anisotropy data is only very weakly, if at
all, affected by the inclusion of spin-orbit effects
in the analysis. Both the relativistic and the non-
relativistic analyses of Cu(Ge) data imply an s-
wave phase shift qo' «z(E~) which is considerably
smaller than that calculated from the constructed
impurity potential for this alloy (Table VI). It
may be that the experimental Dingle temperature
anisotropy includes contributions from lattice-
strain effects. The impurity phase shifts for
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TABLE IX. Phase-shift analyses of Dingle-temperature and spin-flip scattering data for Cu(Ge)
and Cu(Au).

Orbit

Experiment

Cu(Ge)

Nonrel, ativistic
fit"

Relativistic
fit Experiment

Dingle temperatures {K/at. %)

Cu(Au)

Nonrelativistic Relativistic
fit' fit

~100
Tii0

~ioO

Tfoo

118(18)
114(11)
109(8)
119(12)
161(18)
119(7)
100(13)

184
110
116
116
137
130
116

185
104
112
110
134
126
111

7. 9(9)

13.2(10)
13.9(14)
12.4(9)
10.2(8)
12.9(14)

7. 6
13,8
13.3
13.5
11.6
12.3
13.4

7.6
13.1
13.7
13.5
ll. 6
11.7
13.6

'g$ j(Ep)

6. 9(7)'

Spin. -flip scattering rate (10 sec jat. Vo)

Impurity phase shifts (rad)

50

ll2
1—3

22
2—52

0, 232
l. 106
1,106
0, 126
0. 126

2. 1

0. 135
1.176
l. 090
0. 082
0. 069

I riedel sum [Eq. (10)]

2. 0

0, 403
0. 008
0. 008

—0.228
—0.228

0.493
0. 065

—0. 095
—0. 149
—0.219

'Experimental values quoted from Ref. 32; see footnote of Table III for explanation of orbital nota-
tion.

~Reference 4.
'Reference 30.

Cu(Au) are close to the phase shifts for pure gold
that correspond to the same value of the Fermi
energy parameter. The relativistic impurity
phase shifts for Cu(Au) are tentative because they
are based on our estimate of 1/T, ; there being,
to our knowledge, no experimental measurements
of 1/T, for this alloy.

U. CONCLUSIONS

It has been shown that relativistic effects can
be easily incorporated into a phase shift analysis
of Fermi-surface anisotropies and impurity scat-
tering in noble metals and their dilute all. oys. In
these metals, in contrast to the divalent hexagonal
metals and many transition metals, the spin-orbit
interaction does not produce qualitative changes
in the shape of the Fermi-surface or the Dingle-
temperature anisotropy. We have shown that the
effect of the spin-orbit interaction upon these
properties is small, and that it is close to the
limit of what is experimentally observable at the
present time. Spin-Qip scattering rates, on the
other hand, depend strongly upon the magnitude of
the spin-orbit interaction and can be used, to-
gether with Dingle-temperature anisotropy data,
to determine the relativistic phase shifts for an

impurity in a nonrelativistie host. The possibility
of wider application of such analyses depends up-
on experimental measurements being made of 1/T,
for dilute copper alloys such as Cu(Au).

Fxperimental observations of impurity scat-
tering may be inQuenced by lattice distortion in
the vicinity of the impurity site. The effects of
departures from a uniform lattice are neglected
in the expressions derived above on the basis of
an ideal muffin-tin lattice. Lattice distortion
ean contribute both to the primary scattering, by
altering the effective potential on the impurity site,
and to the backscattering, by locally altering the
host structure factor. Consequently, lattice dis-
tortion ean contribute to the scattering parameters
determined by fitting Dingle-temperature data. It
seems likely that the failure of the Friedel phase
shifts, determined from analysis of Dingle-tem-
perature data, to satisfy the Friedel sum rule in
certain alloys can be attributed to the effects of
lattice distortion. Lattice distortion is expected
to contribute less strongly to spin-orbit induced
spin relaxation, since in this case the primary
scattering is caused by the strong potential gradient
at the impurity nucleus, which is only weakly in-
Quenced by the local lattice structure. This argu-
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ment suggests that the calculated impurity phase
shifts from which spin-flip relaxation times are
derived, can be taken to satisfy the Friedel sum
rule, as we have done. A quantitative study of
electron scattering in a distorted lattice is needed
to clarify this point.

In discussing spin-flip scattering, we have
judiciously avoided consideration of spin-orbit ef-
fects in the host metal. Host spin-orbit effects
cause difficulty in interpreting experimental data
to yield a measurement of 1/T, , by introducing
additional mechanisms which contribute to the ex-
perimental linewidth. In addition, the inclusion
of host spin-orbit interactions involves the inter-
esting theoretical problem of how to determine the
effective spin-up (t) and spin-down (0) states in a
weak magnetic field. From both the experimental
and the theoretical points of view, a general
treatment of spin-flip scattering due to spin-orbit
interaction requires further investigation.
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are usually omitted from the nonrelativistic ex-
pression. The notation used here differs from
the notation of Refs. 2 and 4. For l ~ 2, the non-
relativistic kernel of the T matrix (Al) is diagonal
and is related to the scattering parameter S» in-
troduced in Ref. 2 according to

S,r =sin'rP((, g"„—)
' . (A2)

The partial-scattering rate t,'" introduced in Ref.
2 is related to the diagonal nonrelativistic partial-
wave factor (6) of the present notation by

f.'r =- (1/sine rg) Gr (k, E~) . (A3)

APPENDIX 8: CALCULATION OF PHASE SHIFTS qI~'. (E)
FROM SOLUTIONS OF THE RADIAL DIRAC EQUATION

Loucks27 has shown how the radial Dirac equation
can be written as a pair of coupled first-order dif-
ferential equations for the upper [g,&(r)] and lower

[ f»(r)] wave function components. For a given
electronic energy E (total relativistic energy minus
rest energy) the amplitudes of these components
at the muffin-tin radius s can be determined by
numerical integration. The quantity L,~(E) = cf»(s)/
g»(s) (where c is the velocity of light) is analogous
to the logarithmic derivative of the solution to the
radial Schrodinger equation in a nonrelativistic
treatment. L«(E) is related to the phase shifts
r), &(E) according to

APPENDIX A: SUMMARY OF RESULTS CONCERNING
NONRELATIVISTIC IMPURITY SCATTERING

The nonrelativistic expression for the T matrix
is most conveniently written as a sum of partial-
wave single-point-group components:

T-', l(E)=- Q fir, (k'~ E)(& —&')ri fir. (k~ )6e e.
k

(A1)
Since the nonrelativistic T matrix is diagonal in
the electron-spin polarization, the indices 9, 9'

and by

( )
L),(E)j,(zs)+ Kj „,(zs)
L»(E) n, (~s)+ Kj „,(vs)

(B1)

L,~(E)j,(vs) —Kj 1 1(~s)-tan qry&E) for j=l — —,'.
L,e(E)n, (~s) —An, , (xs)

(B2)
Here v is the scalar wave vector Kw = [2mE+ (E/
c) ] ~, K= E/Rv, and j, and n, are spherical Bes-
sel and Neumann functions, respectively.
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