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Coexistence-curve singularities in isotropic ferromagnets
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The critical behavior of a classical isotropic ferromagnet (n ) 2) is studied to first order in e = 4 —d. Using
renormalization-group recursion relations, we obtain expressions for the equation of state and longitudinal

susceptibility which describe singular behavior both at the critical point and on the coexistence curve. It is
found that, although the diverging susceptibility on the coexistence curve should not be expected in real magnetic

crystals, it can produce a large effect on the initial susceptibility measured below 'I', in hexagonal layered
crystals such as CrCl, . Specifically, we find that the susceptibility should diverge as T~ T, from below as

ith y' y + 0.79 2. 12.

I. INTRODUCTION

Isotropic magnetic systems with continuous ro-
tational symmetry behave rather differently than

simple Ising-like systems below the Curie tem-
perature. ' In particular, it is expected that the
initial susceptibility is infinite everywhere on the
coexistence curve. As the magnetic field h tends
to zero for T& T, , spin-wave calculations, "for
example, indicate that the longitudinal suscepti-
bility y~ diverges as h.

' ' in three dimensions.
More generally, it is expected from renormali-
zation- group arguments"' and the spin-wave re-
sults' that

as h- 0+ with T& T, , where e = 4 —d (d is the dim-
ensionality of space). Of course, at T, the long-
itudinal susceptibility diverges according to

(S.2)

as It- 0+, a result which follows from the usual
scaling description of a critical point. " This
state of affairs is summarized in Fig. 1. We pre-
sent here a calculation of y~ for an isotropic, con-
tinuous spin model of Heisenberg critical behavior.
Our calculation gives a complete description of the
vicinity of the critical point to O(e), and exhibits
both the divergences (1.1) and (1.2) discussed
above. Results are also obtained for the equation
oi state.

The pioneering calculations of thermodynamic
functions by renormalization-group methods were
doneby Brezin, Wallace, and Wilson. "'These au-
thors used a direct Feynman-graph approach' to
calculate the equation of state of an Ising (n= 1)
ferromagnet to 0(e'), ' and went on to calculate the
corresponding quantity for systems with continuous
symmetry (n ~ 2)."Work along similar lines ha. s
been reported by Avdeeva and Migdal. " However,
an infrared divergence led to difficulties in cal-
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FIG. 1. Different kinds of divergences in a Heisenberg
ferromagnet. On the critical isotherm, the longitudinal
susceptibility XI behaves as h ' ' ~, while as h 0 at
fixed T & T„Xz goes as h ' ~. The coexistence curve is
the shaded line.

culating the longitudinal susceptibility. " It was
then argued that this anomalous infrared behavior
led to the expected h ' ' divergence on the co-
existence curve. " The diverging susceptibility
along the coexistence curve and at the critical
point can be thought of as an example of crossover
critical behavior, which is usually associated with
the competition between two fixed points. " Re-
cently, techniques have been developed which allow
a systematic treatment of such problems using
renormalization- group recursion relations. '-'"
A similar approach will be taken here.

The usual scaling theory of a Heisenberg ferro-
magnet can be combined with ideas developed in
phenomenological theories of crossover scaling. '"'"'
Given a ferromagnet with magnetization M in a
field h, the usual Griffiths"" form for the equation
of state near the critical point is
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h/M = f (t/M't ), (1.3)

where t = (T —T, )/T, . The coexistence curve is
described by a zero of f(x), at x= x(0. Thus
magnetization in zero field is predicted to vary
as

(1.4)

below T, . To describe the coexistence-curve be-
havior of the longitudinal susceptibility for n) 2,
we now assume in addition that f(x) is singular at
x, namely,

However, we discover that, if the symmetry-
breaking perturbations are irrelevant variables,
they can lead to an enhanced critical exponent y'
describing the divergence of ~ as T, is approach-
ed from below. For hexagonal layered crystals,
such as CrCl„we find y'=y+ 0.79= 2.12.

II. RECURSION RELATIONS FOR n ~)2
Consider an isotropic Landau-Ginzburg-Wilson

Hamiltonia. n in a magnetic field K, namely,

f(x)-(x —x)' " as x- x, (1.5)

where the exponent i. is expected to be less than
unity. ' It follows that the susceptibility y~ = (BM/
SH), can be expressed in scaling form

yi/M' = 4&(t/M't ). (1.6)

where the scaling function 4(x) now diuerges at
x, l.e. ,

C (x) -(x- x)'-'. (1.7)

The original Feynman-graph work' was unable
to produce the exponentiated singular behavior
displayed in Eqs. (1.5) and (1.7). Meaningful re-
sults were nevertheless obtained for f(x), be-
cause f(x) does not actually diverge at x. How-
ever, the scaling function thus obtained turned
out to be negative in a small region of x) x, '
which is physically nonsensical. We shall see
that exponentiating the singularity at x properly
will ensure a positive f(x), and determine the
complete crossover scaling function 4(x) for
the susceptibility.

In Sec. II we review previous work which has
produced recursion relations applicable for n ) 2

below T,." These recursion relations can be used
to map a Hamiltonian in small field just beneath
the critical point away from T, . If one tries to
calculate quantities with the resulting partially
renormalized Hamiltonian, one finds the same
infrared difficulties on the coexistence curve that
plagued the Feynman-graph work. We summarize
the results which can be obtained in this way.

Section III shows how a simple resummation
procedure, in the spirit of the parquet- graph ap-
proach, " removes the infrared difficulties on the
coexistence curve and leads to results for the long-
itudinal susceptibility and equation of state.

In Sec. IV we discuss the applicability of these
results to real magnetic crystals. Real crystals,
of course, represent some space group and do
not have complete rotational invariance. It is
pointed out that symmetry-breaking perturbations
in real crystals should, in fact, clamp the fluc-
tuations which lead to the diverging susceptibility.

dR —,'Vs'+ —,'r s'+u s' —h ~ s

(2.1)

where s= s(R) is an n-component continuous spin
variable,

d, n

Is I'= Q s,' and (Vs)'= P (v s)'.
When Eq. (2. 1) is transformed into momentum
space, the Fourier integrals are restricted, as
usual, " to a Brillouin zone of unit radius. The
recursion relations appropriate to Eq. (2. 1) for
h40 and T& T, were discussed in an Appendix to
Ref. 13 (henceforth referred to as I). It is con-
venient to take h along the nth component of the
spin field, and to shift s„by the exact magnetiz-
ation. '

s„=M+ o,
whereupon Eq. (2. 1) becomes

~RI. 'rr&'+ ~rrl s I'+ w &Is, I'

(2 2)

+ w, o'+ u(o +Isil')' —ho]. (2.3)

In Eq. (2.3), we have deleted a spin-independent
term, set s~ =—(s, , i = 1, . . . , n —I}, and defined

r~ = r+ 12uM', r~= r+ 4uM',

Kl zv, = 4 uM', h = h —rM- 4 uM'
(2.4)

(a) = 0. (2.5)

Recursion relations for r~, r&, u „u„u, and h

can readily be derived by integrating out Fourier
components of 3C in a small shell of momentum
space, as described by Wilson and Kogut. " To
O(e), these are"

~ = 2rx+ 12K, ugly+ 4(n —1)K,ugr

—18K,u', gr 2(n —1)K, w', g', , - (2. 6)

The magnetization M is determined by the condition
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dl
r = 2rr+ 4(n+ 1)K,ugr+ 4K,ugz —4K, w', gzgr,

(2.7)

'= (1+ ~e)w, —12K,uw, gr' —4(n+ 1)K4uw, g~,

(2.8)

'= (1+ —,'e) w, —36K,uw, gr —4(n —1)K,uw, gi', ,

(2.8)

—= eu —4(n+ 7)K u' g' —4K u'gr'
dl 4 L 4 T

(2.10)

dh
h 3K,w, g + (n —1}K,w, g

(2.11)

where

gL, = (1+ rz) ', gr= (1+ rr) '. (2.12)

The initial values (2.4) entering these recursion
relations suggest we look for solutions of the form
rz = r(l)+ 12u(l)M'(l), rr r(l)+ 4u(l)M'——(l), w, (l)
= 4u(l)M(l), etc. This parametrization of the so-
lutions works, provided we take

M(l)= et' 't 'M. (2.13)

As in I, the recursion relations will be integrated
from I= 0 to l= l* such that r~(t*)=O(1). If the
equations are integrated further, the neglected
terms in Eq. (2.10) break the isotropy at quartic
order. Over the restricted range indicated above,
however, u(l) remains constant (and the quartic
coupling remain isotropic) up to corrections of
O(e'), "provided we set u= u, = 2v'e/(n+ 8), the
critical value of the four-spin coupling constant. "
With this simplifying assumption, the order e
solutions given in I reduce to

rz(l)= Tz(l) 2(n+ 2)K,u, + 6K,u, Tz(l)in[1+ Tz(l)]

+ 2(n —1)K,u, Tr(l) in[1+ Tr(l)]

+ 144 K,u,'M' (l)(In[1+ Tz(l) ]+ T (l)/z[I+ Tz(l)])

+ 16(n- l)K,u,'M'(l)(in [1+ Tr(l)]

+ Tr(l)/[1+ Tr(l)] j, (2.14)

rr(l) = Tr(l) —2(n+ 2)K,u, + 2(n —1)K,u, Tr(l)

x in[1+ Tr(l)]+ 6Ku, TI (l) in[1+ T~(l)],

(2.15}

Tz(l)= te " + 12u, M'(l),

Tr(l) = t e t' + 4u, M' (l),

X, = 2 —[(n+ 2)/(n+ 8)]e,

(2.18)

(2.19)

and t=r+ 2(n+ 2)K,u, is a temperaturelike param-
eter. Results for the evolution of h(l), and the cor-
rection terms to Eqs. (2.16) and (2.17) will not be
needed here. Although M may be taken arbitrarily
small by taking the initial Hamiltonian parameters
sufficiently close to the critical point, it turns
out that M(l*) is O(e ' '), " so the corrections to
Eqs. (2. 16) and (2.17) are O(e'I').

The idea behind calculating thermodynamic func-
tions with recursion relations is that quantities of
interest in the critical region can be related to
quantities calculated with renormalized parameters
such as rz(l*) and rr(l*}."'" Chosing l" such that

rz (l")=O(1) insures that integrations over the
longitudinal propagator can be safely carried out
in a graphical expansion of quantities calculated
with the renormalized Hamiltonian X(l*}. This
choice leads to difficulties near the coexistence
curve, however, because rz, (l*) tends to zero in
this region. " In particular, there is an infrared
divergent contribution to yL from the graph shown
in Fig. 2.

In spite of these difficulties, it is nevertheless
instructive to ignore the infrared problems and

calculate the equation of state and susceptibility to
O(e). This was done in I with the results

=f(x)=x+4u, +
}

(x+12, )ln(x 12, )
3e

2 n+8

1 n —1
+ —e (x+ 4u, ) ln (x+ 4u, ),n+8

(2.20)

q
——4 (x)= (x+12u, )

'

x=x = 4uc ~ (2.22)

1 — ' ln x+12u,
3E' x+ 36uc

2(n+ 8 x+ 12u,

en —1 46ucln(x+4u, )—
2 n+8 x+ 12u,

(2.21)

where x= t/M'~ . The coexistence curve is given
by the zero of Eq. (2.20), which, to leading order
1S

w, (l) = 4u, M (l) + O(u,'M (l)),

w, (l) = 4u, M(l)+ O(u,'M(l)},

where

(2.16)

(2.17)

Evidently, the infrared problems near the coexis-
tence curve show up in Eqs. (2.20) and (2.21) as
logarithms in x+ 4u, . The term logarithmic in
x+4u, in Eq. (2.20) tends to zero as x- -4u, , a
feature which allowed the original construction of
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FIG. 2. Feynman graph which leads to the divergence
in the longitudinal susceptibility. In four dimensions,
this graph goes as inrun, where rz is the transverse
mass.

(b)

+ 4(n -1)

meaningful equations of state for n ~ 2.' However,
Eq. (2. 21) is unacceptable as it stands-some pro-
cedure must be found to exponentiate the term
proportional ln (x+ 4u, ). A method for calculating
the equation of state and longitudinal susceptibility
which resolves this problem is described in Sec.
III.

III. LONGITUDINAL SUSCEPTIBILITY AND EQUATION OF

STATE FOR n ~ 2

and

1
XL, =rL, dR (cr(t})o(R)) & (3.1)

-1Xr= rr = d R(s, (0) si(R)) @, (3.2)

where the brackets denote a thermodynamic aver-
age defined by a functional integral, '

As mentioned in Sec. II, renormalization-group
theory can be used to relate quantities in the crit-
ical region to quantities far from T, . In particular,
we will be interested in the longitudinal and trans-
verse susceptibilities,

FIG. 3. (a) Leading contributions in the graphical ex-
pansion of the longitudinal susceptibility. (b) Leading
contributions in the graphical expansion of the trans-
ver se susceptibility.

bare masses for this problem are rz(l*) and rr(l*).
We begin by making a graphical expansion to

O(e) of Xz(l*) [see l'ig. 3(a)j. The solid lines in
Fig. 3 carry an unrenormalized mass rz(l*) = O(l),
while the dotted lines carry a fully renormalized
mass r ~ which tends to zero on the coexistence
curve. Recall that the cubic vertices w, and w,
carry weight 4u, M(l*), and are thus of O(e' ').
Although the first few graphs displayed in Fig.
3(a) are cut off at low momenta by rz, (f*), graphs
with integrals over the transverse propagators
lead to logarithms in rr (to leading order in e,
the integrals in Fig. 3 can be evaluated in four
dimensions). Note that the condition ('2. 5) implies
that no "tadpole" insertions of the field 0 are re-
quired in Fig. 3, since these sum to zero. '

We now show that the logarithms appearing in
the expansion of Xz(l*) can be exponentiated in a
natural way using a parquet-graph'7 summation

f f Bo(R)Bs,(R)e A (a, s,)

ff S)e(5)ns, (A)e~
(3 3)

~—+
I

/

/
/

/ /

/ II

I /r

We have introduced the transverse susceptibility
because it can be used to obtain the equation of
state through the exact relation'

X r' = h/M.

To order e, the susceptibilities X and X~ are re-
lated to quantities far from T, by"

(a)

(b)

(c)

Ueff = @

LESS SINGULAR
TERMS

+ ~ @ g 1-

+ ~ ~ s

Xz= e X (f*), Xr= e Xr(&'), (3.5)

where Xz(l*) and Xr(l*) are susceptibilities calcu-
lated via Eqs. (3.1) and (3.2) but using rescaled
spins and the renormalized Hamiltonian X(l*)."I"
Henceforth, we will denote the fully renormalized
masses of the Hamiltonian 3C(f *) by rz and rr The.

FIG. 4. (a) Dominant contributions to Xz at O(E2).
These can be rewritten in terms of a "partially dressed"
coupling U, II. (b) Graphical expression for the coupling

I I ~ (c) Contribution to the longitudinal susceptibility
taking into account the dominant terms at each order in
E and expressed in terms of U„,-.



2226 DA V ID R. NE LSON

procedure. Consider first the infrared divergent
bubble graph shown in Fig. 3. At higher orders in
e, divergent graphs will again appear in the form
of repeated bubbles. (Note that no Dyson summa-
tion has been made to eliminate these graphs. )
The most divergent contributions to the series at
O(e') are shown in Fig. 4(a). As suggested by
Fig. 4(a) these graphs can be combined into a
single expression with two bubbles connected by
a coupling constant u,.«, where to order e,

4(b} is given by

C„,(r (l'), U, , )/r'(I*). (3 7)

(3.8)

we consider the perturbation series for"

The singularity in the one loop graph over the
transverse propagator [see Fig. 3(a)] can also be
summed in this way. Defining

u. . . = u, —8u,'M'(1*)/r~(l*) = u, rr(l*)/r~(l*) .

(3.6)

dS

dr, (1*) ' (3.9)

When the second contribution to the renormalized
vertex occurs in an orientation which involves an
integration over the longitudinal propagator, we
rewrite [r~(l*}+q'] ' as

I/[r~(l*)+ q'] = I/r~(l*) —q'/[r~(l*)+ q'],

and observe that the q-dependent terms give rise
to a less singular contribution than the leading
term. Thus, to a leading approximation, we can
take the coupling (3.6) to be q independent. Ex-
tracting the most singular contribution at each
order in perturbation theory gives rise to the
series shown in Fig. 4(b). This series can be
summed immediately by simply noting that, to O(e),
it is proportional to the perturbation series for
the specific heat C„,(rr(l~), u. .. ) of an (n —1)-com-
ponent isotropic system with unrenormalized mass
rr(l*) and bare-four-spin coupling constant u,.„.
Hence to leading order the series shown in Fig.

where we have taken the derivative with respect
to the unrenormalized transverse mass. The most
singular contributions to the perturbation series
for S' are shown in Fig. 5, where we have been
careful to differentiate the tadpole insertions in
the series for S. The dominant part of this series
consists of streams of bubbles connected by a
"partially dressed" coupling u ... which again can
be identified with the specific heat appearing in

Eq. (3.'I). Integrating this result for S' with re-
spect to rr (1*), we discover that S can be rewritten,
to leading order as

(3.10)

where E„,(r~(l*), U,.„)is just the energy of an
isotropic system with n —1 components.

Putting together the results (3.7) and (3.10) for
the singular contributions of O(e) to the suscep-
tibility series in Fig. 3(a), we find that

}t,(l*)= r~'(I*)+, '„K;12Q q'dq 16(n+ 8)K,u,'M'(I")
rr. (l*)+ q' r', (l*)

288u,'M'(l*)
r2(P, )

4
q'dq 4u. 32u,'M'(1*)

[~ (I„)+q2]2, (1,)
E„,(r,(I*),u, , ) —;(I„) C„,(r,(1"),u,„).

+ O(e'), (3.11)

where E„,(rr(l~), u„,)and C„,(rr(l~), u,.„) are
the energy and specific heat of an isotropic (n —1)-
component system in zero field with a bare mass
rr(l*) and four-spin coupling u,.„=u, rr(l*)/rz (l*).
Note that uc„goes to zero on the coexistence curve.
We emphasize that the terms which have been left
out of Eq. (3.7) are either higher order in e or
display lower powers of lnr~ than those retained.

Similar arguments can be used to sum the log-
arithmic singularities in the series for the trans-
verse susceptibility shown in Fig. 3(b), where it
has been convenient to use the identity, correct

to O(e),

8u,'M'(1*) K,,
q dq

[r,(l*) + q'] (r, + q')

, r~(i )+q' ' ', rr+q' '

(3.12)

Observing that the dominant contribution of the
integral over the transverse propagator is just an
(n —1}-component energy, we find, in analogy with

Eq. (3.11),
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12Q g dgXr(I*)='rr (I*)+ 2(I,)
K

[ (I ») 2)

+ —,', E„,(rr(l»), u„,)+O(e').4u,
x~2 l'

(3.13)

The energy and specific heat of an n-component
isotropic system (which, for the case we are con-
sidering, is effectively above T,}are"

and

(u+ 8) u(
-IE /2 I) (s-n)/(»+8)

E„(r,u)= (, t 1+, —I + 2nK, ——~nK,rln(1+x},
8 4 —n)n 27t' E

(3.14)

n
C„(r, u)=

8( )

(n+8)u(t ' ' —1) ' " "'" uK,1+ —1 — ' + nK, I (n1+r),
2 tT f 1+ t' (3.15)

T (l*)=te &' + 12u, M'e ' ' ' =1.L

The solution e' can be expressed in terms of a
homogeneous function as"

(3.16}

Mu2-~/2 ~~/M'/ (3.1'I )

where 5 and P are critical exponents needed here

where t =r+ 2(n+ 2}K,u, and we have explicitly
included regular contributions in Eqs. (3.14) and

(3.15). It remains only to determine I*, which was
done in I: The condition determining l* is taken
for convenience to be

+ O(e') (3.19)

Using the solutions of the recursion relations
(2.14)-(2.1'I), and the results (3.14) and (3.15),
we evaluate Eqs. (3.11) and (3.13) to find

only to O(e}. It follows that p(x) solves the equation

xy'~(x)+12u, g-'(x) = I, (3.18)

which, for small x, yields"

x+ 36u,P(x)=(x+ 12u,)
' 1+ — ' ln(x+ 12u, )12 x+ 12u,

n —1 n+7
It+, (l») = TI '(I*)+ TI.'(I») Tr'(I») 1+ Tr(l») [T z' '(I*) —1] —1 + 16(n+ 8) K,u,'M'(I»),

(3.20)

h(l ) 5 —n n+8(I»)= ' = T '(I*)+ T '(I») 1+ T (I») [T '/'(I ) —1] ' " "+' —1 (3.21)

S r O~

/

I
I

/
I

I

/
t

/
/

/
I \

+, I +
/
f

/
I

r
/

/

~~

I

/

/

}+ ~ ~ ~
/

/

where various regular contributions have cancelled
exactly. The "matching relations" (3.5) together
with the parameterization (3.15}for e' may now
be used to determine the longitudinal susceptibility
and equation of state as

Xi/M' '= 0'(x)X, (I*),
b/M = I/P'(x)}(r(I *),

(3.22)

(3.23)

/
I
I I

/
/

FIG. 5. Dominant contributions for the quantity S' de-
fined in the text. Again, the series is reexpressed, to
leading order, in terms of the q-independent coupling
U'(I ~

where according to Eq. (3.16) we must take

T,(l*)= 1, T,(l )=»Px'(x)+4u. g '(x). (3.24}

The results (3.22) and (3.23), are guaranteed to
satisfy the Griffiths' analyticity requirement at
large x= t/M'/ 8." It is customary, ' however, to
present results in terms of an ~ expansion for
Q(x} which is good for small x, but violates the
Griffiths' conditions7 at large x. Using Eq. (3.19),
we find that
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n —1 1 n+7 x+4u,
+ 1+ [(x+ 4u, '~'- 1 —1

5 —n x+4u, n+8 x+12u, (3.25)

= f(x) =
n —1 x+12u,1+
5 —n x+4u,

3Ex+ 4u, +
)

(x+ 12u, ) ln(x+ 12u. )
2 n+8

n+ 8 x+ 12u,

(5-n) / (n+7)

(3.26)

Expanding the terms (x+4u, )
'~' in e, we get

agreement with the "naive" graphical results (2.20)
and (2.21) quoted in Sec. II. As x- x = -4u, , f(x)
and 4 (x) are indeed singular in the way prescribed
by the crossover scaling in Sec. I.

The equation of state (3.26) (with e= 1) is com-
pared with the result (2.20} originally obtained by
Brdzin, Wallace, and Wilson' in Fig. 6. We have
normalized f(x) by requiring that the coexistence
curve be given by x=x = -1 and that f(0)=1. As
noted by the above authors, ' their result for f(x}
is negative over an extremely small range of
x=x. Our result (3.26) repairs this difficulty,
and comes into x= -1 with zero slope as required
by (1.5). The inset to Fig. 6 shows these functions
on a scale set by the normalizations —a scale over
which they are indistinguishable.

As a final point, we observe that it is straight-
forward to repeat these calculations for u W n, ,
and, in particular, for a=0 with u finite. For the
behavior of the longitudinal susceptibility as h- 0
for fixed T&T, we find,

-. 5.0

lnh, (3.27)

i.e. , a pure logarithmic divergence rather than a
power of a logarithm.

dR Q s,'(R),
n

dR Q s( (R).

(4.1)

IV. EXPERIMENTAL CONSEQUENCES

Although the behavior of isotropic ferromagnets
on the coexistence curve is certainly of theoretical
interest, it seems reasonable to inquire if there
are any experimental consequences. Real crystals,
of course, represent some space group and do not
display complete rotational symmetry. There are
always easy axes along which the spins prefer to
align in the ordered state, even if the number of
components of the order parameter exceeds unity. "
The existence of easy axes is due to symmetry
breaking perturbations in the basic isotropic Ham-
iltonian (2.1).

Consider two specific perturbations to (2.1) which
break the O(n) symmetry, namely,

--4.0

.p 0 10 f(x)6

-- 2.0

(.0

&0 (1+x) -.-(.0

FIG. 6. Comparison of previous Feynman-graph cal-
culations (Ref. 4) I.curve (a)] with the current work [curve
(b)]. The previous calculations included unexponentiated
logarithms which led to spurious behavior near x = —1.
Note the multiplication factors on the horizontal and
vertical scales necessary to actually see the discrepancy.
The inset shows to two functions on a scale over which
they are indistinguishable.

yr' ——h/M+ vg(M), (4 2)

where g(M) tends to a constant on the coexistence

Both these perturbations should decay asymptot-
ically to zero (for n &3) with repeated iterations
of the renormalization- group transformation, "
and hence are technically irrelevant variables.
Nevertheless, it is clear that these perturbations
play a. vital role in breaking the O(n) symmetry.
For example, Bruce and Aharony" have shown
that nonzero cubic perturbations can significantly
alter a phase diagram which has a bicritical point"
when v = 0. We shall see below that the perturba-
tions (4. 1) are actually examples of what Fisher"
has called "dangerous irrelevant variables. "

Wallace" has considered the effect of the cubic
perturbation X„ in the large n limit. He finds
that the isotropic result (3.4) for the transverse
susceptibility now becomes"
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curve. He further argues that the longitudinal and
transverse susceptibilities are related by

y~-const+ X~ ', (4.3)

a result which also holds when v = 0.'" Using Eqs.
(4.2} and (4.3} (with v& 0) shows that

(4.4)

on the coexistence curve as v tends to zero. The
result (4.4) is easily verified using the recursion
relation approach described here. Similar argu-
ments lead to an analogous conclusion when X
is the leading symmetry-breaking perturbation,
namely,

L (4.5)

(4.6)

where e' is the spatial rescaling factor, X, = 1/v,
and A. , the eigenvalue describing the decay of the
hexagonal perturbation, was calculated to O(e') by
Wegner and Houghton":

X~= -2+ + (9n'+ 110n'+ 904).2e(n —7) 3e'
n+ 8 2(n+ 8

(4.7)

as se-0' on the coexistence curve. Brdzin, Le-
Guillou, and Zinn-Justin" have also discussed
this effect of symmetry-breaking perturbations
to the Hamiltonian (2.1).

Wallace" has also shown that, although cubic
perturbations clamp the divergence of the trans-
verse susceptibility, there are enhanced trans-
verse fluctuations as T- T, from below. We now
demonstrate that similar effect occurs in the long-
itudinal susceptibility leading to a huge asymmetry
in the behavior above and below T, , provided hex-
agonal perturbations are the dominant symmetry-
breaking terms in the Hamiltonian. Consider hexa-
gonal layered, metamagnetic crystals" such as
CrC1„' ' CoBr„"and CoC1, '. 8 Although these
substances have an antiferromagnetic interaction
between planes (which display hexagonal crystal
structure}, the spins tend to align ferromagnetically
within each plane. Such systems should be describ-
able by an order parameter with n = 2 components.
Furthermore, because of the hexagonal symmetry
within each plane, the dominant symmetry-break-
ing perturbation should be given by K; cubic per-
turbations are not allowed. For these systems
then, it is appropriate to treat the longitudinal
susceptibility (with h = 0) as a function of both the
reduced temperature t =(T —T, )/T, and the
strength m of the hexagonal perturbation.

The usual" renormalization-group homogeneity
arguments applied to X (t, w) give

Choosing a particular l= l' such that the suscep-
tibility on the right-hand side of Eq. (4.6} is eval-
uated far from T, (but still on the coexistence
curve), we find that

y~(t, w)= t ~y~( l, w-t ~~ ), (4.8)

where

(4.9)

y(t, w)-w ' 't (4.11)

as t-0', with

(4.12)

Fisher" has used similar reasoning to explain
the breakdown of hyperscaling above four dimen-
sions. He calls singular irrelevant perturbations
such as so "dangerous irrelevant variables. "

Similar arguments, of course, apply when cubic
interactions dominate, but the effect turns out to
be quite small. To estimate y' for hexagonal
perturbations, we consider the e expansion of A.

with n= 2,"
X = -2-e+ -e —~ ~ ~87 2

50 (4.13)

Although this series oscillates, it is clear that
X„ is rather large and negative. A concrete es-
timate may be obtained by forming a Pads approx-
imant

= (-2 —4.48 e)/(1+ 1.74 e), (4.14)

which gives A. = -2.36 in three dimensions. This
result, together with the estimate v=0. 67 for
d=3 and n=2 gives Q = -1.58. Taking y=1.33 for
d= 3 and n = 2, we find finally"

y'= y+ 0.79 = 2.12. (4.15)

This is a strikingly large susceptibility exponent.
In view of the absence of experiments which give
a conclusive demonstration of coexistence curve
singularities in magnetic systems, an experi-
mental test of the prediction (4.15) for layered

(4.10)

is the usual susceptibility exponent which would
be measured above T, . Recalling the coexistence
curve divergence (4.5), we conclude from Eq.
(4.8) that
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hexagonal crystals such as CrC1, (by neutron scat-
tering or other means) would be invaluable.
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