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Neutron scattering by polaritons: Mechanical excitation of the polariton~

F. Sacchetti and A. Selloni~

(Received 30 June 1975)

The dispjacement-displacement correlation function in the case of an isotropic ionic crystal with several optic
branches has been calculated to determine the inelastic-scattering neutron cross section. We have examined
the feasibility of an experiment to measure the dispersion curves and the density of states of the polar modes.
The infrared electromagnetic field outside the crystal associated with the polariton excitation has been

considered and found directly related to the polariton density of states. Though relevant information can be

gained by this kind of experiment, its feasibility seems to be subordinate to the planned fulfilment of the high-

energy pulsed neutron sources.

I. INTRODUCTION

As is well known, polaritons' are composite
quasiparticles formed, in a crystal, by coupling
the electromagnetic field with elementary excita-
tions. We shall be concerned with the coupling in
ionic crystals of long-wavelength transverse-optic
(TQ) phonons and the electromagnetic (EM) field.

This kind of polariton connects the optical and
vibrational properties that are very important in
the understanding of the macroscopic behavior in
terms of a microscopic picture.

A large amount of experimental work has been
done on the dispersion relation of polaritons, '
mainly using Rarnan scattering, by which a very
good resolution in energy-momentum space can be
obtained though the upper branch cat~not be easily
measured.

However, the double nature of the polariton al-
lows it to be excited by interacting with its me-
chanical part. In principle at least this can be
done using both thermal-neutron and x-ray scatter-
ing, but the x-ray scattering has a very bad reso-
lution in the phonon energy range.

We consider the neutron scattering by polaritons
by exploring the feasibility of the experiment,
which is seriously limited by the very low energy-
momentum ratio of the neutron. However, these
limitations concern the coherent scattering only,
while the incoherent scattering has no limitations
connected to the momentum resolution as it will
be shown later.

Another stimulating aspect of the polariton ex-
citation by neutrons is the possibility to obtain
information by the measurement of the infrared
EM field which leaks out of the crystal. This EM
field might be experimentally detected, since no
other source is present in the infrared region at
low temperature, so that the background is ex-
pected to be small.

II. NEUTRON CROSS SECTION

As is well known, for thermal neutrons the
cross section can be calculated in the Born approx-

imation. Let us consider the nuclear inelastic
scattering neglecting the magnetic contribution,
which does not change the general characteristics
of the cross section; for processes involving only

one excitation we have
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where l is the unit-cell index, s is the position of
the atoms in the unit cell, by; is the nuclear scat-
tering amplitude, and e i s is the corresponding
Debye-Wailer factor. K is the wave vector of the
incoming neutron and K' = K —g is the wave vector
of the scattered neutron. u f;(t) is the Heisenberg
representation of the a component of the displace-
ment from the equilibrium position of the atom at
the site l+ s. e =h(d is the neutron energy change.
The angular brackets indicate the thermal average.

The cross section [Eq. (1)] gives rise to two
different processes: the coherent and incoherent
scattering. The former is related with interfer-
ence phenomena produced by the crystal as a
whole because of its periodicity; the latter is due
to local fluctua, tions. 2

The two contributions can be easily separated
introducing the average scattering amplitude B;
=(5",;e (s)„ independent of l in a perfect crystal,
and the fluctuations

~-- =b-- e-~is -B-.1S 1S S

is a random quantity such that
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where (' '), indicates the configurational average
over the Gibbs ensemble. We have
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&0 being the high-frequency dielectric constant,
A~ and 0;~ are the vector potential and electric
field operatoI s, respectively.

Hsu 2= —»2 Q f„' P- A2+ 2»p QA~AS, (8)
q}t~n qX~

is the interaction Hamiltonian ' in the long-wave-
length limit for an isotropic medium. m~ is the
usual plasma frequency,

4n&-

Then we develop the atomic displacement in
nor mal cool dlnates

(4)
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while

H „= ~(P- P2),„», Q-„Q@„)
qua
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describes the phonons in the harmonic approxi-
mation, P@„and co+„being, respectively, the mo-
mentum conjugate to Q+„and the normal-mode
frequency; we have substituted the branch index

j with Xn, where A. specifies the polarization and n
indicates the nth equivalent oscillator of the medium.

where M; is the mass of the atom in the s site,
e;,(s) and Q;,.(t) are, respectively, the polariza-
tion vector and the normal coordinate of the (q,j)
mode. In Eq. (4} q is a vector of the first Bril-
louin zone.

Substituting Eq. (4) into Eqs. (2) and (3), we can
see that both cross sections contain the correla-
tion functions &Q;,.(0)Q-&, (t)), ' To obtain their ex-
plicit expression we use the Green's-function
method in a way similar to Benson and Mills. '
We assume the Hamiltonian to be

&; being the charge of the sth ion and V, is the
unit-cell volume; f„ is the "oscillator strength" of
the nth equivalent oscillator, which in the long-
wavelength limit and for an isotropic medium we
take independent of X, and q. f„obeys the sum
rule g„f„=1, for each transverse polarization.
H „, which mill cause the normal modes to ac-
quire a finite lifetime, is assumed to depend only
on the normal coordinates Q@„.

Let us consider two operators, A and 8; the
Fourier transform of their correlation function is

=i[1+n(»)] [G„(»+to) —G,(» —te)],
where n(») =(e2"" —q) '

(&i =+ 1 and q = —1 for
bosons and fermions, respectively), and G„and
G, are the usual retarded and advanced Green's
functions. '

We can obtain the Green's function from the
equation of motion

t —G(t) = t (t)&[X(t),H(O)]&
. d
dI

where H is the Hamiltonian of the system.
Thus the correlation function &Q;~„(0)tI&;„.„,(t)& is

related to the Green's function

is the Hamiltonian of the EM transverse field in
an isotropic medium in the absence of coupling, which is given by

2
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It is important to note that Eq. (12) implies a
Inlxlng of thedlffex'ent transverse-optic bl'anches
of the same polarization, even ln the absence of
anharmonic coupling. The mechanism of this
coupling has a. clear physical interpretation: in
fact the TO normal modes couple through their
own EM field, behRvlng like clRsslcal fox'ced GS-
cillators. However, the coupling is small when
the different branches have large energy separa-
tion, as we expect. If, for instance, we consider
two OptlC bx'RDC1168 with A. = X

y (d~o 3 && (dTO gy ln
the absence of anharmonic terms, we find, for
(d = (dTO

all D2 TO 8 l
g)&3qg ~ z 3 ~ QQr QP1 MTO 1 ~TO I' m QPI MTO I
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and thus j D@ j» j D+ j» j D++ j if we assume
Qp I-Qp ),

We note that if the anharmonic term (14) ts
diagonal with respect to the polarization index X,

then the Green's function is diagonal too; in other
words, the coupling between different polarizations
takes place only through gpo. Equation (12) is
vex'y useful ln Deutx'on scattering studies Rs lt,

contRlQs Rlso th6 conti ibutions Gf longltudlDR1 Rnd

acoustic waves, while Benson and Millss consider
a single TO branch only. Moreover, for the
modes that do not couple to the EM field, Eq. (12)
reduces to the usual equation of motion for the
Green'8 function.

It is well known that the main effect of the anhar-
monic tex'm is a shift of the polax'iton frequencies
and the appearance of a finite lifetime, as it has
been extensively discussed by %allis and Maradu-
din. 6 However, because the Rnharmo»c width ls
very small compared to the energy resolution gen-
erally achieved ln neutron scattering experiments,
we shall neglect these effects and thus consider D++
diagonal with respect to the polax ization index.

Let us now considex' a crystal with two atoms
per unit cell. In this case f„=1for the two TO

branches, degenerate in the isotropic medium we
consider, and f„=0 for the longitudinal and acous-
tic branches. Using Eqs. (12) and (9) for the cor-
relation function, we obtain

e'"'(qS„„(0)qe,,~(f)) = 6,„,5„„, S,„(~)2' 2&~n

x {[6((u—(u ) —6((u+ (o )]+ [6((u —(u,) —6((u+ (o,)]f„),
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where 9","„(~)is the phonon strength function, which

~z zoo
z z for the TO branches

1 Otherwise,
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We note that for f„=1, uP(q) gives the usual po-
lariton dispersion relation, while for f„=0, &o'(q)
= (dye l. 6 ~ the unpel turbed pl1onon frequency
and up~(q) = &o~~+ c2q~/eo, which is the weil-known
dispersion relation for the transverse EM field in
R plasma. However~ the Gx'een 8 function Dgg
has no pole at this latter frequency, as g)++ is xe-
lated to the mechanical excitation only.

Thus, using Eqs. (2) and (15), we have
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Go being the reciprocal-lattice vector which takes

X in the first Brillouin zone and

F..(X) =2 f}f!'"&;e '"'efi. (s) .

From Eq. (3), we get
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en (20)
which in the case of cubic crystals reduces to

Xa ~ (d)+ g 8 TO ™
+ oh (~~ O) (2j.)

where g»(~) is the density of states for the pure-
phonon branches and

g»(~)=&&g "&, (~)
2 (d (d

gkg3

x [~(~' —~'(q)) + ~(~' —~'.(q))],
u~ 2 being the dispersion relation of the TQ pho-
non in the absence of interaction with the EM field.
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FIG. 1. Coherently scattered neutron flux in typical
q-constant scans, q=l0, 20000, and 50000 cm ~. The
corresponding frequencies are (d (10)= 0.5 cm ~, cu, {10)
= 744 cm, ~ {20000) = 375 cm, co, (20 000) = 1960 cm
(d (50 000) = 395 cm, ~,(50 000) = 4650 cm '. The energy
of the incident neutron is 2000 cm . In the calculation
an isotropic source of 10 ~ neutronsj(cm sec eV) has
been used.

prom pq. (18) we can see that in an ideal scat-
tering experiment the pola, riton dispersion rela-
tion can be easily measured by properly choosing
the scattering vector X. However, good resolution
in q space is not yet available and this is obviously
the main limit to the use of neutron coherent scat-
tering in polariton experiments. Anyhow the fea-
sibility of such an experiment is shown in Fig. 1,
where the scattered neutron flux is plotted vs (d in
a q constant sean in the case of Mgo, "which is
suitable material for this kind of experiment, be-
cause of its large ufo/&pro

—= (&o~ro+ or~~)/~~ro ratio.
The intensity has been calculated using a resolu-
tion function

R(q, (o) = (2vo', ) '~'(2mo'„) '~'

x exp(- q'/2o', ) exp(- uP/2o'„),

where v, =10000 cm ' and o„=5 cm '. Figure 1
shows first that a neutron scattering experiment
allows a quite accurate measurement of e~o a,nd

(Jog p which together with &0 determine completely
the polariton dispersion curves. Moreover, one
ean see a strong variation of the peak shapes vary-
ing q. That variation can be qualitatively corre-
lated to the shape of the dispersion curves. The

III. INFRARED EM FIELD

Let us consider the equation which determines
the rate of variation, inside the crystal, of the
energy density of the pola, ritons excited by some
external source (neutrons in our case)"

dU
dlvS =—

dt (23)

S being the Poynting vector, S =(c/4m)E&&H, and
U is the energy density, which will contain both a
mechanical and an electromagnetic contribution.
We note that Eq. (23) holds in the absence of an-
harmonie dissipation processes.

Let us consider now the following stationary
process: a constant flux of neutrons is impinging
on the crystal which is in thermal equilibrium with
a bath of external radiation, at constant tempera-
ture. In this case dU/df =0 so that a constant flux
of electromagnetic energy leaks out of the crystal.
In this ideal situation the photon flux which leaves
the crystal is equal to the polariton flux created
by the neutrons times the "electric field strength
function. " Thus, for the photon flux in the energy
interval d&, we can write

incident neutron energy was 2000 cm '. The ab-
solute intensity scale in Fig. 1 has been approxi-
mately evaluated using an isotropic source of 10"
neutrons/(cm sec eV). ' The neutron inelastic
scattering kinematic is extensively discussed in
the literature. '3 " However, we preferred to use
a simplified resolution function, depending only
on the square modulus of the q vector, since the
qualitative features of the neutron scattering do
not depend on its detailed shape. The a,ssumed q-
spaee resolution is quite high as compared to the
presently available neutron spectrometers. How-
ever, such a resolution corresponds to an angular
spread of about 0. 5&&10 rad. Thus a suitable
spectrometer is limited by the present state of art.
Because of the high value of ~« in Mgo and in
similar materials, the neutron energy must be
high, a.s compared to the average energies avail-
able in the high-flux reactors. However, high-
energy neutron sources are already available,
which give intense pulsed neutron beams obtained
by conversion of charged particles (electrons or
protons). Obviously these pulsed sources are
particularly suitable to be used in chopper spec-
trometers and they have been already employed in
condensed matter studies. ' ' However, the beam
intensity we used can be obtained only with the
planned sources. '

Complementary information could be gained
from the incoherent scattering, but it is obvious
that the structure of gTO is generally obscured by
the contributions of g,„.
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where Ssu(to) is the electron field strength func-
tion, given by'

(25)
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By substituting Eqs. (18) and (21) in (24), we find
0
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when 0 —&o& u&ro, &o& arLo; dSI/de =0 elsewhere.
The sum in the first term is extended over all of

the reciprocal-lattice vectors Qo, which take the
scattering vector g = K —K' in the first Brillouin
zone and X = cosP+ sinP tano. with P =arccos(K Ks),
n = —arcsin(GO Ks), and Ks = K —Go. Calculating
the coherent contribution to the electromagnetic
emission we used the approximation q «p Gp,
which verifies only when m is not too close to uTo.

We note that the coherent contribution to the EM
field emission is independent of the shape of the
dispersion relation, while the incoherent part is
proportional to the polariton density of states. It
is evident that by a proper choice (Go ' Ks = 1) of
the scattering geometry the former contribution
will vanish and thus we can obtain direct informa-
tion on g».

In Fig. 2 we have plotted dent/de for Mgo, as-
suming a vanishing coherent contribution in Eq.
(26). As is well known, this can always be
achieved by a proper choice of the crystal orienta-
tion. For comparison, in Fig. 2 we have plotted
also the polariton density of states gro(&o). As we
expect, gTo shows a large peak at ~ = +To and a
slowly varying contribution above ur«. Though
the EM field emission is proportional to @TO, it
behaves quite differently. In fact, the largest con-
tribution comes from the upper branch, while the
lower branch gives a nearly negligible emission.
The particular behavior of the lower branch is due
to the fact that the corresponding modes are main-
ly mechanical in character.

The expected intensity for the EM fields is
probably outside the sensibility limit of the pres-
ently available infrared detectors. However, a

0Q)fo0)L01000 2000 ft) (cm )

FIG. 2. (a) Polariton density of states gTo(~). (b) In-
frared EM field emission.

chopper system can be used to reduce the detector
noise and make appreciable the emission.

IV. CONCLUSIONS

In conclusion, our results indicate the possibil-
ity of obtaining information on the polariton dis-
persion curves by neutron coherent scattering ex-
periments. Though this kind of experiment does
not have a good accuracy, one can suggest it for
those materials which are not suitable for Raman
scattering studies. The incoherent scattering
processes give information not affected by the bad
momentum resolution, however, the polariton con-
tribution is generally masked by that from the non-
polar modes. It is important to note that the neu-
tron scattering experiments also allow one to gain
information about the upper polariton branch,
which is generally badly covered by the Raman
scattering. ' Finally the neutron scattering can
give further useful data by means of the electro-
ma. gnetic field emission, associated with the po-
lariton excitation in both branches.
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