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y-ray Compton profiles of LiF with the scattering vector along the (100), (110),and (111)axes are
reported. Both the absolute profiles and their anisotropy are derived from a tight-binding model and compared
with experiments. The overall agreement between theory and experiment is found to be satisfactory for all

three directions. Recent calculations of Euwema et al. are compared with the present work and found to
predict incorrect anisotropies, particularly at small momentum transfers. It is also shown that momentum

distributions can be orders of magnitude more sensitive to anisotropy in the electron distributions than x-ray
structure factors, at least in materials where overlap of the wave functions is small.

I. INTRODUCTION

In previous papers we have reported Compton
profiles and anisotropic momentum distributions
in covalent bonded solids. '~ In these crystals rel-
atively large anisotropies exist. This naturally
raises the question as to the degree of anisotropy
which exists in highly ionic crystals. Although
Compton profiles have been reported on a number
of ionic crystals only Weiss' has previously looked
for anisotropy. His conclusion for LiF was that to
within 2% there was no significant anisotropy. Ow-
ing to the greater precision attainable using y rays
we decided to remeasure LiF and try to place
smaller error limits on the measurements.

There are also other reasons for studying LiF.
The ground state may simply be viewed as a super-
position of closed-shell ions which overlap each
other only very weakly. For theory LiF is there-
fore one of the simplest systems available since
an extreme tight-binding (or Heitler-London) model
is likely to yield a highly accurate description of
its electronic structure. Besides that the number
of electrons per ion is small. For some time now
a series of calculations of total energy, lattice con-
stants, ' form factors, isotropic Compton pro-
files, 7~ etc. , have indeed achieved substantial
agreement with experiments with such a descrip-
tion. This indicates, furthermore, that electronic
correlation may be less important in describing
ground-state properties. We are therefore dealing
with a rather ideal case; the total wave function is
simple and accurate, and hence the anisotropic
Compton profile can be computed with high preci-
sion and with relative ease. Thus LiF should offer
a beautiful opportunity for studying the various as-
sumptions which are incorporated in the Compton-
scattering technique, such as the impulse approxi-

mation, relativistic, and multiple-scattering cor-
rections. Still another reason for the present study
is a recent Hartree-Fock calculation of the direc-
tional Compton profiles by Euwema et al. " A
brief report by the present authors may be found
in Ref. 11.

Section II describes the experiment and some
basic assumptions made in the Compton-scattering
technique. The experimental results are given in
Sec. III. A tight-binding model is discussed in
Sec. IV and the derivation of the directional Comp-
ton profile for this particular model is outlined.
Using a basis consisting of Slater-type orbitals it
is found that the calculations can be performed
analytically. Numerical results are presented in
Sec. V. A discussion is given in Sec. VI and a
summary in Sec. VII. Appendices A and B con-
tain mathematical details.

II. EXPERIMENT

A. Comp ton-scat tering theory

The theory of the Compton-scattering cross sec-
tion and the validity of the impulse approximation
have been previously described" "so that we will
only list the important relations. From Ref. 14
we have

do
dQ d(d&

rome(u~ J(q)
2&v~[(u&~~+ &uz

~—2', era cosa)~ ~2+ (q/mc)(&u~ —&uz)]
'

where

&uz (1 +q/m c) (u~ (1 —q/mc)X=
&u2(1 —q/mc) u~(1 +q/mc)

+
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Here we denote the energy and momentum of the
incident and scattered photon by u&„k,and ~3, k,
respectively, and @=1. Our total profiles (includ-
ing core) are normalized such that

r
15

Z(q) dq = 6 electrons

for LiF. (In Sec. IV we shall use the notation p,
for q. )

8. Experimental details

The basic experiment consists of scattering 159-
keV y rays from the sample, detecting the radia-
tion scattered at 173' with a Ge(Li) detector, and
reeoding the signal on a multichannel analyzer. A

description of the apparatus and data processing
is contained in Refs. 1, 15, and 16.

To measure the absolute profile we used 2.54-
cm square, single-crystal plates 0.178- and 0.307-
cm thick. The (100) crystallographic axis was nor-
mal to the plane of the plates. Approximately
50000 and 100000 counts were collected in the peak
for the two samples, respectively. To better com-
pare our experimental results with theoretical cal-
culations we report our absolute profile data both
with and without correction for the finite resolution
of our spectrometer.

0.02—

I 0

-0.02—

-0.04—

-0.08—

FIG. 2. Difference between two independent (111)
measurements processed in the same manner as the
results xn F&g. 3-5.

The anisotropy measurements were made on a
1.2V-em diam single-crystal cylinder, 2. 54 cm in
length with the (110) axis parallel to the cylinder
axis. Measurements were made with the scatter-
ing vector parallel to the (100), (110), and (ill)
axes and in each case approximately 180000 counts
were collected in the peak. For each direction two
measurements were made, the data processed sep-
arately to ensure they were the same (to within our

experimental error), and then averaged. The
anisotropy data were processed in the manner de-
scribed in Ref. 16. The profiles were first sub-
tracted, averaged over +q, and then smoothed with
a digital filter. The anisotropy data were not cor-
rected for the resolution of the spectrometer since
we feel that is better to convolve the theory with
our resolution function than try to remove the ef-
fect of resolution from the data. Our resolution
function ls

It (q)
—(1/& ~P& ) e-(1/3)tcemo)/e) (7)

o.oz—

W( PILY

-0.02—

-0.04—
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VV')' )P'

I~. oF vfo)

where o =0.202 a.u.
In Fig. 1 we show the difference between Jloo and

col l before smoothing. The anisotropy is readily
apparent and is symmetric for positive and nega-
tive values of q. The difference is essentially zero
for large values of tq I which also indicates that no

spurious effects are present. After averaging and
smoothing the data we estimate the mean-square
deviation of the difference data to be + 0.006 (see
Fig. 2).

—0.1-5 -4 -5 -2 -1 0 1 2 3 4 5

q (O.u. )

FIG. 1. Point-by-point subtraction of (100) and (111)
measurements after normalization. and background sub-
traction.

III. EXPERIMENTAL RESULTS

In Table I we present the absolute profiles for
LiF for the scattering vector parallel to (100) for
our 0.178-cm thick sample with and without resolu-
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TABLE I. Experimental Compton profiles for LiF—
(100 ).

q (a. u. ) 0. 178
Thickness (cm)
p 178b p p~ 0 pb

0
0, 1
0. 2

0. 3
0. 4
0. 5

0. 6

O. 7

0. 8
0. 9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
l. 7
1.8

1.9
2. 0
2. 2

2. 5

3. 0
3.5

4. 0
5. 0
6. 0
7. 0
8. 0
9. 0

10.0
15.0
20. 0
25. 0

3.776 ~ 0. 035
3.764
3.713
3.626
3.509
3.372
3.219
3. 048
2. 857
2, 645
2. 418 +0. 024
2. 188
1.962
1.748
1.551
1.374
1.219
1.086
0. 973
0. 879
0. 800 + 0. 008
0. 667
0. 541
0. 366
0 ~ 255
0. 197
0. 119+0.003
0. 077
0. 051
0. 034
0. 022
0, 017 + 0. 002
0. 004
0. 001
0. 000

3 ~ 711 +0.035
3.699
3.652
3.570
3.459
3.372
3. 179
3.014
2, 830
2, 627
2. 412 + 0. 024
2. 194
1.980
l. 776
1.586
l. 412
1.258
1.123
l. 007
0. 908
0. 825 +0. 008
0. 692
0. 547
0. 371
0. 259
0. 198
0. 120 + 0. 002
0. 077
0. 051
0. 034
0. 022
0. 017+0.002
0. 064
0. 001
0. 000

3.876
3.861
3.805
3.710
3.587
3.443
3.281
3. 103
2. 900
2. 678
2.438
2. 196
1.958
1.734
l. 530
1.350
l. 196
1.064
0. 951
0. 858
0. 780
0. 648
0. 524
0. 351
0. 243
0. 188
0. 115
0. 075
0. 050
0. 034
0. 022
0. 017
0. 004
0. 001
0. 000

3.807
3.791
3.737
3.648
3.532
3.393
3.239
3.068
2. 875
2. 663
2. 438
2. 209
1.985
1.773
1.578
1.398
l. 240
1.101
0, 982
P. 882
0. 798
0. 663
0. 517
0. 344
0.237
0.183
0. 117
0. 076
0. 051
0. 034
0. 022
0. 017
0. 004
0. 001
P. 000

Corrected for spectrometer resolution.
No resolution correction.

tion correction and the same profiles after remov-
ing our estimate of the effects of multiple scatter-
ing. Our estimate of multiple scattering was ob-
tained by measuring a 0.307-cm sample as well as
the 0.178-cm thick one and extrapolating their dif-
ference to zero thickness. ~v As can be seen the
multiple-scattering correction is about 2. 5% at
q =0.

In Table II we list the anisotropy measured for
Jxoo Jsso too Jinni, and ufo J„,and in Figs. 3-5
these results are illustrated as solid lines. The
data in both the table and the figures have been cor-
rected for multiple scattering but the resolution
broadening of the spectrometer has not been re-
moved. The effect of multiple scattering is, to
first order, only to decrease the amplitude of the
measured anisotropy and not alter its shape since
any photon scattered more than once is expected

TABLE II. Anisotropy of LiF Compton profiles with
no resolution correction.

q (a. u. )

0
0. 1
0. 2

0. 3
0.4
0. 5
0. 6

0. 7

0, 8
0. 9
1.0
1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8

1.9
2. 0
2. 1
2. 2

2. 3
2. 4
2. 5
2. 6

2. 7
2. 8
2. 9
3. 0
3.1
3.2

3.3
3.4
3.5
3.6
3.7

~capo -~|io
0. 028
0. 018
0. 003

—0. 011
—0. 019
—0. 022
—0. 019
—0. 011

0. 002
0. 018
0. 030
0. 036
0. 038
0. 037
0. 030
0. 018
0. 003

—0. 011
—0. 021
—0. 028
—0. 033
—0. 035
—0. 033
—0. 026
—0. 015
—0. 003

0. 008
0. 015
0. 017
0. 014
0 ~ 010
0. 006
0. 002

—0. 003
—0. 006
—0. 007
—0. 005
—0. 002

~too -~&«

0. 002
—0. 002
—0. 012
—0. 024
—0. 032
—P. 035
—0. 029
—0. 015

0. 008
0. 036
0. 059
0. 070
0. 067
0 ~ 053
0. 031
0. 007

—0, 015
—0. 030
—0. 037
—0. 038
—0. 033
—0. 025
—P. 018
—0. 012
—0. 005

0. 002
0. 008
0. 011
0. 012
0. 009
0. 006
0. 004
0. 002
0. 000

—0. 002
—0. 003
—0. 004
—0.003

-~»o —~ii~

—0. 026
—0. 020
—0. 015
—P. 013
—0. 013
—0. 012
—0. 009
—0. 004

0. 006
0. 018
0. 029
0. 034
0. 029
p. 017
0. 001

—0. 011
—0. 018
—0. 020
—0. 016
—O. 009
—0. 000

0. 010
0. 015
0. 014
0. 010
0. 005
0. 000

—O. 004
—0. 005
—O. 005
—O. 003
—0. 002

0. 000
0. 002
0. 004
0. 003
0. 001

—0. 001

to lose its orientational information. The per-
centage of photons multiply scattered can be esti-
mated from both a simple calculation which ignores
photoelectric losses and an analysis of data taken
on samples as a function of thickness. The calcu-
lation gives an amplitude enhancement factor for
the anisotropy of 1.27 whereas the analysis of the
experimental data gives a factor of 1.28. Since
our experimental accuracy for the anisotropy is
+12'Pp of the peak-to-peak anisotropy a 1% uncer-
tainty in the multiple-scattering correction is well
within our stated error.

IV. THEORETICAL EVALUATION OF THE COMPTON
PROFILE

A. Tight-binding model

In a crystal like LiF the overlap between the
charge distributions centered at the different ions
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FIG. 5. Difference between (110) and (111)Compton.
pro irofiles after smoothing and averaging +q results (sol, id
line) Theory of Euwema et (7!)'. smeared with our reso-0

lution function is shown as a dashed line (II). The pres-
ent theory using Kunz's crystal orbitals and smeared in
the same way is shown as a dotted line (I).

g (Q.u. )

FIG. 3. Smoothed and +q averaged difference of the
data for (100) and (111)directions shown in Fig, 1.
Theory of Euwema et al. smeared with our resolution
function is shown as a dashed 1,ine (II), The present
theory using Kunz's crystal orbitals and smeared in the
same way is shown as a dotted line (I).

different lattice sites R~. Index e denotes the
quantum numbers (nlm). The first-order density
matrix is then

is small. It is therefore a good first approxima-
tion to let the total crystal wave function be the
single determinant

e(r„r„..., r„)= (1/v' X!) det[y', (r)],
h

8

where

X'. (R = X.(r —R,&

are undistorted free ion solutions centered at the

n ' = (1+S) ' =1 —S+ v ~ ~ ~LITHIUM FLUORIDE

EXPERIMENT
THEORY I -

BROADEN'Ep
. ".---- THEORY IZ

0.08—

0.06—

0.04—

is usually made. To second order in 8 we then
have the properly normalized density matrix

g h

p=2+ lg, .&&g, 1-2+Rig, »:,",(!,Pl0.02

I 0
Q

-0.02 +2 g~Q 5 '~ g p

where-0.04—

-0.06— s '" =(g, nlk, P) —0
I& OF J(0)

and Ig, n) corresponds to the orbital y, (r —R,).
Throughout this work we have used real orbitals.

In a refined version of the tight-binding model
the free ion solutions are allowed to relax in ac-
cordance with the crystal environment. By means
of the Adams-Gilbert"' local orbital scheme and
an expansion like Eq. (12), Kunz~o has computed
such self-consistent orbitals for LiF. We shall in-
vestigate both types of orbitals.

-0.08—

-0.1
I II I I

2

q (a.u. )

FIG. 4. Difference between (100) and (110) Compton
u.ts, solidprofiles after smoothing and averaging +q resu ts

line). The theory of Euwema et al. smeared with our
resolution functions is shown as a das, .hed lin, e (II). The
present theory using Kunz's crystal orbitals and smeared
in. the same way is shown as a dotted line (I).

Here the g and h summations refer to all occupied
states a and P at sites H and R„,respectively.
The factor of 2 comes from spin and 3 ' is the in-
verse of the overlap matrix. Since the off-diagonal
elements in 4 are small, the expansion



B. Momentum density and Compton profile

The momentum density of the system is in gen-
er'al defined as

n(p) =&p
I pip&, (14)

where 1p& stands for a plane-wave state normalized

&p Ip ) = 5(p —p ). The momentum density of an
ion, a F ion for example, is then from Eqs. (12)
and (14)

~F-(p) = 2QQ [6.s+ +').",&]&p I o& &Alp&

0

—2+g&plo»';, "& &Plp&e """, (15)

0

J'. &» ~f-je. d&pl &&In&l',

z', -&&.& =-2J Jd&.d&„pp&&~

where

&ply& =
2, 3im dre"'x'. (r)

defines the momentum transform of an orbital at
the central site 0. There is no restriction in chos-
ing the ion as the central one as in Eq. (15).

Using Eq. (15), it is then convenient to write the
Compton profile [Eq. (4)] (with p, -=q)

(p, ) =& -(p-, ).~', (p,) +J', -(p-,),

Rh A, J. Ag II
(25)

where R„,is the component along the z axis and

R„i
the component in the xy plane. The new co-

ordinate system is then obtained by the rotation
around the z axis which brings the x axis along 8„„
(see Fig. 6). In Appendix B it is shown that the
sum

++&pl &&;",&I lp&

is invariant under such a transformation. Intro-
ducing cylindrical coordinates we may now write
(see Fig. 6)

for the s orbitals, and.

&p I
2&& =f~V) p (24)

for the 2p orbitals [for Eqs. (23) and (24) see Ap-

pendix A, Eqs. (A4) and (A6)].
To begin with we may take the 2p orbitals at all

the lattice sites to be oriented in the same way in
configuration space, namely, along the three axes
of a Cartesian coordinate system (I) with its z axis
along the scattering vector 8 (see Fig. 6). Equa-
tion (24) indicates that the 2p orbitals are oriented
in the same way in momentum space. In order to
evaluate the integral in Eq. (19) over the xy plane
it is convenient, however, to introduce another co-
ordinate system (II) which is different for each pair
of ions. For this purpose let the lattice vector R„
be written

x s0yh
&p lp) e &p R&& (19)

&.-&&.&=& f e.d&. g&~*&'.;.&iI.&&»~li&. &»&

Similar expressions hold for the Li' ion, so that
the total profile is

~(p, ) =&...(p, ) +&,-(p, ) . (21)

To display the angular dependence of the trans-
forms (p ) a& explicitly we use the notations

&p I~& = x, (p) (23

In the elementary version of the tight-binding mod-
el J clearly represents a superposition of free
ions, whereas J and J~ r'epresent the solid-state
effects. Therefore J is independent of the direc-
tion of the scattering vector, so we may write

OO 0

&«.&=2 J d»&+~1&iI &~I' .

]peal

I
Equation (22) is also true for Kunz's orbitals. ~'

%e shall now consider the evaluation of J' and J
separately.

C. Evaluation of J'{p.)

ANE)

l

l

I

l

l

I

I

Xl
l

l

j

l s'
I

FIG. 6. Plane of integration is the xy plane at p~, and
is perpendicular to the scattering vector S oriented along
the z axis. The vector 8&= H& ~+ Bz „,with 8& ~ and Bg
perpendicular to and parallel withthe xy pl. ane, respec-
tively, denotes a lattice site. In order to perform the
integration it is convenient to make a coordinate trans-
formation from the {xyz) system (I) to the (z'y'z') sys-
tem (II), which is such 'tha't Hg, ~

and the x' axis coincide.
System (I) is defined by the direction of the scattering
vector and is the same for al.l sites 8&, whereas system
(II) is different for each pair of ions.
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p ~ R„=PR„(lcos((tl) +pgR2 (27)

42 dPP[SLi, Fig XFig(P) +SLI,F2g XF2g(P)] XLi(P)
0

1st shell
x g J,(PR„„)cos(p+„,) (28)

with

P =(p'+A'"
For s-p combinations we have similarly

dP PX«(p) X2, V»
0

1st shell

(29)

X Q [SL'I F2p PJI(PR2 „)cos(p+2 )

+Si,i F 2p pg J2(PR» ()) sin(PgR)» i)] ~

In Eq. (30) the overlap integral is to be evaluated

(so)

The integration over the angular parts can now eas-
ily be performed, resulting in cylindrical Bessel
functions J,(PR„„).For example, for the first
shell and s-s combinations the contribution to either
JF- or 4«+ is

with the Li' orbital on the central site. The second
shell and p-p combinations give

gO End shel 1

dPPXF2p(P) p [SF2pg, F2pg
D h

P Jl(PR21(l) cos(PPA»i) +SF 2py» F 2py P J1(PR2» tl)

c s(p~g, )/Rg(l+ Fgp F2pgpg J()(PRg ())cos(p~„.)

-2SF~ „,Pp, J,(PR„„)sin(p~„,)] . (31)

Expressions (28)-(31) are to be evaluated in coor-
dinate system (II), i.e. , a different system for
each pair of ions. The remaining contributions to
J' are all similar to the expressions above. Fur-
thermore, all the contributions are even in p„i.e. ,
JI(p,) is an even function.

Finally, if the ion solutions are assumed to be
linear combinations of Slater-type orbitals also
the integration over p can be performed analytically,
This is described in Appendix A.

0. Evaluation of J (p, )

With the 2p orbitals oriented as in coordinate
system (II) the integration over the angle (t) is triv-
ial. We obtain for the F ion

(g. ) =4 f g»»((p)';l -,,x'. . (y). (&.')';l..,... '...x)(x(x&)'. l., ... x„.( ly.x..( y))
a

+» dP P X2p(p)[P'(S')F'2p„FIp„+P(S') F'2p, . F2p„+2P'(S') F'2p, .F 2p, ] (32)

Rild 8111111RI'ly fol' the L1 ioil. EquRtioil (32) CRI1 be
simplified considerably, however. As discussed
in Appendix B the required elements of S are in-
dependent of the direction of the scattering vector.
Furthermore we have

)F 2Pg» F 2Pg ( )F 2Py» F 2Py

(~)F 2P» F 2P ( )F 2P, F 2P

Making the substitution in Eq. (29) we hence obtain

x', -(y.) =» f »tl (»(t&l", l., . .x' .ty)
ipg I

+ (S )F?g, 2 2g XF 2g(p) + 2(~)F 1g, F 2g XFig(P)XF2g(P)l

The total Compton profile normalizes to the num-
ber of electrons Aper Li'-F pair, i.e. ,

dpgJpg =N. (s7)

Since J'(p, ) is already normalized in accordance
with Eq. (3V) we obtain

matrix.
It is clear from Eqs. (34) and (35) that J2(p, ) does

not depend on the scattering vector. All directional
properties of the Compton profile are thus con-
tained in the linear term J (p,).

E. Normalization

.4.(S')', '., , dp P'X' V»,
lpgl

&, (g, ) = » (x )'„„,f gt (» x', (t»1
IPgI

(s4) or

dPg cf P» = — dPg eJ Pg

~ Li Li ~ Fly Fly

J'(P.) =J',-(P,) +J'., (P.) .
The expression for J2(p, ) is obtained from Eqs.
(34) and (35) if the matrix S is replaced by the unit

(+ F 2g, F 2g 3(~)F Fp, F 2p
(s9)

The cross term in Eq. (34) disappears because of
orthogonality.

Equation (39) constitutes a useful test for the
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calculation of 8'&&p, ', . A similar test fox the accu-
racy of the numerical mork folloms fxom e

-( ). From expression (28) we h
for example,

me ave,

dp» d~~&x, ~ P XFi» P ~o P&((

cos(pgfta I.)

Other overlap integrals follom similarly 0

V. THEORETKAL RESULTS

O. l
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vector along the (100) (11.110), and (111)axes have

ttering

been calculated as described in Sec. IV. Three
diffexent sets of orbitals fo thr e I.i and P ions
have been used, namel y, Clementi's fxee ion or-

&tais, Kunz's free ion orbitals d K
i a y x'elaxed crystal orbitals Th le ocal orbital

solutions. The
scheme does not automaticall iic y yield orthogonal
so utions. The crystal orbitals mere therefore
orthogonalized, although in th
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shell. By then the contributions mere sufficien

in older
e the summations over the 1 tt'

to save computer time. Th
e the a ace

e normaliza-
tion conditions in Eqs. (37)-(40) were c

sca ering vectors mentioned as mell as
e calculated anisot-for some very odd ones. The ca

rop&es ax'e shomn xn Pz'n Pigs. 7-9 togethex mith the
results of Eumema et al ' The various contr'

o a profile are given in Table III for
the case of Kunz's seL~-se"-consistent crystal orbitals.
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TABLE III. Different contributions to the directional Compton profile for I,iF as calculated from Kunz s orbitais
(unsmeared results).

q (a. u. )

0. 0
Q. 1
0. 2

0.3
0.4
0. 5
0. 6
0, 7
0. S
Q. 9
1.0
1.1
1.2
1.3
1.4
l. 5
1.6
1.7
1.8
1.9

4. 0790
4.0618
4. 0110
3.9241
3.7887
3.5955
3.3518
3.0773
2. 7937
2. 5173
2. 2583
2, 0214
1.8080
l. 6175
1.4482
1.2984
1.1659
1.0489
0. 9455
0. 8542

~(oo

—0. 3254
—0.3300
—0.3420
—0.3512
—0. 336S
—0.2811
—0. 1870
—Q. 0775
+ 0. 0195

0.0857
0. 1174
0. 1215
0.108S
0. 0881
0. 0644
0. 0392
0. 0127

—0. 0136
—0. 0365
—0. 0519

—0.3899
—Q. 3771
—0.3452
-0.3054
—0.2608
—0. 0247
—0. 1331
—0. 0537
~ 0. 0178

Q. 0676
0. 0894
0. 0849
0. 0617
0. 0296

—0. 0017
—0. 0253
—0. 0372
—0. 0370
—0. 0272
—0. 0122

—0. 3428
—0.3405
—0.3319
—0.3099
—0. 2669
—0.2018
—0. 1244
—0. 0512
+ 0.0039

0. 0353
0.0457
0.0419
0. 0316
0. 0203
0. 0110
0, 0047
0. 0010

—0. 0009
—0. 0017
—0. 0018

0. 1185
0. 1182
0. 1173
0.1155
0. 1123
0. 1072
0. 1003
0. 0922
0. 0837
0.0753
0. 0674
0.0601
0. 0535
0. 0476
0. 0424
0. 0377
0.0335
0.0298
0.0265
0. 0236

q (a. u. )

2. 0
2. 1
2. 2
2. 3
2. 4
2. 5
2. 6
2. 7
2. 8
2. 9
3.0
3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
4. 0

go

Q. 7735
0.7021
0.6390
0. 5831
0.5335
0.4895
0.4504
0.4155
0. 3844
0.3566
0.3316
0.3092
0.2890
0.2707
0. 2541
0. 2390
0.2253
0.2127
0.2012
0. 1905
0. 1807

~choo

—Q. 0572
—0. 0519
—0. 0386
—0. 0216
—0. 0053
—0. 0072

0. 0148
0.0181
0. 0185
0. 0173
0. 0149
0. 0117
0. 0076
0. 0027

—0. 0023
—0. 0065
—0. 0091
—Q. 0097
—0. 0085
—0. 0061
—0. 0033

+ 0.0035
0. 0157
0. 0222
0. 0223
0.0172
0. 0088
0. 0001

—0. 0075
—0. Q118
-0.0126
—0. 0103
—0. 0061
—Q. 0012

' 0, 0030
+ 0. 0058

0. 0067
0. 005S
0. 0037
0.0011

—0. 0013
—0. 0030

—0. 0015
—Q. 0010
—0. 0004
+ 0.0003

0. QQOS

0. 0010
0. 0010
0. 0007
0.0002

—Q. 0002
—0.0004
—0.0005
—0. 0004
—0, 0002
+ 0. 0000

0. 0002
0. 0002
0. 0002
0.0001

—0. 0001
—0. 0001

J2

0. 0210
0. 0187
0. 0166
0. 0148
0. 0132
0. 0117
0. 0105
0. 0093
0. 0083
0. 0075
0.0067
0.0060
0. 0054
0. 0048
0. 0043
0, 0039
0. 0035
0. 0032
0.0029
0. 0026
0. 0023

with the experimental resolution function as shown
in Fig. 10. For this reason we have only consid-
ered Kunz's crystal orbitals in the final compari-
son with experiments in Figs. 3-5. It is clear,
however, that the results of Euwema et al. ' differ
distinctly from ours before as well as after con-
volution,

Table IV lists unsmeared and smeared theoreti-
cal results for the (100) direction for comparison
with the experimental results in Table I. The two
sets of data are also displayed in Fig. 11.

VI. DISCUSSION AND COMPARISON

Previous Compton measurements of LiF have
been reported byWeiss' and Paakkari et al. using
Mo Kn x rays and 59.54-keV y rays from an 3"Am

source, respectively. Weiss measured a value of
J(0) =8.78+0.11 which is in reasonable agreement
with either our measured value for the O. 3.78-mm
thick sample or the value we obtain when extrap-
olating to zero thickness. Paakkari et a/. report
a value of Z(0) =8.85+0.05 for polycrystalline I iF
in good agreement with present measurements.

There have been several attempts to calculate
the Compton profile of polycrystalline LiF. Weiss'
showed that the simple summation of the profiles
for the free Li and F ions is not adequate since
it predicts too narrow a profile and a Z(O) =4.10.
The same discrepancy is illustrated in Fig. ll for
the (100) profile. Berggren, Aikala et al. ' and
Paakkari et al. have included overlap effects be-
tween the free ions in the same way as discussed
in Sec. IV A and find that these effects do reduce
the value of Z(0). Aikala ef al. ' and Paakkari ef
al. calculated a value of Z(O) =8.88 and 8.88, re-

O. 08—

0.06—

KUNZ CRYSTAL ORBITALS---- KUNZ FREE ION

CLEMENTI ORBITALS

RESOLUTION BROADENED

o O.O2

0
Oo 002

-O.O4

—o.06 I-

-O.OB I-

—O. t I I I

1 2 3

q (a. U.}

FIG. 10. Smeared difference between (,'100) and
(110) Compton profiles as obtained from different wave
functions. Notations are the same as in Fig. 7.

spectively, for the average profile which is in good
agreement with our measured value. ~ For this rea-
son it has been natural to extend this type of calcu-
lations to include also effects of anisotropy
(Sec. IV).

A recent calculation of LiF is by Euwema et al. 'o

who used a self-consistent Hartree-Fock scheme to
calculate the Compton profile for various crystal-
lographic directions. Besides that the Hartree-
Fock energy bands, cohesive energy, equilibrium
lattice parameter, bulk modulus, and x-ray struc-
ture factors were also considered. Their absolute
profile for J»~ convoluted with our resolution func-
tion agrees with our zero thickness estimate such
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TABLE IV. Theoretical Compton profiles for LiF—
(100). Present calculation refers to Kunz's self-con-
sistent crystal orbitals.

q (a. u. )

0. 0
0. 1

0. 2

0. 3
0.4
0. 5

0. 6
0. 7
0. 8

0. 9
1.0
1.1

1.2
1.3
1.4
1.5
1.6
1.7
l. 8
1.9
2. 0
2. 2
2. 5
3.0
3.5
4. 0

Present
calc ulatio n

3. 872
3.850
3.786
3, 688
3. 564
3.422
3.265
3.092
2. 897
2. 678
2. 443
2. 203
l. 970
1.753
1.555
l. 375
l.212
l. 065
0. 936
0. 826
0. 737
0.617
0. 508
0.353
0.236
0. 180

Euwema
et al.

3.839
3.825
3.779
3.700
3.586
3.446
3.290
3.122
2. 938
2. 728
2. 489

1.968

1 ~ 515

l. 181

0. 940

0. 757

Present
calculationb

3.795
3.777
3.723
3.637
3 ~ 524
3.388
3.231
3.055
2. 862
2. 653
2. 434
2. 213
1.994
1.784
1 ~ 588
1.408
1, 245
1.099
0. 972
0. 863
0.772
0.638
0.511
0.356
0.242
0.181

Euwema
et al. '
3.777
3.766
3.715
3. 638
3. 535
3.406
3.255
3.084
2. 894
2.685
2. 461
2. 228
1.996
1 ~ 774
1.570
l. 388
1.228
1.090
0. 969
0.861
0. 763

From Ref. 10.
"Convoluted with experimental resolution function.
F rom Ref. 10: convoluted with experimental resolu-

tion function.

characterize the theory as not having enough high
momentum components in its description of the
bond and that these high momentum components
tend to reduce the low momentum anisotropy and
introduce the presence of high momentum anisot-
ropies not even predicted by the theory. In other
words the amount of the "bond charge" is probably
the same in both theory and experiment but appears
to be less localized in the Euwema calculations.

A comparison of Tables I and IV shows that there
is a good agreement between the present theory and
experiment as illustrated in Fig. 11. Vh obtain
nJ(0) =0. 3% and nJ/J(q)» 3.3% for 0» q —2. As
stressed above, however, the anisotropies them-
selves provide a much severer test of the quality
of the crystal wave function. From Figs. 3-5 it
is evident that the present tight-binding model re-
moves the deficiencies associated with the Hartree-
Fock solution of Euwema et al. ,

"and that there
is now a satisfactory overall agreement between
calculated and measured anisotropies.

One may ask why the theory of Euwema et al. ,
which is quite successful in many other respects,
fails to predict the correct anisotropy in Compton
scattering. A possible reason may be their choice
of a Gaussian basis. The difficulties of properly
describing the tails of wave functions with such a

that hJ/J(0) =0.8% and nJ/J(q)»4. 5% for 0» q»2
a.u.

The dashed lines in Figs. 3-5 are the anisot-
ropies calculated, by Euwema et al. after being
convolved with our resolution function. As can be
seen the agreement with the experimental results
is not particularly good except for J»,-J», . How-
ever this difference is for the two "nonbonding"
directions. In diamond, ~ silicon, and germanium'
it has previously been shown that the "nonbonding"
directions are insensitive to the potential used in
the calculation and the difference between profiles
for these directions fit the data quite well. It is
the difference between the profiles for the bonding
and nonbonding directions which is the best test of
a calculation.

By comparing the results in Table 1 for the (100)
direction and the anisotropy results in Table II one
can conclude that the experiment and theory of
Euwema et al. agree for the (100) in the region
around q =0 but the theory predicts too much mo-
mentum around q =1 andtoo little at high q. For
the (110) and (111)directions the opposite is true,
the theory and experiment agree around q =1 but
theory predicts too much around q =0 and too little
at high q. As a general observation one could

4 0

O
O

2.0

1.0

0.0 I I I I I I

0 2

q (a.u. )

FIG. 11. Total (100) Compton profile for LiF. Solid
curve refers to Kunz's self-consistent crystal solutions,
and the dashed curve to a simple superposition of free
ion solutions. Dots are experimental values from Table
I, as corrected for instrumental resolution and multiple
scattering. The bar at q=0. 1 a. u. denotes the estimated
experimental error.
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basis are well known. A further difficulty is their
use of Gaussian lobes rather than proper p func-
tions. Besides that Gaussian contractions appro-
priate to free atoms were used, whereas contrac-
tions appropriate to Li' and F should have been a
better choice as remarked by Euwema et al. This
fact resulted in certain difficulties in predicting
the correct binding energy. Only when a separate
Hartree-Fock calculation using the same contracted
basis together with some additional longer-range
Gaussians was performed for the free Li' and F
ions was a correct binding energy obtained . The
lack of these longer-range Gaussians in the original
basis and perhaps the use of Gaussians in general
should be reflected in an inadequate description of
the low momentum region.

Finally we compare our calculated profiles with
the experimental values of Paakkari et al. for
polycrystalline LiF. We may compute an approxi-
mate spherical average as

J=
~q (6JgQQ + 12Ji io + Ku) (41)

Table V lists this weighted average as computed
from Kunz's crystal orbitals and the experimental
values of Paakkari et al. One finds nJ/J(0) =0.3%
and n J/J(q) & l. 5/g for 0 & q & 2. As mentioned Paak-
kari et al. have also performed a theoretical calcu-
lation of the isotropic Compton profile. Their cal-
culation consists basically in taking a spherical
average of the momentum density in Eq. (15) which
is then integrated in accordance with Eq. (22). In
order to allow for orbital relaxation the outermost
orbitals were supplemented by a scaling factor,
which was then determined from minimization of
the total energy. Their theoretical results should
therefore compare well with Table V which refers
to relaxed orbitals as well. We obtain n J/J(0)
=0.2% and r J/J(q) & 0. 5%%d for 0 & q & 2. Although we
have stressed earlier that the most meaningful test of
wave functions consists in comparing anisotropies
we find it quite satisfying that our calculations
agree so well with two independent sets of experi-
mental data recorded with 59.54- and 159-keV
z rays, respectively, and with a similar, but iso-
tropic calculation.

Another interesting result of this work is that
we can now understand the apparent paradox be-
tween the charge-density anisotropy, as measured
by elastic x-ray scattering, and the momentum
density anisotropy, as measured by Compton scat-
tering. " 'The most recent conclusion drawn from
an analysis of elastic x-ray scattering measure-
ments" "is that the charge density, to within the
experimental accuracy, is isotropic, i.e. , the
charge is spherically symmetrical about each ion. '
It is clear from our Compton measurements that
the momentum density is not isotropic. Since
Compton scattering unlike elastic x-ray scattering

is related to both the off-diagonal and diagonal ele-
ments of the single-particle density matrix p(r, r'),
one would expect it to yield more complete infor-
mation about these anisotropies. Both our experi-
mental and theoretical results indicate that this is
indeed the case.

The formal definition for the Compton profile for
a one-electron wave function lt(r) and the momen-
tum transfer k is given by Eqs. 4, 5, and 14 and
the form factor by

(42)

TABLE V. Comparison between the weighted average
(J) of theoretical directional Compton profiles and the

experimental data of Paakkari et al. for polycrystalline
LiF. Theoretical results refer to Kunz's self-consis-'
tent crystal orbitals.

q (a. u. )

0. 0
0. 1
0. 2

0. 3
0.4
0. 5
0. 6
0. 7
0. 8
0. 9
1.0
1.2

3. 837
3. 825
3.788
3.722
3.620
3.481
3.309
3.111
2. 891
2. 654
2. 408
1.925

3. 85 +0. 05
3.82
3.78
3.70
3.61+0.04
3.48
3.32
3.12
2. 90
2. 67
2. 43
1.95 + 0. 03

1.4 1.508
1, 5 1.334
1 ~ 6 1.186
1.8 0. 950
2. 0 0. 782
2. 5 0. 507
3.0 0. 337
3.5 0. 245
4. 0 0. 181
5. 0 0. 114
6. 0 0. 076

1.52
1.33
1.18
0. 94
0 ~ 77+0. 02
0. 51
0. 34 + 0. 01
0.24
0. 19
0. 11
0. 08

'From Ref. 9 {data corrected for instrumental resolu-
tion).

For the case of periodic systems such as LiF one
has, of course, that k in F(k) is limited to recipro-
cal-lattice vectors, whereas there is no such re-
striction for the Compton profile.

The explanation lies in the dependency of the
elastic scattering factors on only the diagonal ele-
ments of the single-particle density matrix p(r, r').
This results in a "smearing out" of anisotropies,
as compared with Compton scattering. For any
form of anisotropic charge density the anisotropy
in the Compton profile is orders of magnitude larger
than that for the form factor for smaller values of
q, and the smaller the magnitude of the anisotropy,
the larger the q values at which the most significant
part of the form-factor anisotropy occurs. In the
case where the anisotropy results from overlapping
charges, the anisotropy of the Compton profile goes
linearly with the overlap, whereas the form-factor
anisotropy goes effectively worse than the square
of the overlap. ""Furthermore there is a coher-
ent constructive enhancement in certain directions
of momentum space which increases the Compton
anisotropy, and in most cases no such enhance-
ment occurs in elastic scattering. These effects



~no= Xa r —Rg Xg r —Ra dr ~

The anisotxopic part clearly goes as overlap times
the Fouriex transforxn of overlap which is thus less
than the overlap squared. The equivalent term for
the Compton profile is given by

2S'", X* p x, e"'~~ RI'dp„dp, (45)

The Fourier transforms are given by Eq. (16) and
clearly are not site dependent and thus do not over-
lap in p space. The constxuctive enhancement
mentioned above comes from the expressione" '~~ ""' in the Compton profile which has become
known as the diffraction effect. Calculations of
LtF show that nE/E(0) is orders of magnitude
smaller than nZ/Z(0) over the range of q or k
for which either Z(q) or F(k) is larger than a few
percent of its maximum. For example we find that
the anisotropy of the form factors~ [E(511)
—r(333)]/Z(0) = 1 x 1O-' and [Z(V11) —Z(511)]/r(0)
& 10 ' which approximate the anisotropies [100]
—[111]and [100]—[110], respectively. From Figs.
3-5 one sees that ng/Z(0) is of the order 10 ' to
10 . Typical values for nearest-neighbor overlap
8 ~ in Lif are 10 3 and thus the fact that form-fac-
tor anisotropies depend upon 83~ while Compton
profile anisotropies vary only as S z explains the
10 larger anisotropy in the Compton profile. %'8

conclude that to measure the anisotropy in the
charge distributions in LiF by elastic x-ray scat-
tering, the experiments would have to be several
ordex's of magnitude more accurate. "

Yet there are factors which make it very difficult
to obtain in elastic scattering an accuracy even as
good Rs that obtainable by Compton scattering.
Among these are lax'ge corrections fox' systematic
effects such as ext;nctiOn. . In addition one can only
D18Rsule the form fRctox' Rt disci ete VRlues of k,
Thus both the physics and the nature of the expexi-
ments dictate the use of the Compton-scattering
technique to measux'e anisotropies in electron dis-
tributions.

VII. SUMMARY

We have measured the Compton profiles of LiF
in the (100), (110), and (ill) directions using 159-
keV y rays and find that the anisotropy of the mo-

are simply illustrated in the case of an ionic crys-
tal with small overlap, where we xnay expand the
wave functions in the overlap. Then the leading
anisotropic part of the form factor owing to Rn or-
bital of type ~ at site R, overlapping an orbital of
type P at site R„,at wave vector k is gi.venby

2g~I, ', y*(r —Rg)x, (r —R„)8'"'dr,
where the overlap is given by Eq. 13.

The one-electron functions (dropping the index
referring to the lattice site) are both in Clementi's+
Rnd Kunz'sa calculations assumed to be of the form

X.i(r) =&.i(~) I
& (8, 0) .

In Eq. (Al) F, (8, P) is a spherical harmonic func-
tion which we here chose to be xeal. The radial
part R„,(r) is then expanded in terms of Slater-
type orbltalsy

~It„,(r) =g C,„,~„(~),
f, (~) =~, ~"'"~e.
A „=[(2o„)"'"»'/(21+2„+2)!]'" . .

(A2)

In the case of LiF the expansion includes Slater-
type orbitals of 1s, 2s, and 2p type only. The mo-
mentum transform [Eq. (16)] of y,„,(r) can hence be
written

(p (
n I) = g C~„,(p ~

jl) (A3)

where (p ijl) refers to the basis functions trans-

mentum distribution of this ionic crystal to be as
large Rs that found in some covalent crystals. On
the basis of a tight-binding model we have per-
formed theoretical calculations of the anisotropies
using three different sets of ion wave functions.
The results of these calculations agree well among
8Rch other Rs well Rs wltil the meRsux"ed Rnlsotx'o-
pies. They also indicate that the distortion of the
ions owing to the crystal environment is quite ne-
gligable in LiF.

Our results are found to compare well with the
isotropic Compton profile obtained recently by
means of 59.54-keV y rays and with isotx"opic cal-
culations based on R tight-binding model similar
to ours. Hartree-Fock calculations of the direc-
tional Compton profile by Euwema et al."are
shown not to Rgx'ee Rs well w1th xneRsuled VRlues,
particularly in the region of small momentum
transfer. A possible reason for this is given„

%8 also show that Compton scattering is more
sensitive to anisotropy in the momentum distribu-
tion than x-ray form factors are to the anisotropy
in the chaxge density, at least for those materials
with small overlap of their wave functions. This
x'esolves the apparent paradox between Compton-
Rnd elastic x-ray scattering results.

ACKNOW( LEDGMENTS

Qne of the authors (K.-F. B) was partly sup-
ported by Stanford Synchrotron Radiation Project
through NSF Grant GP-38325 and the Swedish Na-
tural Science Research Council. He would like to
thank Professor S. Doniach for hospitality during
a stay at Stanford University.

APPENDIX A
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formed to momentum space. For Slater-type or-
bltals of 18 Rnd 2s type we hRve xn particular

gl ls& = (4n'"/vv 2) [1/(n'+ p')']

4 n /3 4@3

where the indices (j/) have been dropped„For 2p
type functions the transform is

(p l 2p& = i(16n' ~ ~/vt 2) [p/(o'+ p )']

Given these analytical forms the computation of the
anisotropie Compton profile is immensely facili-
tated since all the contributions can be evaluated in
a closed form. Integrals like those appearing in the
expression for J, (p, ) [Eqs. (28)-(31)]now reduce
to the basic form

r =~U,

where U is a unitary transformation matrix andi'" = (x'", y'", z'"). Since the 2p orbitals trans-
form in the same way as r we may write

&1 lo& =(1
I

o& }, (B2)

where (p! n& is a row vector consisting of the mo-
mentum transforms of the F orbitals, and

In the case of a F -F pair the overlap integrals
tra sform as

Assume that the two coordinate systems I and II in
Fig. 6 are related as

Ji (pR)
P P (P + g)n+1(hR pa)m+1

where a~=n~„+p,' and h'=n', ,, +p, . For a=b Eq.
(A7) is a Hankei-Nicholson-type integral

where we have used the notati~~

go, a (o
l P&

(E4)

The invariance of expression (26) then follows from

where K„(x)are modified Bessel functions of the
second kind. For a w5 it is convenient to write

1 1 1 1
(p'+a')(l I'i i' — ' d' ' v' i') '

Repeated differentiation with respect to a and b

then gives

p" J,(pz)
dp

(
a 3)n+s( a f,2)m+x

m! u! (n -a)! 2o (t'-o')""'

xff„,, (oft)+—,g (-1)'„,
gl

X
( P. ha)ti+4+1 N 4-1 (

Differentiation of this expression with respect to
8 gives the remaining integrals in the expression
for J'(p, ). The integrals appearing in the evalua-
tion of Jo(p, ) and J~(p,) are all elementary.

APPENDIX B

We want to show that the sum in expression (26)
is independent of any particular coordinate system.

=&pl o& &~l P& (Plv&,

since VV'=1. In the case of a Li'-F pair the in-
variance follows in a similar way.

In a similar way one may shcnv that the required
elements of Sa are independent of any particular co-
ordinate system and thereby the orientation of the

p orbitals. For p functions a summation over the
lattice is, however, also required.

Note added in Proof: Recently Euwema has fol-
lowed up our suggestion of contracting his basis to
the ionic rather than the atomic wave functions
(Ref. 10). This change plus the use of a tight Li
P basis function result in significant improvement
in the ealeulated anisotropies. The binding energy
remains close to that of the earlier calculation.
This would seem to be another indication of the
extreme sensitivity of the Compton anisotropies to
the quality of the wave functions.

We are grateful to Dr. H. N. Euwema for cor-
respondence and for sending us his unpublished
results.
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