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This paper contributes to the theory of the long-range attractive polarization force between a neutral atom
and a crystalline solid surface in the nonrelativistic limit. The first two terms in the asymptotic expansion of
the polarization energy are used to define an atom-solid potential of the form V~, = —C(Z—Zo) '. The
constant C appearing in this expression is known from the earlier work of E. M. Lifshitz. The present paper
gives a theory of the position of the "reference plane, "

Zo, which is important in applications to physisorption.
An explicit expression for Zo is first derived for atoms interacting with a jellium metal and with an insulating
crystal consisting of atoms which interact via dipole-dipole forces. These model calculations are then
incorporated into a computation of the polarization energies of rare-gas atoms physisorbed on noble-metal
surfaces. The computed energies are found to be consistent with observed adsorption energies.

I. INT ROD UCl ION

A physisorbed atom can be considered as being
bound to a solid surface under the combined action
of two potentials: the long-ranged attractive polar-
ization potential which, in the nonrelativistic limit,
has the asymptotic form

V...- —c/z',
where Z is the distance from the surface; and a
short-ranged repulsive potential arising from the
overlap of the electronic clouds of the atom and of
the surface. ' The present paper deals exclusively
with the polarization potential.

In a classic paper, ~ Lifshitz has given a macro-
scopic formulation of the attractive Van der Waals
forces between two bodies characterized by spa-
tially nondispersive, frequency-dependent dielec-
tric functions. This formulation ' implicitly con-
tains an exact expression for the constant C ap-
pearing in (1.1). Thus, the extreme asymptotic
behavior of V„, can be regarded as known. How-
ever, in applications to physisorption, the separa-
tion Z is typically of the order of 10 cm, a dis-
tance which is not large on the scale of the thick-
ness of the "surface" itself. In this situation, it
becomes important to know the reference plane
with respect to which Z is to be measured. Be-
cause of the rapid variation of V„, with Z, it is
clear that a knowledge of the reference-plane po-
sition is crucial in obtaining a reliable estimate
of the contribution of the polarization energy to the
heat of adsorption.

A precise definition of this reference plane can
be obtained from the second term in the asymp-
totic expansion of the polarization energy

VÃ1- —C/Z —D/Z + ~ ~ ~

Equivalently, we can write

Vy„- —C/(Z —Zo)

thereby defining the reference-plane position, Zo.
This procedure is clearly analogous to the one fol-
lowed previously in defining the correct reference
plane for the image potential. Our main objective
in this paper is to develop a similar theory of the
reference-plane position for the atom-surface po-
larization potential. Although the need for defin-
ing the reference-plane position has been indicated
before, ~ the precise relationship between Zo and
the microscopic details of the solid surface has
not previously been given.

In Sec. II we derive a general expression for the
atom-solid polarization energy using second-order
perturbation theory. This expression is then
shown to be equivalent asymptotically to the usual
Lifshitz formula. ~ By continuing the asymptotic
expansion of the energy in inverse powers of the

atom-surface separation, the reference-plane po-
sition Zo is defined. This derivation shows that
the reference-plane position is determined by the
spatial nonlocality of the electronic density re-
sponse function of the solid. Although a number
of extensions of the Lifshitz theory to include a
spatially nonlocal dielectric function have ap-
peared, ' these have all made simplifying as-
sumptions which precluded a realistic description
of the solid surface. The advantage of the present
approach is that the microscopic details of the sur-
face are accounted for completely.

The expression for the reference-plane position
given in Sec. II and Appendix A is a general but
formal result. In Sec. III we consider various
systems for which either an explicit or an approxi-
mate estimate of the reference-plane position can
be made. In particular, we first consider a simple
metal represented by jellium and evaluate the ap-
propriate quantities which enter for the physisorp-
tion of He on such a metal. We then consider a
model of a simple-cubic dielectric solid in which
the atoms are spherically symmetric and interact
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FIG. 1. Geometry of the atom-substrate system. The
origin of coordinates has been chosen arbitrarily to lie
in the plane of surface atoms.

with

p"'(r) =n',"(r) —n"'(r) . (2. 3)

The charge densities of the nuclei are represented
by n,"'(r); the electron density operators for the
solid and the atom are denoted by n'(r) and n'(r),
respectively. We use atomic units throughout
(le I =m =h =l).

Since the atom and solid are weakly coupled for
large separations, the interaction energy can be
calculated perturbationally. The first-order con-
tribution is given by

Eu& =(4;4 o~ V„~4'o4;) = dr p'o(r)yo(r) . (2.4)

via the dipole-dipole interaction. For the specific
case of small local-field corrections, an explicit
expression for the reference-plane position can be
found. Finally, we consider the adsorption of
rare-gas atoms on noble-metal surfaces. The re-
sults for this example are obtained using a simple
interpolation of the expressions found for jellium
and the insulating solid. Quantitative estimates of
the polarization energy for Xe physisorbed on the
noble metals are made and are shown to be con-
sistent with experimentally determined binding en-
ergies. Section IV concludes the paper with a brief
discussion of the results.

II. POLARIZATION ENERGY

A. Derivation

To derive the interaction between a semi-infi-
nite crystalline solid and a neutral atom we shall
adopt a method which is analogous to the one used
in obtaining the Van der Waals interaction between
two atoms. ' ' The geometrical arrangement that
we are considering is illustrated in Fig. 1. Since
we are interested in the polarization contribution
to the interaction, we can assume that there is no

appreciable overlap of the electronic wave func-
tions of the atom and solid. In this situation, ex-
change of electrons between the two subsystems
does not occur and it is possible to consider the
electrons of the solid as being distinguishable from
those in the atom. Furthermore, we neglect rel-
ativistic effects which become important for sepa-
rations much larger than those of interest in phys-
isorption. We therefore use the following Hamil-
tonian in describing the system,

H =H +H~+ V, (2. l)

Here, H, and H, are the Hamiltonians for the iso-
lated atom and solid, respectively, and V„ is the
Coulomb interaction between the two subsystems
given explicitly by

Here, 1@o")denote the unperturbed ground-state
wave functions of the respective subsystems. The
corresponding unperturbed atomic density is de-
noted by po(r); yo'(r) is the electrostatic potential
of the undisturbed solid and exhibits the same pe-
riodicity in planes parallel to the surface as the
surface itself. We can therefore write

po(r) =Re " Po(z Qo)
h

(2. 5)

(, ) p I (4'o4"o I V,', l 4"~4'o I'.~ (Eo E') + (Eo Eo)--
PA)

(2. 5)

Here V,', is that part of the interaction in (2. 2)
which contains the combination n'(r)n'(r'). The un-
perturbed atom and solid electronic eigenfunctions
and eigenenergies are denoted by 14"")and E"',
respectively. This contribution is clearly negative,
corresponding to an attractive interaction.

Making use of the identity

where Q„=(Q~, Q„„O) is a reciprocal-lattice vec-
tor in the plane of the surface. The average po-
tential Po'(z, Q„=O) is determined by the charge
density of the solid averaged over the surface area.
Since we have assumed that the charge density of
the solid does not overlap the atomic charge den-
sity, Po(z, Q„=O) is constant over the region of the
atom and the Q„=O component of (2. 5) does not
contribute to Eq. (2.4). The remaining terms give
contributions to (2.4) which decay exponentially
away from the surface and can therefore be ne-
glected in comparison to those contributions to the
energy which have a power-law dependence. The
exponentially decreasing terms will of course be
important near the surface, particularly since
they exhibit variations in directions parallel to the
surface.

The second-order contribution in the perturba-
tion expansion of the energy is
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"

A B
dR 2A B ~ A' 'B'+ '' (2. 7)

and the time-reversal symmetry of the matrix
elements in (2. 6), one can express Eq. (2. 6) in
terms of retarded response functions as follows:

Z) =- dr dr' dx dx'v R+x —r v R+x'-r'

(2. 8)

==i dte "' n"' r t n"' r' 0
0

(2. 8)

The imaginary frequency transforms of the re-
sponse functions are defined as

g, ,(r, r'; iu)

where as usual, the bracketed quantity on the right-
hand side is the ground-state expectation value of
the indicated commutator. In (2. 8) we have intro-
duced the position R =(X, Y, Z) of the atomic nucleus
with respect to which the positions of the atomic
electrons are measured.

To proceed with the evaluation of (2. 8) it is con-
venient to introduce the two-dimensional Fourier
transform of the Coulomb potential,

1 2+r) ~~ e~ ~ (~P &
- I- i. [r ( )]

(2. io)
where L is the surface area of the solid and q
= (q„,q„0) is a two-dimensional wave vector in the
plane of the surface. Inserting this into (2. 8), we
find

(2. 11)

where we have introduced the complex wave vector
~ A

K =q+sqz (2. 12)

For the assumed periodicity of the surface, the q'
summation is restricted to

q' = q+Q„. (2. iS)

%ith these values of q', we note that e
&e ~ over the whole range of the q summation.
Thus, all the terms with Q„cO decay exponentially
away from the surface as in the case of the electro-
static potential. Only the Q„=O term gives rise to
a power-law dependence of the interaction energy
and corresponds to the conventional Van der %aals
interaction.

Retaining only the Q„=O term, a factor exp(-2qZ)
appears in (2. 11) which cuts off the q sum for va. l-
ues of q ~1/Z. If Z is much larger than the size
of the atom, the exponentials in the integral over
the atomic coordinates can therefore be expanded

x dx'e'" "e '" '"
)i, (x, x';iu)

dx x@gg xqx ylN xp+' ~ ~

=2q'o. (iu) +0(q') . (2.14)

Here u(iu) is the frequency-dependent atomic po-
larizability evaluated at the imaginary frequency
~ =ig. The first term in this expansion, when sub-
stituted into (2. 11}, represents that contribution

E' ' = —— du &(iu) E(iu, Z),(2) (2. iS)

where

2m'V, zE(iu, Z) —= ~ ~e

and

&& X.(e, e', q, q; iu) (2. i6)

x g, (r, r'; iu) .
Equations (2.15), (2. 16), and (2. 17) constitute a
slight generalization of the usual Lifshitz formula
in that both the lattice periodicity and the spatial
nonlocality of the solid electronic response func-
tion are fully included.

B. Asymptotic form of the interaction and reference p1ane
position

As already noted, the factor exp(-2qZ} cuts off
the q summation and it is therefore sufficient to
determine only the small-q behavior of the function

to the polarization energy from the interaction of
the instantaneous dipole on the atom with its image
in the solid. It should be noted that the higher-or-
der multipole interactions give rise to terms in the
expansion which are at least of order q .

Inserting (2. 14) into (2. 11) and again retaining
only the Q„=O term, we finally obtain
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f(q, ( ) f=-dzfd e 'e""'Z.tz, z', q, q;i ). (2. I8)
Ne are therefore led to consider the following
quantity

(r i) = 8(z Z) &i(( ~ )z &zzq (2. Io)

The induced electron density in the solid will then
have the form

&n(r, f) =8'(r, (I, iu) e"'e ' e"', (2. 20)

&n(r, (I, iu) -=Z e'o) '—
4z g, z, z, q+Q&, q;in e~

Physically, this corresponds to the fact that the
density fluctuation (averaged over a unit cell in the
surface plane) induced by the instantaneous dipole
on the atom is spr ead out along the surface when
Z is large. Thus, only the long-wavelength be-
havior of the response function is important.

By expanding f{q, iu) in powers of q, E(iu, Z) can
itself be expanded in inverse powers of Z. Such
an expansion is facilitated by first noting the physi-
cal significance of f(q, iu) Consider the response
of the solid to the external time-dependent charge
distribution

sm/2
8n(z, q, iu) = — dz '5no(z ', q, i u) .

~-an
(2. 23)

Here a is the spacing between lattice planes in a
direction perpendicular to the surface. The use
of this averaged density offers a number of formal
as well as practical advantages. First we note that

fd e" Ibi (z, q, i ) fdz ="q (z, q,
'

) O(q),
(2. 24)

which can be verified by interchanging the order of
integration on the right-hand side. Since me ulti-
mately require the integral on the left-hand side of
(2. 24) only to first order in q, it is clear that
5n(z, q, iu) and 6no(z, q, iu) are interchangeable to
this order. For the example of jellium, a can be
chosen to be zero and 6n is then equal to %so.

Having eliminated the periodic part of 5@0(zqq, iu)q
5n(z, q, iu) is expected to be localized near the sur-
face so that a straightforward expansion of f(q, iu)
is now possible. Introducing the expansion

&n(z, q, iu) = 6n()(z, iu)

+quan,

(z, iu) + ~ ~ ~, (2. 25)

into (2. 22) with 6no(z, q, iu) replaced by 5n(z, q, i~),
we obtain

e'o"'&no (z, q, iu) . (2. 2l) f(q') =
q f, d*(ibi,—(*,

'
) q[*qd, (, '

)

Averaging (2. 21) over the surface of the solid, we
find that f(q, iu) can be expressed as

+&n, (z, iu)]+0(q')] (2. 28)

d'(q,
'

) = —fd* e"q, (*,q,
'

) . (2. 22)
~ ~+0 &p &R 1 + 2gz $Q +0 g ~ 2. 27

with the definition

This equation relating f(q, iu) to a quantity ha, ving
a simple physical interpretation is especially use-
ful in the following.

Since our objective is to obtain an expansion of

f(q, in) in powers of q, it would appear that a
stra, ightforward expa, nsion of e" and 5no(z, q, As) in
(2. 22) could be undertaken. In the work of Lang
and Kohn, 6 this approach mas possible since for
the static response of the )cilium model, 6n(r, (I, 0)
is localized near the surface. In the more general
situation of a crystal. line solid at nonzero frequen-
cies this is no longer the case and an immediate
expansion of (2. 22) leads to indeterminate expres-
sions. For example, in the high-frequency limit
&no(z, q, in) is proportional to d)q~(z)/dz (see Ap-
pendix A), where n,q(z) is the equilibrium electron
density in the solid. Since this quantity oscillates
about a zero mean value deep within the solid, the
immediate expansion of (2. 22) in powers of q is
not possible.

A simple device which obviates this difficulty is
to consider an appropriate average of 5no(z, q, iu)
which eliminates the periodic part of this function.

f dzzen, (z, i&)
Z(SNJ =—

f dz t)n()(z, iu)

I fdz [&ng(z, iu) z6n, {z—, iu)]
(2 f dz 6n()(z, ig)

The quantity 6n, (z, iu) is proportional to the av-
eraged electron density induced by a uniform ex-
ternal electric field applied in the direction of the
inmard nor'mal to the surface and which increases
in magnitude at the rate e"'. This induced density
is highly localized at the surface of the solid and
its integrated amplitude f dz 6no(z, iu) represents
the total surface screening charge. As mill be
shown shortly, this screening charge can be ex-
pressed in terms of quantities which are charac-
teristic of the bulk.

The function z(im) is introduced in analogy with
the quantity appearing in the theory of the static
image potential in the jellium model. 6 Because of
the formal identity (2. 24), z(iu) as defined by (2.28)
in terms of 5n(z, q, iu) is the same as the analogous
quantity defined in terms of 5no(z, q, iu). The first
term in (2. 28) is simply the centroid of the induced
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If distances are reckoned from the position of
the reference plane Zo, a correction of order Z 4

will not appear explicitly in the expansion of E'~'.
Reverting to an arbitrary coordinate system, we
can write

Vs„=E ' = —C/(Z —Zo) +O(Z ) . (2. 39)

Such a representation of the interaction mill break
down sufficiently close to Zo. However, for the
separations (Z —Zo) typically encountered in
physisorption (-4-V a. u. ), Eq. (2. 39) should be
applicable. Of course, this assertion can only be
checked by explicitly evaluating E' ' without resort-
ing to the asymptotic expansion. Within the so-
caQed semiclassical infinite barrier mode1. , the
metallic response function can be obtained analyt-
ically'o' and used to evaluate Eq. (2. 15) directly.
Such a calculation" revealed that (2. 39) gave an
accurate representation of the position dependence
of the interaction down to within about one atomic
unit of the infinite barrier. While many of the
features of this model are unrealistic, this calcu-
lation suggests that (2. 39) does in fact provide a
reasonable representation of the interaction for the
separations of interest in physisorption.

In Sec. III we evaluate C and Zo for two sim-
plified model systems and use these results to es-
timate the polarization contribution to the binding
energy of rare-gas atoms physisorbed on noble-
metal surfaces.

III. APPLICATIONS

A. Jellium

dz e"' +O(u '),q „,dn (z}
lP dg

(S. 2)

We begin with an application of the results of
Sec. II to the case of a simple metal for which the
jellium model is a reasonable approximation. In
particular, we consider the adsorption of He on
such metals and evaluate the Van der Waals coef-
ficient C and the reference-plane position Z, .

In order to obtain a quantitative estimate of the
reference-plane position, we require an expression
for z(iu). An approximate expression can be ob-
tained by considering the limiting behavior of
f(q, iu) at high and low frequencies and then making
a simple interpolation between these limits.

The zero-frequency limit is known from the work
of Lang and Kohne

f(q, su = 0) —=fo(q) = (q/2v)(1 + 2q Z, + ~ ~ ~ ) . (3. 1)

Here Z, is the centroid of the surface charge in the
jellium model for a static external field. Similar-
ly, as shown in Appendix A, the high-frequency
limit is given by

f(q, iu) "oq +O-(u ')f.(q)

f„(q) =naq(1+2q Zz+ ~ ~ ~ ) (3.3)

where n~ is the electron density in the bulk of the
metal and Z~ is the position of the edge of the posi-
tive background. [According to (2. 27) it is also
the position of the centroid in the high-frequency
limit. ] We now introduce a simple interpolation
for f(q, iu) to be used for a.rbitra. ry q and which is
consistent with the known zero- and high-frequency
limits given in (3.1) and (3.2). Since f(q, iu) is an
even, monotonically decreasing function of I, it
can be approximated by the Pade approximant

f(q iu) =fo(q)f-(q}/ff-(q) +fo(q) u'] . (S.4)

Expanding this function in powers of q, using (3.1)
and (3.3} and comparing the result with (2. 27) we
find

and

rdz 6no(z, iu) =
+ sy

z(iu) = (~,', Z, +u'Za}/(u'+ &u,',),

(S. 5)

(3.6)

where &o„=&u~/v2 is the surface-plasmon frequen-
cy. Equation (3.5) is the same as the result ob-
tained using a, free-electron-like (or random-phase
approximation) dielectric function &(iu) = 1+u~/u'
in (2. 34). To the extent that m~ is the only char-
acteristic frequency of jellium, the interpolations
given in (3.5) and (S.6) should be accurate.

To complete the evaluation of Zo we require the
atomic polarizability which is expressible as

(3 7)

Here fo„ is the oscillator strength for transitions
from the ground to the gth excited state and (d „ is
the corresponding energy difference. Using
(3.5)-(3. 1) in (2. 36) and (2. 38), we find

fO ~ss
8 s ~o.(~os+ ~ss)

16C s ~os(~os + ~ss) ~os + ~ss
(S.9)

This latter equation locates the reference plane
with respect to the edge of the positive background.

Equations (3.8) a.nd (3.9) were evaluated for He
as a function of the electron density parameter, y„.
the results are plotted in Fig. 2. The values for
Z, were obtained by interpolating the results of
Lang and Kohn as a function of the density param-
eter y, . The parameters defining the He polariz-

where n„(z) is the equilibrium electronic density
profile. For the jellium model with a step-function
positive background, f„(q) reduces to
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ability were obtained from the variational calcula-
tion of Piet r and Dalgarn .'6 These latter param-
eters were found to give a good value for the Van
der %aals constant for the He-He interaction.

Since the static centroid Z, lies outside the edge
of the positive background, the reference-plane
position Zo, as obtained using (3.9), does so as
well. The significance of this result is that the
Van der Waals potential V~, can be considerably
stronger than results obtained by arbitrarily mea-
suring the adatom position from either the location
of the plane of surface atoms or from the edge of
the jellium background. ' For example, for a value
of y, equal to 2 corresponding to Al, Zo —Z~ is
1.04 a. u. Assuming that Z —Z~ for He on Al is
7.0 a. u. as given in the work of Kleinman and
Landman, the Van der %aals energy obtained from
(2. 39) is approximately 60/&& la.rger than the value
obtained assuming that Zo= Z~.

B. Dielectric solid

As our second example, we consider an insulat-
ing crystal consisting of nonoverlapping, spheri-
cally symmetric atoms. For simplicity, we shall
restrict our discussion to a simple cubic crystal
bounded by a {100)face, however the generalization
of the following analysis to other crystal structures
or surface planes is not difficult.

Our objective is again the expansion of f(q, fu)
givell ill (2. 18) ln powel's of q Because of olll' as-
sumption of nonoverlapping atoms, it is possible
to consider the response of each atom to the total
potential rather than the response of the solid to
the external potential. Thus introducing the atom-
ic-density response function g~(r, r';fu) for the
atoms in the solid, we have

f(q fu) =e' ——dr dr~ qz 0 & ~I
2i I.2

xe '""~X,(r —1, r' —1; fII)q)r(r', iu) .
(3.10)

Here l is the position vector of the lattice sites and
q)r(r'; fu) is the total potential which arises from
the external charge distribution (2. 19) and the in-
duced charges on each of the atoms. The complex
wave vector )I is defined in (2.12). Since g, (r —1,
1' —ll III) ls a fllIlc'tloI1 localized at)out tile posltloI1
1, we can expand the factors e '"' and q)r(r'; h() in
(3.10) about each of the lattice sites l. Retaining
only the lowest-order term in this expansion cor-
responds to treating the interactions between the
atoms in the solid in the dipole approximation.
%ithin this approximation, we find

f(e ) =~'*(2,) i Z "' I(T),

wlleI'e p(l) ls tile dipole Illolllellt GI1 site 1,

p(O = ~,E,(T)

+ [Eext(1) Etnd{1)]

{3.11)

(3.12)

(3.13)

L).„(1-I')-=v„v„' Ir-1')

n~ is the atomic polarlzablllty [see Eq. (2.14)] and

Er(1) is the total electric field at T. The external
field E'*'(1) due to the external cha, rge distribution
(2.19) is

E'*"(1)=- Vq),„,(r) ~;;
= —( 2/IqI) e ' i~)I e'" ' . (3. 14)

The induced electric field at 1, E"~(l), is the field
due to the dipoles on all other sites 1' c l, i. e. ,

E' (1) =Z D..(l-T')f.(T'),

where D~„(1-1') is the dipolar field
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The prime on the summation sign in (3.15) indi-
cates that the term l'=l is to be omitted. The
Greek letter subscripts indicate Cartesian compo-
nents and a repeated index summation convention
is used.

Equation (3.13) together with (3.14) and (3.15)
give a system of linear equations in the unknowns

p(l}. It is now convenient to define reduced diI)ole
moments parallel and perpendicular to the surface

p(I) =-avfe-"e'" '[p„(I)q-fp, (1)s] . (S. IV)

In terms of the variables p„(1) and p, (l) we obtain
the coupled linear equations

)»())=, () Ze'" '" "]))»,»() —)')0»()')
1'

(S. 18a)

the internal fields appears on including the next
lowest-order correction in this expansion.

To obtain the required expansions, we first sum
Eqs. (3.18) over the parallel component l„of the
lattice vector and define the quantities

(I,j = ]], I) . (3.21)

If Eg=lg, the term l,', =l„ is to be omitted from the
summation. In addition, we define the new vari-
ables

p+(I ) = 2[pl)(v +pl(v] (3.22a)

(S.22b)

In terms of these quantities Eqs. (3.18) become

I).())=, ((+2 8'""'"' '('&„„()-)')) „(i')

,))„,() i')p. ()')]) (3 (sb)

+d-().-).')) ().')]},

p (I.) = —,'~,g [d .(I.—I.')p, (I.')

(3.23a)

The notation D„,» for example, signifies q„D„„z„.
We note that due to the translational symmetry
along the surface, the solutions p„(l) and p, (l) will
only be a function of the plane index E, where

1 —ill +)gZ (3.19)

In terms of the definition (3.17), Eq. (3.11) sim-
plifies to

f(q, iu) =q' —age "[p„(1)+p,(l)]
1

=n.q'p "e'*[ p( I) +p( I)]. (S.ao)
lg

Here n, is the number of atoms per unit area in
planes parallel to the surface.

The explicit solution of Eqs. (3.18a) and (3.18b)
for a bounded solid is of course not trivial. The
dependence of the dipole moments on the plane in-
dex E, arises from the fact that the local fields
acting on the atoms in the surface region are dif-
ferent from those deep in the interior. The degree
to which the surface dipole moments differ from
those in the interior depends on the magnitude of
the parameter (an~), where n is the number of
atoms per unit volume. If this parameter is small,
an expansion of Eqs. (3.18) in terms of it is pos-
sible and the lowest-order correction due to the
internal fields can be obtained explicitly. The
leading order term is simply a„which represents
the dipole moment induced by the external field in
the absence of the internal fields. The influence of

where

+d (I, —I,')p (I,')], (3.23b)

p.(I,)= o, +-,'~', gd..(1,—I,')+O(~,') .
lg

We therefore find that (3.20) becomes

(s. as)

f(q, fu) =an~'Q e""p.(I,)
lg

sqa.~ 2 2
2

+Pl g Q&

xg ge""d..(I.-I.')+o(a,') . (3.26)
1g 1'

Here a is the interplanar spacing and we have as-
sumed that l, = —na with n=0, 1, ... . To complete
the evaluation of f(q, iu) to this order in the atomic
polarizabilities, we require the quantity d„(I,—I,)
which is to be determined from (3.24a) and (3.21).

d„(I,—I,') = d„,„(I,—I,') +d~, (/, —I,'), (3.24a)

d (I, —I.') = d„,„(I,- I,') + aid„„(I,—I,') - d„,(l, —I,'),
(3.24b)

d .(I.—I.') =d„„,(I.—I.') —aid„, ,(I, —I.') —d, ,(I, —I.'),
(3.24c)

(s. 24d)

The expansion of Eqs. (3.23) to order n, can
now easily be obtained. Since p (I,) is of order o~
to lowest order, p, (l,) is found to be
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Z(iu) =-,'a[I —ywno', (iu)+O((n&, )')] . (3.29)

We can now verify that Eq. (3.28) agrees with Eq.
(2.34). We note that the bulk dielectric function of
the solid is related to the atomic polarizability
within the dipole approximation by"

e(iu) = [1+',- wno', (iu)]/[I —,-'wno', (iu)] . {3.30)

Using this in (2. 34) and expanding to second order
in n o.'„yields (3.28).

Although the constant y depends on the crystal
structure and the surface plane, a number of rather
general observations can be made concerning the
quantity z(iu). In the absence of local-field effects,
z(iu) is equal to a/2 where a is the interplanar
spacing. It should be recalled that the origin in
this section was chosen to coincide with the plane
of surface atoms. Thus this position is analogous
to the location of the edge of an effective neutraliz-
ing positive background as in the case of the jel-
lium model. The correction to this position when
the internal fields are taken into account is seen
to be small because of the small value of y. The
smallness of y is related to the fact that the value
of the dipole moments near the surface do not dif-
fer greatly from those in the bulk. If p,{l,) were
strictly independent of I„z(iu) would be identica. lly
equal to —2a. The actual values of p, (l,) a.re some-
what smaller near the surface and therefore lead
to a decrease in z(iu). [Note that the value of z(iu)
would decrease by a if the dipoles in the surface
layer were zero. ] The reason that the magnitude
of the dipole moments is essentially constant right
to the surface is that the function d„(I,—I,') is con-
siderably larger when (,=E,' than for E, ci,'. One
would therefore expect z(iu) to be close to —,'a even
for the exact solution of Eqs. (3.23). In other
words, even relatively large local-field correc-
tions in &(iu) result in rather small shifts of the
reference-plane position.

In the zero-frequency limit u=0, Eq. {3.29)
gives the reference-plane position for the image

This function is evaluated in Appendix 8; substitut-
ing the result found there into the summation in
(3.26) we find to zeroth order in q that

~ e ' ~ d..(I, —I,) = —— (1+qa) —ywn,g p $ 2'

where y is a numerica. l constant given in (816)
whose value for a simple cubic lattice with a. (100)
face is 0.052 295.

Substituting (3.27) into (3.26) and comparing the
latter order by order with (2. 2V) we find that

dz 6no(z, iu) =2wno. ', (iu) 1 — 3' +O((no', ) )~ ~ 2wno. ,(iu) 2

(3.28)

potential of an external point charge adjacent to a
dielectric solid. It should again be emphasized
that this result is correct only to order [no.'„(0)].
However it does demonstrate that the reference
plane is shifted to a position which is closer to the
surface plane of atoms as compared to the case in
which internal fields are neglected entirely.

In the high-frequency limit no~(iu) is indeed
small so that (3.29) is seen to be consistent with
the general high-frequency result found previously.

The Van der Waals reference plane is obtained
from (2. 38) with z(iu) given by (3.29). In the limit
that no, (iu) -0, Z, is equal to —,'a. Deviations from
this position again occur because of local-field ef-
fects. However, since (2. 38) is a weighted aver-
age of Z(iu) over all frequencies, the displacement
of Zo from —,'a will be smaller than the correspond-
ing displacement of the image-potential reference
plane given by z(0). It therefore seems that plac-
ing the reference-plane position at Z~ should be a
good approximation when considering physisorption
of atoms on insulating crystals. Within this ap-
proximation, one can eqlipalent/y think of the solid
as a uniform dielectric characterized by a local di-
electric function of the form z(iu) 8(—,'a —z).

In passing, it is of interest to note that the ref-
erence-plane position Zo is exactly —,'a if the inter-
action between the adatom and the solid atoms is
taken to be a Van der %'Rais potential varying as
1/II . The magnitude of the local-field effects
gives a measure of the importance of three-body
forces, etc. , in determining the interaction poten-
tial between the atom and the solid.

C. Msorption of raregas atoms on noble metals

As our final application we consider the physi-
sorption of rare-gas atoms on noble-metal sur-
faces. The main reason for choosing to study these
systems is that their physisorption characteristics
have been investigated extensively for certain
IlletRl-Rton1 COIIlblnRtlons. In addltlony the
electronic properties of both the atoms~3 and the
noble metals a,re known quite accurately so that a
quantitative evaluation of C and Zo becomes feasi-
ble. Furthermore, although a complete metal-
atom potential has not been derived, the previous
analysis does provide an explicit expression for
the polarization contribution. If the actual equilib-
1 luI11 posltlon of the RtoQl CRn be obtRlned ol esti-
mated independently, the attractive polarization en-
ergy can be calculated using (2. 39) and compared
with the total observed adsorption energy.

In order to evaluate the coefficient C we require
the atomic polarizabilities and the dielectric func-
tions of the noble metals. The latter were deter-
mined from available optical data. In particular,
e(iu) is given by
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«z((o) —= «fz((u) + «', ((u); (3.32)

here, &~ and e,' are respectively the contributions
from "free" and "bound" electrons. «~z(~) is sim-
ply taken to be &u&&/[u r(&u2 + T z)], where &u&z& and
7 ' are experimentally determined pa.rameters.
(Lifetime effects can be neglected numerically
when performing the frequency integrals along the
imaginary frequency axis. ) Equation (3. 32) then
defines «z((d) as the remainder; it represents the
contribution from interband (primarily d electron)
transitions. Using the definition (3.32), we can
also define

«(iu) -=1+ «~(iu) + «, (iu) . (3.33)

While this division of «(iu) is not necessary for
evaluating C, it turns out to be convenient to do so
m'hen determlnlng Zo,

The frequency-dependent atomic polarizabilities
were approximated by functions of the form (3. 7)
consisting of only a, few terms (four in the case of
He and two for the other rare-ga. s atoms). The ef-
fective oscillator strengths and excitation frequen-
cies to be used in these expressions mere obtained
from Ref. 23. These effective polarizabilities
give accurate Van der %aals coefficients for the
rare-gas atom-atom interactions and should there-
fore be satisfactory in determining the metal-atom
polarization energy.

Kith this input the constants C mere evaluated
using Eq. (2. 36) for the various rare-gas-atom-
noble-metal systems. The results are listed in
Table I. The value of C eras found to vary by about
an order of magnitude on going from He through to
Xe for all the metals studied. This variation es-
sentially reflects the larger polarizabilities of the
heavier rare-gas atoms.

The reference-plane position Zo was determined
in the following may. The division of the dielectric
function into free- and bound-electron parts [see
(3.33)] suggests that a noble metal can be consid-
ered as a two component system. The free-elec-
tron component dominates the lorn-frequency re-
sponse of the metal, that is for frequencies less
than (d», mhile the bound-electron component dom-
inates at frequencies u & ~~f. As a simple model of
the metal, we shall therefore consider the free-
electron component as being represented by jel-
lium with r, = (3/uP»)'~ . In addition, the system of
ion cores mill be considered as an insulator with

2
"

(u «z((u)
«(iu) =1+ — d~ z z

0 (d +n

where «z(~) is the imagina, ry part of the observed
dielectric function and gives the distribution of
osciQator strengths for the electronic excitations.
Empirically, it is found that «z(&u) can be divided
into two parts

conductivity o~(i u). This latter idealization corre-
sponds to the model studied in Sec. IIIB.

The surface screening charge density 5no(z, iu)
for this combined system is then the sum of the jel-
lium screening charge and surface polarization
charge of the dielectric. As can be seen from
(2.31), the magnitude of the jellium and dielectric
screening charges is proportional to the respective
conductivities of the two components. Further-
more, for the purpose of this discussion, ere ap-
proximate z(iu) by the centroid of the total screen-
ing charge [see discussion following (2. 28)]. With
this interpretation, z(iu) is simply a weighted av-
erage of the centroids for each of the components,
with meights proportional to the respective conduc-
tivities. We therefore have

(. )
«y(iu) z~(iu) + «„(iu) z, (iu)

«, (iu) + «, (iu)

For the free-electron centroid z~(iu) we shall
take the jellium result (3.6). Similarly, we as-
sume that z, (iu) is given by an expression of the
form (3.29); for the noble metals, it is sufficient
to assume that z~(iu) = Zs for all frequencies since
n&~ is small. ' These choices are of course ap-
proximations to the correct zz(iu) and z, (iu); the
presence of a polarizable dielectric mill in fact
modify the centroid of the jellium component as
compared to the result obtained in its absence.
Nevertheless, these choices should be reasonable
interpolations. For example, the lorn-frequency
limit of (3.34) is Z„ the centroid of the jellium
surface charge in the presence of a static external
field. This result is essentially correct, since the
field at the position of the ion cores is almost com-
pletely screened by the jellium component. Thus,
the polarizability of the ions can only have a small
effect at u=0. Similarly, for u~&@», z(iu) reduces
to Z» the appropriate centroid for a dielectric
solid.

Substituting (3.34) into (2. 38), the reference-
plane position mas evaluated for all the rare-gas
atom-noble metal combinations. The values of Zo
relative to Z~ are listed in Table I. Considering
the large variation in the atomic polarizabilities,
it is clear that Zo is relatively insensitive to vari-
ations in this quantity. However, there is a more
pronounced variation of Zo with the dielectric func-
tion of the metal. Since the bound-electron dielec-
tric function increases from Cu to Ag to Au, t,

'3. 34)
shows that the value Z~ receives an increasingly
larger meight, leading to a reduction in Zo. This
variation. is clearly evident in Table I. Although
the values of Zo appear rather small, they none-
theless can have an important effect. Since the
equilibrium atom-metal separation is expected to
decrease mith decreasing atomic freight for the
series Ne-Xe (based on the equilibrium separa-
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TABLE I. The Van der %'aals coefficient C and reference-plane position Zp measured
relative to the positive background edge for various rare-gas atoms on the (111) surface of
the noble metals. All values are given in atomic units.

He

C Zp C Zp C Zp C Zp C Zp

Cu 0.0558 0.4174 0.1120 0.4044 0.3723 0.4889 0.5232 0.5178 0.7650 0.5584

Ag 0.0617 0.3714 0.1244 0.3582 0.4025 0.4459 0.5613 0.4765 0.8127 0.5196

Au 0.0679 0.2942 0.1374 0.2826 0.4384 0.3577 0.6088 0.3843 0.8762 0.4224

tions in the rare gas solids), it is clear that it is
relatively more important to accurately determine
the reference-plane position for the lighter atoms
when evaluating the polarization energy from (2.89).

To complete the estimate of the polarization con-
tribution to the binding energy we require the equi-
librium position of the atom on the surface relative
to the reference-plane position Zo. For the ease
of Xe on the (111) face of Ag the equilibrium posi-
tion relative to the plane of surface atoms (denoted
as s in Fig. 1) has been measured to be 6. 81 a. u. a2

This separation is very close to the sum of the
covalent radii of the Xe and Ag atoms (6. 84 a. u. ).
Since the covalent radii of Ag and Au atoms are
very similar (r„,=2. 89 a. u. ; r„„= .284a. u. ) and
since the lattice spacings of the metals are nearly
equal (d„g='1. 72 a.u. ; d„„=V.'fl. a. u. ), it is rea-
sonable to assume that the corresponding separa-
tion of Xe on Au is also -6.81 a. u. For lack of
an unambiguous procedure for estimating the equi-
librium position in terms of either the covalent
radii or the lattice spacing, we have also used
6, 81 a. u. as the equilibrium position of Xe on Cu.
Since the covalent radius of Cu is smaller than that
of Ag, the actual equilibrium separation is prob-
ably somewhat smaller. In this case, the esti-
mate of the polarization energy for Xe on Cu should
be a lower bound. Since the equilibrium separation
for the other rare-gas atoms on the metals cannot
be estimated with the same confidence, we shall
restrict our discussion of the polarization energy
to the example of Xe. Similar experimental de-
terminations of the equilibrium sepaxations for the
other atoms would clearly be of value in establish-
ing trends in the polarization energy.

Using these estimated equilibrium positions of
Xe on the (111) face of the noble metals, the polar-
ization energies were calculated and are listed in
Table II. These values are rather similar for all
the noble metals, being close to 0.3 eV. If the
reference-plane position had arbitrarily been
chosen to coincide with the background edge Z~, the
values of the polarization energy would typically
have been 30% smaller.

If the polarization force were the only attractive
component of the metal-atom interaction, the po-

IV. CONCLUDING REMARKS

In this paper we have defined and approximately
calculated the reference-plane position Zo from

TABLE II. The polarization energy, V~0&, for Xe
physisorbed on the (111) surface of the noble metals.

C (a.u. ) (Z~-Zp) (a.u. ) —V~( (eV) E~E (eV)

0.765 ~ 0.27 0.23

Ag 0.813

AU 0.876

*Reference 21.

4.10 0.32

0.34

0.3b

Reference 22.

larization energies in Table II would provide an
upper bound on the binding energy (or heat of ad-
sorption). The fact that the calculated values of
t V„, I are larger than the experimentally deter-
mined binding energies is consistent with the fact
that the total interaction also includes a repulsive
part. Work on the theory of the repulsive energy
is currently in progress.

Before closing this section we would like to ern-
phasize a number of points related to making a
comparison between the theoretical and experimen-
tal values of the energy in Table II. The theoreti-
cal value is the polarization contribution to the
total binding energy for a single atom interacting
with a perfect (111)face of a noble metal. Experi-
mentally it is known that the heat of adsorption de-
pends to a certain extent on both the surface struc-
ture of the metal ' and the degree of coverage of
the adsorbed species. ' Thus, it is clearly im-
portant that a well-chara. cterized surface be used
in adsorption studies and that the zero-coverage
limit of the binding energy be determined. The
value of E~E for Ag quoted in Table II is that for a
monolayer coverage; strictly speaking it should
not be used as a basis of comparison. Similarly,
the binding energies of Xe on Cu and Au were ob-
tained without specifying the surface structure and
therefore the assumption of a, (111)fa.ce introduces
additional uncertainties. Further experimental
studies, for which these parameters are well de-
fined, would clearly be of value.
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We would like to thank Dr. A. Dalgarno for pro-
viding Ref. 23 which contains the parameters de-
fining the rare-gas atom polarizabilities.

APPENDIX A

In this appendix we investigate the implications
of the conservation of charge on the question raised
in Sec. II concerning the expansion of f(q, iu) in
powers of q. This conservation law provides a
relation between the density-density response func-
tion and the current-current response function,
namely,

ua)t(r, r'; iu) = v„V„'[5,„n„(r)&(r —r') —y,„(r, r'; iu)],
(Al)

where n„(r) is the equilibrium electron density of
the solid and the current-current response func-
tion is defined as

}t„„(r,r'; iu) = i dt e "'([j (r, t),j„(r',0)]) . (A2)

The induced density 5n()(z, q, iu) can be obtained
from (Al) using {2.21). The first term on the
right-hand side of (Al) gives a contribution to be
denoted a.s 5n(I') (z, q, iu) which comes from the lead-
ing order term in a high-frequency expansion of
g(r, r'; iu). We find

(AS)

..( ) = —,fdv ..( )

which the Lifshitz polarization force exerted by a
solid on an atom is to be reckoned. Although this
answers one important question in the theory of
physisorption, a number of equally important is-
sues require further work. These include a more
satisfactory theory of the repulsive forcesv; a good
treatment of the spatial variation of the interaction
potential along the surface, which establishes the
actual equilibrium position of the adatom on the
surface; and finally, a unified treatment of the en-
tire interaction energy which does not make the
separation into distinct attractive and repulsive
components.

We mention also two minor corrections. In the
calculation of the polarization interaction between
two semi-infinite solids, it is known that second-
order perturbation theory fails and it is necessary
to treat the interaction self-consistently. '3'~7'~8

For the surface-atom systems under consideration
in this paper, the seU-consistency corrections are
found to be less tha. n 10%) (Appendix C). Another
well-known correction is for relativistic effects. 2'3

At the short distances considered in the present
context, these also are negligible.

ACKNOW( LEDGMENT

dz [n„(z) -n, e(Z, -z)j =0 .
CO

(As)

It is clear that Z~ is the edge of the uniform posi-
tive background required to neutralize the total
electron density. Equation (A5) is applied in Sec.
III to the example of the jellium model, although
the above derivation shows that it is a general re-
sult applicable to any semi-infinite solid.

The second term in (Al) gives the contribution

1 QZf' '{q, iu) =- —
a dz dz'e" e'*

px KuKv gvv(z) z ) q) q) tu) (AV)

Here, the Fourier components }t „(z,z', q, q; iu) are
defined as in (2. 1V). In the following it is conve-
nient to abreviate this quantity to }t,„(z,z', q). Fol-
lowing the discussion in Sec. II we note that

dz'e" e" p~„z, z', q +0 q~),

where

if+a/8 1 z'+c/2

X,„(z,z', q) -=— dz — dz'}t,„(z,z', q) .a ~ ~/p a
(A9)

The use of 7{',„„in the following again avoids diffi-
culties with the use of the actual mlcroscoplc re-
sponse.

We now define

)I((z i z, q) =—K K„)t v(z zvv) q)) (A10)

=q.'X (z,z', q) +q,'X„,(z,z', q)+q'X,.(z,z', q)

+q„q [y,, (z, z', q) + }t „(z,z', q)]

+iqq, [g„,(z, z', q) —g {z,z', q)]

+iqq, [g„(z,z', q) -}t„(z,z', q)] . (All)

Assuming that the system is invariant under re-
flection in the g —z and y —z planes, the diagonal
components of g „(z,z', q) are even functions of q,
and gyp l, e.

p

is the equilibrium density averaged over the sur-
face area. To obtain 5n"'(z, q, iu) we must apply
the averaging procedure defined in (2. 23) to (AS);
the resulting quantity can then be expanded in pow-
ers of q. However, since we only require f(q, iu)
to second order in q, we can evaluate f{q,iu) by
simply averaging dn„{z)/dz [see Eq. (2. 24)]. Doing
so, we find that

f "'(q, iu) = (naq/u')[I + 2q Za+ 0(q')], (A5)

where n& is the mean total electron density in the
bulk of the solid and Z~ is defined as that position
for which
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xgg{z) z dqggqg) xgg(z) z g qg) qy)

= X)dg(z) z, q„, —qg) ) (A14)

X (z, z ', q., q, ) = X (z, z', -q„,q, )

= X„„(z,z ', q„, —q„), etc. (A12)

Similarly, X,„(z,z', ((I) is an odd function of both q,
and qyy

Xgy(z)z )qg)qg) = Xgg(z)z g qg)qg)

= —x„,(z, z', q„-q,), (A13)

as is also X (z, z', q„, q,). Finally, we note that

~ ~' —,
' +,', X., z, z, O

8 8
+2q dzz da' —+, g„z,z', 0 +0

(A19)
Similar results are obtained for the terms involv-
ing X„(z,z', q) and X (z, z', q). Thus we find that

g"'(g, )= „;(rddg(*)+d, d

dzzg z, iu +0 q, A20

with similar relations holding for x„(z,z', q„q,).
Thus, on expanding x„„(z,z', q) in powers of q (a,s-
suming such an expansion to exist) and using the
above results, we see that the diagonal terms in
(All) involve powers of q', q4, etc. ; the fourth
term begins with a term of order q4 and the last
two terms begin with terms explicitly of order q'.
Furthermore, we make use of the facts that the
following integral of a diagonal component

where

x [X„(z,z ', iu) + X,(z, z ', iu) j .

X,(z, z', iu) -=X,.(z, z', o) (A22)

(A15)

tends to a constant as z - —~, while the integral

(A16)

for example, tends to zero. Thus, on expanding

r dz f dz'e" e" )ld(z, z', q) to order q, only the di-
agonal components of X„„(z,z', (I) are required. In
particular, we find that

q dz dz e"e" g„z,z, q

x „(z,z ', iu) =- x„„{z,z ', 0) = x„{z,z', 0),
with explicit dependence on the frequency restored.
We have also assumed that the x and y directions
are equivalent. Using the definitions in (2. 27), we
see that

(A24)

and

(' )=(g +rd*dg(')) {( rd, g( +))d. d(d?5)

dz dz —+, x„(z,z, 0) ——q
2 ~z ~z

X,.(z, z', 0) =X„(z',z, 0), (A18)

we see that

4z 6fz e e Qgg zyz yq

x 4gz z+z + g gggzyz y0 +Oq

(A17)

Noting that time-reversal symmetry implies

Equating the quantity on the right-hand side of
(A24) to (2. 34), we can write

z(iu) —Zz =
z . dz (z —Zz)g(z, iu) .

u' e(iu) + 1
f(iu —1

This of course is only a formal definition of z(iu)
in that the quantity g(z, iu) is in general unknown.
However, this expression may prove to be a prac-
tical method by which to calculate z(iu).

Having realized that only the diagonal elements
of X„„(z,z', (I) are needed to the required order in

q, we can also evaluate 5no(z)(z, q, iu) using (2.21)
and (Al). In particular, we find

(,g, )= —, dd, g„(, ', ')+ —g(, l') g »» », g„(, ', ')» X,(,*, ')) ~

(A27)
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Comparing this with (2. 25}, we have troid of the surface screening charge is

()Hl" (, )-=—,' Hx' x, x„(*,*', ) ~ —, x.(, ',
))D

p ~ i(&)Xn(J)«)Zl») =
x Xll(J)(Z)Z l2u) .

ez Bz

and

5n,(2) (z, iu)

(A28a)
Since we have not been able to determine whether
or not this relation is satisfied, the identification
of z(iu} with the centroid has not been possible.

APPENDIX B

(A28b)

Using these expressions, the condition that the
identity

Here we give the evaluation of the sums required
in (3.21), that is,

I

d»(lq —IR') =e'"R 'H' e"' » '" D»(l, l

—1,'„ lq —I,')

(al)

Hx, lail" (*, )''f'H=(x) P'(*, i )
~ ~

be satisfied and therefore that z(iu) be the cen-

eq(!H' IR) S-(I Ix)

Case i: lz Alz

Defining r=p+z z with z Wl,', we have

(B2)

II

flop

[(p —p')'+ (z —I,')']'";. ';=I

[(p —p')'+ (z —I,')']"' a

—2)/n g ' "e "R'~ I )I'k k
g g

h

k*k*
277(/ ""e+ gz y g g

h

(B3)

where we have defined the quantities

and

A A

K=II+Qa x Qa=Qall/I+QRJ(Z "V}

d„(l, —l,') = d„„(l,—l,') + d~ J(l, —l,')

The specific quantity required in Sec. III is
d.,(I, —I,'):

(B4)

(B5)

Case ii: lz =lz

It was found that the value of S„„(0)could not be
obtained from the results of case (i) by simply sub-
tracting the divergent contribution coming from
1 =1',. However, S,„(0) could be obtained using
Ewald's method in the following way. Define

I
eI ' D (I- I') (B7)

where the summation extends over an infinite lat-
tice with the point l =l' excluded. Then we see that

s„„(0)=r,„gs,„(I,—I,') . - (B8)
l gl~lg

Q2 e-KIIH-lqxl q(!'R IR) (B-8}hj.
h%

The sum in (B7) was evaluated using Ewald's
method~9 with the result

g ((I+ }.((I+G)H -IRHGI'/4R 4 QRqq /4Rq-
lq+G I

~ R X„„+R Qe"' " "(H(R() — H (Rl)) ~ ()„, H'(Rll-.'— (B9)
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Here 0 is a three-dimensional reciprocal-lattice
vector and

2 1 " -.2H(x) = —— (fye '
&~x (810)

H'{x) and H"(x) are the first and second deriva-
tives of H(x), respectively, and R is an arbitrary
number. Expanding T„„in powers of q we find

APPENDIX C

Here we present a somewhat more general
formulation of the solid-atom polarization interac-
tion with the purpose of determining the impor-
tance of treating this interaction self-consistently.

We begin with the Ha, miltonian {2.1) with a cou-
pling constant A.;

where we have noted that

~R + —Q H"( R/)+ ~H'(Rl)
146

4' g .o2q4sa 4vn

Furthermore the sum in (86) can be evaluated us-
ing (83) with the result

(812)

g P ea'" d,.(I, —f.')
iz l~g

=P Pe ("""S,.(f, -f,')
4

xg Q))~ -r]], );]-
K

1 4''Pg ~ QQg((+qg . . . ) — -2 n~ . ' ~".)2' 3 „~ e&~a- f

a@~ ~ aQ,
q

~ "4—1 ~(e'~ —()' )
1 2'™(I +qu+ ~ ~ ~ ) yen+0(q), -3

QS„„(l,—l,') =-2',g " " " "
x, . (813)E e~' —1

Using (Bll) and (813) to evaluate d„(0)=S„(0), we
find

d„(0)=- —2vn~ o
" +O(q) .4&Pl ~ CQ p,

3 ~e ~.-~
With the results (86) and (814), we can now

evaluate the sum appearing in (3.26) to zeroth or-
der in q. Specifically, we find that

The interaction energy between the atom and solid
ls

~E„=E„(Z)-E„(Z= ),
where E~(Z) is the ground-state energy of Hamil-
tonian (Cl) at a separa. tion Z. Since E„(Z=~)
=Eo(Z), the Feynman-Hellman theorem gives

4E, = dA. 4, V„C, , (C3)

where 1)I(„}is the ground state of the Hamiltonian

(Cl). Neglecting the electrostatic pa.rt of the in-
teraction in (C3), the polarization energy is given

by
1

V~„=— dX dr dr'v r-r' 4)t 5n' r 5n r'
0

(C4)

yr dr'v r-r' —"g„' r, r';su .
0 (C5)

In Eq. (C4), the density fluctuation operators are
defined as

6 "'(~) n" (~=-) -(e, ~n" (&) ~4„) .
The response function appearing in (C5) is again
defined analogously to the one appearing in (2. 9),
that is,

i,'.(7;i';i ) if d(e"'('i, ][n'=(r, i), n'(P)]]eg.
(CV)

The evaluation of the polarization energy is thus
reduced to the calculation of the response function
g' (r, r'; iu). This quantity can be calculated with-
in a self-consistent field approximation. Schemat-
ically, this approximation implies that g satis-
fies the integral equation

(C6)

where g, and g, are the response functions of the
solid and atom, respectively, evaluated when A. =0,
and p is the Coulomb potential. The solution to
(C6) can be obta. ined in the dipole approximation.
Substituting this solution into Eq. (C5), one ob-
tains, after some algebra, the result

For the example being considered of the simple
cubic crystal with a (100) face, the sum in (816)
is equal to 0.052295.

V„, = —ln 1 —&iu Eiu, Z

x [I —2o((iu)F(iu, Z)] ) .
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Here o.'(iu) and E(iu, Z) have been defined previously
in Sec. II. If the product n(iu) E(iu, Z} is sma. ll,
this result clearly reduces to (2. 15). Since o'(iu)
and E(is&, Z} achieve their maximum values at
gg =0, it is sufficient to consider this particular

value of the frequency. Evaluating 2n(0) E(0, Z)
for Xe on a metal surface at a value of Z =4 a. u.
gives 0.1. Thus corrections to (2. 15) from self-
consistency are indeed small for the systems of
interest in this paper.
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