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The recent experiments of Kummer et al. , as well as Collan and Halperin et al. , on the melting curve of 'He

are analyzed with a localized Heisenberg Hamiltonian. They can be described consistently only with

ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange constants that imply a

positive Weiss constant, 6 = 1.04 mK. These exchange constants can only with difficulty be made consistent

with those derived previously with the same Hamiltonian from experiments at smaller molar volumes.

In a recent Letter' Kummer et nl. reported a
magnetic field-temperature phase diagram of
solid 'He on the melting curve. We have fitted
this phase diagram with a Heisenberg Hamiltonian

H/ke =H, +H2 (1a)

where

(lb)

and
E

H2
———yHO I'; (lc)

Here, y = 1. 556 x10 ' 'K/G, I"=-,'o~ with o" being
Pauli matrices, Ho is the external magnetic field,
T is the absolute temperature, and k~ is Boltz-
mann's constant. g„(g„,) is a sum over nearest-
neighbor (next-nearest-neighbor) pairs of lattice
sites i,j in a bcc lattice. The fit could only be
made with A, & 0 and A & 0; i. e. , ferromagnetic
nn and antiferromagnetic nnn exchange constants.
The resulting Weiss constant is positive. All
other known data of 'He on the melting curve can
be represented within the experimental accuracy
by the same values of A, and A~. In a previous
publication~ we have analyzed all data on solid
'He at smaller molar volumes (21 v ~ 24 cm'/
mole) by the same Hamiltonian (1). There it was

found that these data could be represented within
their experimental uncertainties by four indepen-
dent sets of A, and A2 among which were the con-
ventional one (set I: A, &0, A2 &0) supported by
exchange calculations and a set similar to the one
quoted here (set III: A, &0, Az &0), although an
entirely different representation of the data, not
based on the Hamiltonian (1), could not be ruled
out. In view of this unclear situation, it is im-
portant that the analysis to be presented here of
the new data of Kummer et al. permits one to cor-
relate all existing data on the melting curve of
solid 'He consistently on the basis of the Hamil-
tonian (1). The values found for A, and Az, which
would point to an antiferromagnetic class-2 (AFz)
type of magnetic structure at least on the melting
curve, are not inconsistent with those of set III
of Ref. 2. However, to make them actually con-
sistent in a reasonable manner presents such dif-
ficulties that either some experimental data are
incorrect or have been interpreted incorrectly,
or the Hamiltonian (1) cannot describe the mag-
netic behavior of solid 'He over the entire volume
range that has been studied.

We now present further details concerning the
above statements.

We shall use, wherever possible, results from
high-temperature expansions for our theoretical
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FIG 1 ~ H p- T phase diagram for solid He. The points
are the experimental data of Ref. 1. The dashed line is
computed on the basis of a high-temperature expansion
using the Hamiltonian (1). The solid line is the phase
boundary between a paramagnetic and an AF2 spin-flop
phase, computed on the basis of mean-field theory with
the T values of the phase boundary rescaled to give the
correct zero-field transition temperature.

analysis of the data. However, with the exception
of Eq. (2), derived by us, the only relevant high-
temperature results available for the Hamiltonian
(1) are for Ho=0. Therefore, we have supple-
mented the high-temperature results, where nec-
essary, with results derived from mean-field
theory. We emphasize that we use mean-field
theory only for qualitative, not for quantitative
predictions.

The data of Kummer ef al. are shown in Fig. 1.
We interpret the upper three points —as was sug-
gested by Kummer et al. -as representing the
peak in the specific heat in the paramagnetic phase
and not as a phase transition. The lower points
are taken to be on the phase boundary of a para-
magnetic to spin-flop phase transition. As sug-
gested by the experimental points, we take the
upper part of the paramagnetic C,-peak curve to
be very close to a linear curve in T. It is not
possible to use a high-temperature expansion to
verify the quasilinear behavior since, owing to a
lack of convergence of the series, this expansion
predicts a linear behavior only down to about 4 mK;
i.e. , below 4 mK the high-temperature expansion
neither confirms nor contradicts the assumption
of quasilinearity. However, mean-field theory,
which agrees very well with the high- temperature
expansion above 4 mK, predicts a continuation of
the linear behavior down to near the phase boun-
dary, including the region of interest to us here.

The assumption of linearity being made, it re-
mains to determine the slope and the intercept of
the straight line. For this we can use the high-
temperature expansion for the C, peak in its asymp-

totic region, where only two terms are needed.
To compute these two terms, we make a high T,
but arbitrary Ho, expansion of the e " '& where
e "& was expanded in a power series in 1/T while

was not expanded. Then for large T the
position of the specific heat maximum is given in

the Ho- T plane by

/HO = 2XT+ 2Q (2)

Here, A. , the slope of the trajectory in the Ho T
plane, is given by the equation Xtanh~=1, leading
to X = 1.2, and n, related to the intercept with the
T axis is given by o = —2 (3~ —1/a) c/& =- 3.843c,
where the unknown constant c = A, + —,A2 (cf. Ref.
2). With the slope given by X, a. reasonable repre-
sentation of the C„-peak curve is given by the
dashed line of Fig. 1, which has an intercept with
the T axis that yields a value for c=0.26 mK.
We estimate the error in c, due to experimental
as well as theoretical uncertainties, to be about
+0.06 mK. The arrows in Fig. 1 indicate the
shift of the dashed line consistent with this error.

In order to determine the phase boundary, we
have to find A, and A2. To do this, a second re-
lation between A, and A~, in addition to that given
by c, must be found. This can be achieved in a
variety of ways, all leading to equivalent results.
The easiest way is perhaps to determine, what
we have called before in Ref. 2, d=A, +-,A~ from
recent experiments on the melting curve by Col-
lan and Halperin et al. ' These experiments
have yielded two different values of d. Collan
found d=0. 64 mK, while a va, lue of d=1. 1 mK
is obtained from the experiments of Halperin et
n/. Both values of d are consistent with those
found previously at smaller volumes (cf. Ref. 2).

(a) We first discuss Collan's value of d. Using
that solution of the equations for A, and A2 which
gives a correct zero-field phase transition tem-
perature, v we find A, =0.656 mK and A2= —0. 528
mK. These values are consistent with other mea-
sured quantities on the melting curve. Thus,
Collan determined e = A,'+,'-A~ —9A, A2 =2. 65
+ 0. 6 mK' while we find e = 2. 22 mK' with the
above values of A, and A2, which is well within
the experimental error. We shall now calculate
the entire Ho-T phase boundary, using high-tem-
perature, results where possible. From the high-
temperature work of Pirnie et al. , we obtain the
zero-field transition temperature T, =1.03 mK,
which agrees very well with that found experimen-
tally. Furthermore, with spin-wave theory we
obtain the critical field at T=O, H, =7000 G.
Since there are no high-temperature results avail-
able to determine the phase boundary for How 0,
we use mean-field theory to calculate an approxi-
mate phase boundary between H, and T,. Now
mean-field theory gives a phase boundary between
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an AF2 spin-flop phase" and a paramagnetic phase
specified by

2h
in[1+ 2h)/(1 —2h) J (3)

where f = —T/6A2 and h = —yHJ(16A, +24A~) for
A, & 0 and Az/A, & —&. We cannot use Eq. (3) di-
rectly to obtain the phase boundary since (3) gives
a (mean-field theory) zero field T, = 1.58 mK in-
stead of T, =1.03 mK. Thus we rescale the mean-
field T axis with the high-temperature value T,
=1.03 mK, such that the mean field T, from Eq.
(3) agrees with the high-temperature value. A

similar scale change on the Ho axis is not nec-
essary since mean-field theory gives the correct
value for the critical field H, . The resulting
phase boundary is given by the solid curve in
Fig. 1 and can be expected to be a reasonable
representation of the actual phase boundary. We
stress that the only feature from mean-field theory
that is actually needed to supplement the high-
temperature results in our comparison with ex-
periment is that the behavior of the lower part of
the phase boundary near T, is very steep. The
agreement with experiment is striking but per-
haps misleading since there are certainly 4% un-
certainties in the quoted experimental tempera-
tures while the T, value given by the high-tempera-
ture expansions is at least that uncertain.

(b) The second value of d leads with c=0.26
m K to A& = 0.8 23 m K and A2 = —0. 751 m K. We
now find e =4. 82 mK and H, =1.56 x10 G.
Although the value of e is much larger than the
experimental value e= 2mK', it is not necessarily
inconsistent with the experimental value due to
the large uncertainty in e. The phase boundary
between the AF2 spin-flop phase and the para-
magnetic phase has now been moved upwards so
that each Ho value is about twice as large as in
Fig. 1. However, the temperature uncertainties
quoted above still allow the phase boundary to be
consistent with the experimental data, although
the agreement is clearly not as good as under (a).

We now turn to the question of the consistency
of the A's and related quantities on the melting
curve (molar volume v = 24. 25 cm'/mole) with
those determined previously for smaller volumes.
The only set of A's that need be considered is the
set III of Ref. 2 with A, &0 and A2&0, AF2 or-
dered structure, and negative Weiss constant.
There A, =0.094, 0. 16, and 0. 18 mK and A2
= —0.48, —0. 73, and —0. 77 mK for v = 23. 34,
23.88, and 24. 0 cm3/mole, respectively. ' The

A's were determined from four parameters, a,
b, c, and d, that were directly deduced from ex-

2 3 2 3periment: a=A, y, +4A2 y2, b =A, y, +-,A2 y2, and
c and d have been defined above. Here y,. =d(ln
(A,. ()/d(lnv), d(d)/d(lnv) =2a and d(c)/d(lnv) = b.
The values of a and d at smaller volumes are con-
sistent with those at v=24. 25. Also, the values
of e given above are consistent with those found
by Dundon and Goodkind at lower molar volumes. "

There are difficulties, however, with the b's
and c's. The b's have only been determined from
pressure measurements by Kirk and Adams' over
a limited range of volumes, viz. , 23.34» v» 24. 0,
and found to be negative and decreasing: b = —3.6,
—3.8, and —5. 7 mK for v=23. 34, 23.88, and 24. 0
mK, respectively. The c's, as deduced by Kirk
et a/. "from a susceptibility experiment over the
range 21» v» 24, are negative. ' Since for v
= 24. 25, c = 0.26 m K, c must make a very con-
siderable increase and b must become large and
positive-b =—30 mK or larger —over a relatively
small volume range in order to allow a change
from a negative value at v=24 to c=0.26 rnK at
v=24. 25. (Since c is directly related to the
paramagnetic Weiss constant, 8 = 4c, a change
of sign in should occur in the interval 24 & v
&24. 25. ) Although such large increases in h and
c in the interval 24&v &24. 25 cannot be ruled out
a priori, they do not seem too likely. " If these
difficulties with b and c are taken seriously, one
is inclined to doubt the possibility of describing
the magnetic properties of solid 'He over the en-
tire volume range on the basis of the Hamiltonian
(1).

Alternatively, one could doubt the accuracy of
the c values and, to a lesser extent, of the b val-
ues for v» 24 and stress the consistency of the
other quantities a, d, and e. Then one could still
hope that the behavior of solid 'He can be de-
scribed consistently by the Hamiltonian (1) with
one, albeit unconventional, set of A' s: Ag &0 and

A2 &0 for at least 23. 34 ~ v ~ 24. 25 cm'/mole.
Even if one takes this point of view, it is unclear
to what extent the Ha. miltonian (1) is not merely
an effective Hamiltonian, and the AF2 spin-flop
structure is actually the structure of solid 'He
at low T. Clearly more experiments, especially
pressure measurements in the region v ~ 24 and
susceptibility measurements for all v, would be
helpful to clarify further the present situation,
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