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Electromagnetic microwaves in metal films with electron-phonon interaction and a dc magnetic
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A quantum-mechanical treatment of electromagnetic microwaves is performed for a metal film. The directions

of the exterior ac and dc fields are taken to be arbitrary and boundary conditions for the electrons are
assumed to be specular. The relation between the current and the electromagnetic field becomes nonlocal both
in ordinary and Fourier space. An expression for the electron self-energy is introduced, which includes

electron-phonon interaction and an effective relaxation time. The theory is applied to cyclotron phase
resonance in potassium. It is suggested that the experimental peak structure in the transmission spectrum can

perhaps be obtained by assuming a finite Debye temperature and specular reflections of the electrons at the

boundary surfaces. A sharp peak entirely caused by the finite electron-phonon interaction is also discussed.

I. INTRODUCTION

Most of the theoretical papers written about
electromagnetic waves in metals with a dc mag-
netic field applied parallel to the metal surface
(cyclotron resonance) or perpendicular to the sur-
face (cyclotron phase resonance) have assumed a
local relation between the Fourier transforms of
the current and the electromagnetic field inside
the metal (e. g. , Antoniewitz'). However, if the
metal has the geometry of a thin film with specu-
larly reflecting boundary surfaces, Carolan and
van Gelder and van Gelder' have proposed that
a nonlocal term obtained from linear quantum
transport theory yields some contribution to the
surface resistance. In this paper we will develop
a somewhat more general theory including a finite
self-energy and applicable to both cyclotron reso-
nance and cyclotron phase resonance (CPR).

Fine structures in the dispersion relation, the
transmission spectrum, and the surface impedance
can be interpreted in different ways. One possi-
bility is to introduce the semiphenomenological
Fermi-liquid parameters (e. g. , Platzman and
Jacobs ) and another is to assume finite electron-
electron interaction (e. g. , Rice') or electron-
phonon interaction (e. g. , Prange and Kadanoff6).
Anisotropies in the Fermi surface (e. g. , Fred-
kin and Freedman ) also may have effects on the
electromagnetic waves. In this paper we want
to show that some elements of structure in the
transmission spectrum are caused by the elec-
tron-phonon interaction. Others are related to
the model including specular reflection of the elec-
trons. We also want to compare with the CPR
experiment by Phillips eP al. They have found a
sharp peak and some notches around it in the
CPR transmission of potassium. By introducing
Fermi-liquid parameters and neglecting the in-
fluence of the slab boundaries, they have suc-

ceeded in obtaining a rather good fit with the ex-
periments. Baraff has used a more sophisticated
variational theory including diffuse boundaries
and a couple of Fermi-liquid parameters. By the
aid of a set of fitting parameters, he also has ob-
tained a reasonable agreement with the CPR ex-
periment.

Our aim is to obtain proper structures without
introducing any model parameters, apart from the
Debye temperature and the effective relaxation
time. However, experimentally there are two un-
known parameters, namely the amplitude and the
phase of the added bias signal which is incident on
the detector (bolometer) by a separate path and
which also includes the unavoidable leakage signal
around the metal. The bias signal is assumed to
be constant, when the magnetic field only is chang-
ing 10'fo around a mean value. Baraff does not
take any account of the bias signal. Further, the
amplitude and zero level of the total transmitted
microwave power (transmission spectrum) are
two other experimentally unknown quantities.

In Sec. II we derive a quantum-mechanical
formalism for a metal film wi. th specular bound-
ary conditions. The exterior electromagnetic
and dc magnetic fields are directed arbitrary
relative to the film, in order to show that the
same formalism can be used in the cyclotron-
resonance and CPR cases. The Fermi surface
is assumed to be spherical and the theory can
therefore be applied to potassium. The relation
in the Fourier space between the current and the
electric field becomes nonlocal. The self-energy
is given its special form in Sec. III, where we
also specialize to CPR waves. The expression
for the electron-phonon interaction is constructed
from the self-energy obtained by Scher and Hol-
stein' and contains only the Debye temperature
and the effective relaxation time as parameters.

In Sec. IV the transmission coefficient (no bias
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signal) is calculated by iterating the nonlocal
equation a couple of times until an associated
sum rule is sufficiently satisfied. The numeri-
cal calculations are performed without any ap-
proximations apart from the fact that the number
of iterations is finite. Different film thicknesses
are tested, but the computer limits the thickness
to about 1 p.m, which is much smaller than the
experimental one (32. 5 pm}. Different efforts to
perform approximate calculations with the experi-
mental thickness have failed because of the slow
decrease of the terms in the final Fourier sums.
However, one fact is evident; namely, that the
peak structure becomes more prominent for
thicker films. A proper bias signal is added to
the direct transmitted signal (transmission co-
efficient) and the total transmitted microwave
power is plotted. The magnitude of the width of
a very sharp transmission peak caused by the
electron-phonon interaction is also estimated.

Finally, in Sec. V we discuss the structures
obtained in Sec. IV for the different film thick-
nesses both with and without electron-phonon in-
teraction. Further, we suggest that the sharp
peak in the CPR experiment by Phillips et al.
can perhaps be calculated by the aid of this micro-
scopic theory and a large and very rapid com-
puter.

II. CURRENT EXPRESSION WITH ARBITRARY
DIRECTIONS OF EXTERIOR FIELDS

where a~(t } are annihilation operators and 4) ~(r)
are eigenfunctions to the Hamiltonian [-ih(s/sr)
+ eA '(x)] /2m with the eigenvalues

e~ =h(d, (n+-,')+(h'/2m) [k', pk,'
—(k, cosn —k, sinn)'],

and the quantum numbers

S=[n, k„k,]
(n=0, 1, 2, . . . ; m(d, =eB; e&0) .

(2. 5)

(2. 6)

The boundary conditions in the x and y direc-
tions are supposed to be periodic and in the z
direction specular. The explicit expressions for
the normalized eigenfunctions are

(k ~(r) = (LL,L,)
' ('p„(x/L+ Lk~cosn

—Lk, sinn) e"3"sink, z, (2. 7)

wit. h

(k„k,) = (2v/L„v/L, ) x integer,

r. =(h/eB)"',

and

irp„(x) =(Wm2"n! ) 't'e ' i2H„(x)

(H„are Hermite polynomials).

(2. 8)

(2. 9)

(2. 10)

Now we superpose a weak electromagnetic field
with the vector potential A (r, t) and the cor-
responding electric field

The geometry of the problem is the following:
The metal has the boundaries x=0, x=L„, y=0,
y = L„z= 0, z = L„where L„,L, » L,. The x axis
is chosen perpendicular to the dc magnetic field

acE(r, t) = ——A "(r, t). (2. 11)

The linear response of j, to A has a diamagnetic
term, where 4 is unperturbed and A is perturbed
in Eq. (2. 3):

B"=B(0,sinn, coen). (2. 1)

The corresponding vector potential is

A "(x)= Bx(0, coen, —sinn). (2. 2)

The general expression we will use for the current
density of "spin up" electrons is

j(,&)=(i (, t))=
J

&' '(~'( ', &)

8x 5(r —r'), —ih -,+ eA(r ', t ) e( ', t)),
(2. 3)

where A(r, t) is the total time-dependent vector
potential and the superscript op stands for "oper-
ator. " (~ ~ ~ ) means an average in the grand canon-
ical ensemble and the curly brackets indicate
an anticommutator. The field operators 4'(r, t)
are expanded in the Landau representation of the
single-particle states

j,"(r, t) = —P ~4'~(r}~ G e(0)eA (r, t),
s (2. 12)

where for negative values of t, Ge(t) is identical
to

G, (t) = —i(Ta~(t) a~e(0)), (2. 13)

and T is a time-ordering operator. The total
Hamiltonian for the spin up electrons becomes
augmented by

H, (t)= — d xj" r, t)A r, t). (2. 14)

E b* t )J& 'b ("')
S(S2

A first-order perturbation theory according to
Keldysh" yields the paramagnetic term of the cur-
rent

)fl(r, t) = g (f),(r) a,(t), (2. 4)
4 ~ao

dt' A (r', t')
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where

x[Gz (t —t')Gz (t' —t)

+ Gz (t —t ')G~z (t' —t)], (2. 15)

5 (q, t ) = dz cosqz [ 2j,"(z, t )
0

+ 2j ', '(z, t)]. (2. 22)

bz z (r) = — d r' 4 z (r') 5(r - r'), —ih
1 2 2W Br

Further we assume that the time dependence of the
electromagnetic field va.ries as e '"'.
current amplitude becomes g(q):

+ eP, (r') 4 z, (r'). (2. 16) e
os(dPlof' S S 1 2 1 2

qt&g -&g qe~g +&Z

12 1 2 1 2

The Green's functions have the Fourier trans-
forms x [8 (k, —k, ) —8 (k,, +k, )]+fq- —qj,

GO

GA(E), , d eizdl(F GA(t)

=[E—ez —Z z(E —io')]

G"{E)= [E—& —Z, (E+ io')] ',
(2. 17)

(2. 23)

V, , = i d(GIFV, ,, V, , (G(d IF F G, (GF

+ Gz (E+ k(d/) G" (zE)] 5+„~„G'z (E)

G'z(E) = f(E) [G-z(E) —Gz(E)1. (2. 18)

Zs is the self-energy caused by different kinds of
interactions (for example electron-phonon inter-
action) and f(E) is the Fermi distribution function

dxdy b
0 ~0 x y

—eh
5g p slDkg 8 slnkg z Vs~QI 3/1' y2 1 2

(2. 20)
where 0 is the volume. For large magnetic
fields we have

—2~ &a1 &n2- &n, &n2
I,„/I.

V&, &,
= dS (I.k, + Scosn) 4/F„dp„

0
tf2

—Ssinn p„y„

[qF„, —= qF„.(S+Lk, cosn —Ik, sinn); i=1, 2].
(2. 21)

A z-dependent term —,'iI.(k, cotk, z —k, cotk, z)
1 2 2x p„,p„has been omitted in the 8 component of

Vs s for the following reason". If n is nonzero,
this term yields a much smaller contribution than
—Ssinn//F„q(„and if n is zero (the CPR case) the
z component of Vs, s is uninteresting because j
and E are then transverse.

Because of the special z dependence of b~, z,(z)
we introduce the cosine transform for the total
current inclusive spin [q = (7//I. ,) x integer]

f(E) = [exp(E —g)/kz T+ 1] (2. 19)

where &~ T is Boltzmann's constant times the tem-
perature, and p, is the chemical potential.

The spatial variation of ], E, and A is limited
to the z direction because I.„, I.,» I., There-
fore bz, z (r) can be replaced by

„I
FFJ( ddd„(). (4. 24(

0

CPR WAVES WITH ELECTRON-PHONDN INTERACTION

The self-energy is an analytic function and can
therefore be written in. the form

l(d Fz((d)
2'll' Z —M

(3. 1)

with an infinitesimal imagina. ry part of Z (Z
= E+ io'):

z, (E~ to') =M, (E)+-,'ir, (E),
where

(3. 2)

{3.3)

is the real part of the self-energy. According to
Scher and Holstein'0 I'z(E) varies much faster with
the energy tha, n with the quantum numbers and
takes the approximate form

&(E) =c[
I
wI'e(1 —

I wI)+e(I wI —1)], (3.4)

where W= (p —E)/ksedF, 8 is the ordinary step
function, and 9~ is the Debye temperature. C is
the product of different constants and is given the
value 2k/T, where r is the effective relaxation
time for the electrons with energies fulfilling
I P, Ei& kaOn. Fro-m E(l. (3.3) we get the cor-
responding expression

C & —W' &+W
M(E)= —W+ W ln z +ln

(3. 5)

The relaxation time for energies very close to
p, becomes very large. These electrons yield an
enlarged transmission coefficient especially when
{d, is close to {d. If {dT» j., the self-energy be-
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comes very small and G~ can be approximated by

G', (E)= 2vif (E) 5(E —k, ). (3.6)

Then Fs, s can be rewritten [Eq. (2. 24}]

F =2 ' dEf(Z) (IFV , V

0 & Ik, sinn —Lk, cos n & L„jL. (3.9)

However, the inequalities L„»L and Eq. (3. 9)
make it possible to extend the integration from
—~ to +~. Using four properties of p„, namely

proximate limit to the quantum numbers k, and k, :

&(E —k s, ) —5(E —e ss)
X I ~t s —

ass+ k(d + k EI (E)

pr„jL

where we used the fact that

' ~ff CO

q „(x)= dy e'"q.(y),
2v

xv 2'„(x)=v n q„,( x)+v'n+1 q„.,(x),

&2 —q„(x) = Wn q'„, (x}—v'n+1 rp„,,(x),

(3. 10)

(3. 11)

(3. 12}

@~(( p, . (3. 8)

Because of the rapid decrease of the function

p„ in Eq. (2. 21) for large arguments, the inte-
gration over 5 from 0 to L„/L will yield an ap-

dy e '*'q. (X}q'. (X) = i"' ». («W+ W )

(3. 13)
(n„ns» 1; Z„are Bessel functions), we can re-
write V~ ~ in the following way:Sy S2

Vs s =
l (k, sin a+ —,'k, sin2n)LJ„' +-,'Hn, cosu(Z„„+J„~)

—sino[(k, sinn —k& coso)L&„y ,'v n, (g—„,+ g„,)]
(3.14)

where the argument of the Bessel functions is
L(k, —k, ) sinn and

gp 1

In order to obtain the CPR case we put n equal
to zero. The problem becomes two-dimensional
because the z components of j and E are zero. The
vector V~, ~ is reduced to

dE [h'&u + , i I'(E}]-
8u + —,

' i I'(E}+ ku, + (k /2 m) {k, —k, )
'

(3.19)
and the final expression for the CPR current be-
comes

gg gp

(3. 16) x [Sk(k,, —k,,) —8,(k, + k, )], (3.20)

and the product Vs, s Vs s in Eq. (3.7) can be
diagonali zed: Q' =(~os'/«') p/L. . (3.21)

Q
' has the dimension of length, and the magni-

tudes of k, and k, are limited by

(3. 17)
Therefore we ean give the CPR ease a one-di-
mensional form by introducing the amplitudes of
the circularly polarized current and electric field

k~ = v'2m' /k .

IV. TRANSMISSION COEFFICIENT

(3.22)

(3.18)

At zero temperature and by the aid of Eq. (3.9),
we can perform the summations over n„na, k, ,
and k~:

A(dL p

2t+kkkg L L 2 E
g sss

X 1 P.
ky Pry

Maxwell's equations for the current and the
field amplitudes yield

(d, + — E,(z) = —i(up Oj, (z),
dg c (4. 1)

where the subscript + is omitted in the follow-
ing. By the aid of partial integrations we obtain

[q'- ((u/c)'] 8 (q) —iu) po g (q) = cosqL, E'{L,) —E'(0).
(4. 2)
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E(0) —i (c/ ~) E ' (0) = 2,

E(L,)+i(c/&u) E'(L, ) =0,

(4 3)

(4. 4)

With an incoming wave of unit amplitude at a=0
and only outgoing waves at z= L„ the boundary
conditions are

50 „ip-5

~ 25

LL
LL
UJ 0O

IMAG. PAR7

where

1
E(z) = g cosqz $(q) .

Lz
(4. 5)

Z:
O
v) p5

V)

K
I

IIecause of the right-hand side of Eq. (4. 2), it is
necessary to find one solution with even values of
the integer qL, /v and one with odd values. The
transmission coefficient f is defined as

10

(~c-~) i'~ (/)

FIG. 1. Transmission coefficient vs the magnetic
field for a potassium film with L,=0.325 pm and OD

=91.1 K.
f = E(L,),

and can be expressed as

f = (&.—P.)/(1 —&.) (I —&,),
where

+o(e)
eL z/ If =odd( even)

so(e) ('q) y

and

2~ 22(d= Q ~ H(, &&i 2, ()+(()I2 s-o(e)(k)+ cL, '

P 2
(d 2

~ ~ (q)

(4. 6)

(4. 7)

(4. 8)

(4. 9)

I —() & te)=— (4. 14)

ficient, qL, /)) has to be discrete, i. e. , L, cannot

be taken infinite. Two properties of Eq. (4. 9) c»
easily be derived. At first the diagonal term k=q
can be subtracted from both sides. In fact, cal-
culations have shown that even the local approxi-
mation (zeroth order iteration) of Eq. (4. 9) be-
comes essentially closer to the correct value if
the diagonal term is omitted. The second prop-
erty is the sum rule obtained by summing the Eq.
(4. 9) with respect to the wave number q

(k+q)L, /2)r =integers Ik I
' 2k' —Iq I.

In the limits &ur»1 and k~8«p, Eq. (3.19) for
H» can be calculated to

z1 z2

1

j —a' 3ILI, a' ~, ~ 0 —c~

(4. 10)
& e2~(0/ 3)

where

a ~ = —(()r
I
I + (d, /(() + (if/2m(()) (k g

—kg )) . (4. 11)
1

The term proportional to the Debye temperature is
the electron-phonon contribution and becomes im-
portant when

(4. 12)

Then Eq. (4. 10) can be approximated by

1 pk~oDI

g
H, ~ =-, (d~ . , —,sgn(a)+

z1 z2 g —a 3JLI, a vS

SP-(

F P-1

Equation (4. 9) is of nonlocal type and must by
the aid of a couple of iterations be solved self-
consistently. To get a finite transmission coef-

The metal is assumed to be very pure, so (d~

has been given the large value 300. ' The Debye
temperature O™Dis 91.1 K according to Kittel. "
We are interested in finding the structure of the
transmission spectrum in the neighborhood of

&, =(d. Therefore contributions of importance
appear only in the minus polarized wave E, be-
cause of the magnetic field dependence of Eq.
(4. 11). Numerical calculations have been per-
formed with both finite and zero Debye tempera-
ture, in order to show what influence the electron-
phonon interaction might have. A general effect
when 8~ is nonzero is that the direct transmitted
power I f I exhibits a very sharp peak at w, = cu.

For L, less than 0. 01 p.m, we do not find any
structure of importance apart from this electron-
phonon peak.

In the Figs. 1 and 2, the transmission coefficient
for L, =0. 325 and 1.00 p.m, respectively, are
plotted when OD is nonzero. The necessary num-

ber of iterations is decreasing with l(v, —~)/(d ~

and varies between five and two. By varying the

superposed bias signal E„ it has been possible
to get two maxima of the total transmitted power

~ f + E~ ( (Figs. 3 and 4). One peak can mainly
be ascribed to the assumption of specular bound-

ary conditions, which yield multiple reflections
of the electromagnetic waves. The other much
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FIG. 2. Transmission coefficient vs the magnetic
field for a potassium film with L,=1.00 pm and 8D
= 91.1 K. The electron-phonon. peak height is indicated.

sharper peak is entirely connected with the elec-
tron-phonon interaction. The relative width of the
electron-phonon peak can be obtained from Eqs.
(4. 11) and (4. 12) as

S((o, —ro) keen '~~ 1

The numerical value is not larger than 10 % in
this case with the very clean potassium film.
Therefore, according to Eg. (4. 15) the peak might
be observable if the metal is so dirty that +7
&0. 1. This is a very rough estimation because
the important limitation &v» 1 of the derived ex-
pressions in Secs. III and IV has now been ig-
nored.

The difference between the transmission coef-
for nonzero and zero Debye temperature is plotted
in the Figs. 5 and 6 for I„=O.325 and 1.00 p, m,
respectively. As can be seen, the relative in-
fluence of the electron-phonon interaction becomes
more important at ~, = v when the film thickness
increases.

(~,- oJ)i~ ('/o)

FIG. 4. Transmitted power vs the magnetic field for
I «=1.00 pm and eD= 91.1 K. The added bias signal is
5. 05 & 10 ~ e~'83' times the incoming signal.

V. CONCLUSIONS

The direct transmitted signal across a. metal
film (the transmission coefficient) varies linearly
with the magnetic field, if the film thickness is
less than 0. 01 pm and the electron-phonon inter-
action is zero. The transmission coefficient be-
gins to vary periodically with the magnetic field
when the magnitude of I., becomes larger than
about 0. 1 p, m. The largest amplitude appears in
the vicinity of ~, =(d. At finite electron-phonon
interaction the transmission coefficient is changed.
The deviation is especially important when ~, is
very close to e, where a sharp peak appears. The
width of this peak decreases with increasing +7.
A rough estimation shows that ~w must not be
greater than about 0. 1, if the peak shall be ob-
servable. Then, however, the film thickness must
be small in order to transmit any electromagnetic
power. In the vicinity of the peak the influence of
the electron-phonon interaction is not negligible

HEIGHT =11 "10 5
0

C)
UJ

x
CA

X
ft'

0
uJ
O

-2
X

~-E
fk.'

-10

(w - ~)/m ('/, )

10 -10

(~ —~) /~ ('/o)

10

FIG. 3. Transmitted power vs the magnetic field for
I. =0 325 pm and 8 =91.1 K. The added bias signal xs

1.5x10 ~ e '26~ times the incoming signal.

FIG. 5. Difference between the transmission coeffi-
cients in the eases OD=91. 1 K and 8~=0.0 K. I.
=0.325 pm.
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1
"1Q

0,5
lL

O

LL 0
llJ
O

REAL PAR T

IHAG. PAR T

-1Q

REAL HEIGHT =-11~10

)

(~c-w)/u ('i. )

FIG. 6. Difference between the transmission coeffi-
cients in the cases 8&=91.1 K and O~D

——0. 0 K. L,

=1.00 pm.

even for large ~v.
As the computer time increases proportional to

the second power of the film thickness, there must
be a limiting point for the calculations. Unfor-
tunately, this occurred to us when L„was of the
magnitude 1 pm. However, as can be seen in

Fig. 2, rather rapid variations are present in the
transmission coefficient near ~, = ~ even for so
thin films. By adding a signal, which is the sum
of an unknown leakage signal around the metal and
the vaxiable exterior bias signal, it therefore also
becomes possible to obtain peak structure in the
total transmitted microwave power (Fig. 4).

By comparing the result for the diffexent film
thicknesses, we suggest that by the aid of a very
rapid computer it would be possible to get as sharp
transmission peaks as has been obtained experi-
mentally by Philips et al. with a potassium film
of the thickness 32. 5 p, m. The only statement we
can make regarding the positions of these peaks
are that they must be close to e, =~.
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