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A generalization of the Larkin-Pikin-Sak model in which an n-component order parameter is coupled to a
general anisotropic elastic continuum is studied using the c expansion. It is found that the fixed-point

structure is the same as the isotropic model but that all fixed points are unstable with respect to anisotropic
perturbations, independent of external boundary conditions. The compressible smectic-A to smectic- C liquid-

crystal transition is also studied. It is found to be unaffected by elastic degrees of freedom and is, therefore,

expected to have helium exponents, as previously predicted by de Gennes.

I. INTRODUCTION

The question of what happens to a usual second-
order transition whenthe order parameter is cou-
pled to the elastic degrees of freedom, e.g. , when

the magnetic exchange interactions depend on sep-
aration, has attracted a considerable amount of
theoretical interest. This is due to the fact that
real systems have finite elastic constants and the
modulation of the couplings, e.g. , the exchange
integrals, by the lattice vibrations may lead to
qualitative effects on the phase transition. Thus,
Rice' and Domb' found that whenever the specific
heat of the ideal incompressible system diverges
at T„ the second-order transition becomes first
order. Mattis and Schultz' reached the same con-
clusion using a different approximation. All of
these calculations were, however, open to criti-
cism since most approximations break down close
to T„ i.e., exactly where the new behavior was
predicted. Therefore, Fisher formulated a theory
based on plausible thermodynamic assumptions of
renormalization of critical exponents describing
the second-order transition by constrained hid-
den variables. " Wagner, ' using a droplet-model
picture, advanced arguments for the appearance
of a smeared transition. The nonexistence of a
first-order transition in the magnetoelastic prob-
lem was also featured in the work of Wagner and

Swift' and others. In 1970, Baker and Essam' in-
troduced an exactly soluble mode, which had a
vanishing shear elastic constant p, , and found that
for the cases of a constant volume and constant
positive pressure, the transition remained second
order but the critical indices were renormalized
in the sense of Fisher. ~ Gunther, Bergman, and
Imry' later showed that the Baker-Essam model
in fact gave a first-order transition at negative
pressures and that Fisher's theory could be gen-
eralized to yield either a first-order or a renor-
malized second-order transition for various types
of external constraints. The point where the first-
order transition becomes second order is a tri-
critical point, whose critical behavior turned out
to be identical to that of the incompressible sys-
tem (i.e., nonrenormalized). Different conclu-
sions were drawn by Larkin and Pikin, in 1969.'
They considered a. Ginzburg-Landau-like free-
energy density for a structural phase transition,
coupled to an elastic continuum having finite bulk
and shear elastic moduli. In the harmonic approx-
imation, elastic modes could be integrated over
exactly. This analysis suggested that the transi-
tion would be first order at any finite pressure.
It is interesting to note that this result requires
a positive value for the shear rigidity modulus p.

The advent of modern renormalization-group
(RG) techniques" "gave one a better handle on
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phase-transition problems. The E-expansion, i.e.,
expansion about four dimensions (&=4 —d), appears
to be useful, at least for answering qualitative
questions such a,s the one relating to the order of
the transition. Following the work of Wilson, ' it
is now believed that the Ginzburg-Landau-like
Hamiltonian considered by Larkin and Pikin is
equivalent, a,s far as its critical behavior is con-
cerned, to that of short-range magnetic Ising-like
systems. These can easily be generalized to Hei-
senberg n-component systems. Using this, Sak"
studied the renormalization-group recursion rela-
tions for the effective spin Hamiltonian obtained
from that of Larkin-Pikin after integrating out the
elastic modes. This Hamiltonian has an additional
pairing term, which wa, s also considered by Rud-
nick, Bergman, and Imry. '~ The RG treatment of
this Hamiltonian' for n-component "spins"" led
to four fixed points: Gaussian, constrained Gaus-
sian (spherical), n component, and constrained n

component. The last fixed point, which would lead
to Fisher-renormalized critical exponents, is the
most stable one for n =1, while the n-component
fixed point is the most stable one for n =2, 3, . . . ,
at d = 3. However, a Fisher-renormalized tran-
sition does not follow at constant pressure for
n=1, because for p. &0 the initial value of the new
pairing parameter is outside the region of attrac-
tion of the aforementioned fixed point. In fact, the
RG recursion relations lead to a runaway" which
was interpreted" as a first-order transition.

These results appeared to contradict the exact
mathematical results of the Baker-Essam model.
Although the latter model is admittedly not physi-
cal, this apparent contradiction was disconcerting.
By using higher-order terms in the definition of
the volume, a procedure which is justified only in
the ha.rmonic approximation, it has been shown by
one of us" that the transition in the Larkin-Pikin
model (when it is assumed to be harmonic even for
large uniform deformation), became second order
for pressures P&P, = p, . It is also second order
when the experiment is performed at constant vol-
ume. This agreed with the Baker-Essam-model
results. However, Bergman and Halperin" cor-
rectly remarked that for P &P„both the Larkin-
Pikin and the Baker-Essam models are unstable
against shear deformations. Thus the second-or-
der transitions for P& P, pertain in these cases
to models which are also mechanically unstable
and which thus appear to be physically irrelevant.
As long as the harmonic approximation is made
around the volume corresponding to the external
given pressure and the system has a. positive p,
the transition will be first order in the above mod-
els. It should be noted, however, that decreasing
the effective value of p will decrease the size of

the first-order transition. If the effective p would
decrease to zero as a function of some external
parameter, as it does in the harmonic models
with increasing P, then the size of the first-order
transition would tend to zero at that point. How-
ever, around the same point the system becomes
unstable with respect to shear deformations, which
start to play the role of an additional critical order
parameter (together with the original n-component
one). Thus, higher-order terms in the shear de-
formation have to be considered and more work is
needed on this two-order-parameter problem. For
the case of constant volume, the second-order
transition may still be maintained, although the
more complete treatment of Bergman and Hal-
perin' using Wegner's analysis emphasizes the
relevance of surface pinning in this case.

It thus appears that the RG method is extremely
useful in attempting to resolve this long-standing
problem of magnetoelastic effects on the order of
the transition. For example, it helps to clarify
that the correct physical result to be drawn from
the Baker-Essam model at constant pressure is
the appearance of the first-order transition. In
this paper we would like to carry the RG treat-
ment one step further and consider more realistic
cases where the assumption of elastic isotropy is
not justified. We shall thus generalize the Larkin-
Pikin-Sak treatment to the case of an anisotropic
elastic medium (a. typical case is that of cubic
symmetry, but lower lattice symmetries are also
included). This generalization is relevant because
no real crystal is exactly isotropic elastically and
because symmetry is mell known" to be an im-
portant relevant variable in critical phenomena, .
Furthermore, results on the anisotropic Baker-
Essam model" suggest that lattice a,nisotropy may
be of qualitative importance, even in determining
the order of the transition.

We find that for the Ising case, n = 1, all of the
four fixed points mentioned above are unstable
against anisotropic elastic perturbations, and that
the renormalization-group recursion relations
yield a runaway, out of the region in which our
calculations can be carried out. This runaway
may correspond to a first-order transition, but
could also mean other instabilities. ' It is found
for both constant pressure and constant volume
and is completely independent of the subtleties in
the treatment of the volume and pressure which
exist in the isotroyic case. The understanding of
this instability is thus extremely pertinent.

A more complete treatment of these questions in
the case of cubic symmetry was independently car-
ried out by Bergman and Halperin, "who employ
the RG method on the full Hamiltonian, without in-
tegrating over the elastic degrees of freedom.
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This method enables them to discuss the anoma-
lous elastic properties and to achieve a better
physical understanding of the instabilities. " In

particular, they show the transition is first order
in the Ising cubic case. A similar method was
used, for a single nonordering parameter, by Hal-
perin, Hohenberg, and Ma and Achiam and Im-
ry. -' We believe that although our method is less
illuminating on the physics of the instabilities, its
advantage is in the simplicity with which the insta-
bility is obtained for a general elastic symmetry.

We have also applied these considerations to the
liquid- crystalline smectic-A-to- smectic-C tran-
sition. De Gennes ' has argued that this transition
has a two-component order parameter and that the
critical exponents should be the same as for the
X transition in He4. The smectic-A state has uni-
axial symmetry but is unable to support shear
stresses. Its elastic Hamiltonian, therefore, dif-
fers from that of a uniaxial solid. We show that
the coupling of the smectic-C order parameter to
elastic degrees of freedom does not affect the
transition. In other words, the compressible
smectic-A. -to- smectic-C transition remains sec-
ond order with helium exponents for all external
constraints (constant volume, pressure, uniaxial
stress, etc.).

In Sec. II we shall present the effective Hamil-
tonian. The elastic degrees of freedom are inte-
grated out, leading to new four-spin terms in the
Hamiltonian. These terms are nonanalytic in the
wave vector k for k-0, and they are similar to
the anisotropic long-range four-spin terms found,
for exa.mple, in Refs. 5 and 6. In Sec. III, we
show that the part which does not have spherical
symmetry makes all the fixed points unstable. In
Sec. IV, the specific results for the particular
case of cubic symmetry are given. In Sec. V, we
consider the smectic A-C transition coupled to
the elastic field. Section VI summarizes our re-
sults.

II. EFFECTIVE HAMILTONIAN

~up ~u~ e~u

2 ax, ax. „ a~. 8&,
(2)

In Sec. III we shall discuss particular forms of the

We start with the most general ha.rmonic elastic
Hamiltonian, i.e.,"

d

p3C„=— d'x Q X,„,e 8(x)e„,(x),
n, 8, r, 6=1

where {a &,j are the components of the elastic ten-
sor (in units which include P), and where {e zJ are
the components of the strain tensor. These are
related to the local displacement vector u(x) via"

tensor A. z„6.
For simplicity, we start our discussion assum-

ing that the order parameter is an n-component
vector S, whose rigid-lattice critical behavior
may be descirbed by an isotropic Ginzburg-Lan-
dau-Wilson effective Hamiltonian"

PK = dx& xS~ + V'S +uS~+0 S 3

where r is linear in the temperature and u is a
constant. This is justified in ca,ses in which the
symmetry of the n-dimensional order-parameter
space is uncorrelated to that of the d-dimension-
a,l real space. We shall discuss more general
cases'4 in Sec. IV.

Accepting the rotational invariance of the order-
parameter space, the most general magnetoelas-
tic coupling (to lowest order) is

i
» I'~%II' 2 ~.a .e.

e, g=z

We now follow Larkin and Pikin, ' Sak,"and Im-
ry, "and separate the homogeneous deformations
from the phonon parts of the displacement,

(4)

0 0PC„=~V ~ ~ g„6e ge 6
n, B, r, 6

,(k)u (k)u~(-k)
&0 e, a

pz„, = Pg.,eo., d"x ~S(x)~'

where

+— &~ku~ -k,
QPO

4 ~(k) = Q X „~P„k,

B (k) = ——Q(Sg g ~) Qg 8&8,
B

with S& being the Fourier transform of S(x).
The calculation of the partition function now in-

volves integrating over all possible configurations
in spin space and in the displacement space. We
first leave all e0~ constant, which means keeping
the volume and the shape of the sample fixed.

=u'~+ —Q ik~u~(k)e" ",
~xg $40

V being the volume of the system at equilibrium.
The elastic Hamiltonian and the interaction Hamil-
tonian thus become
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Since we used the harmonic approximation, the
integrals over u (k) are Gaussian, yielding

1d' (k)ekp ——Qk„e e+P )a~a

- exp —g (A ')~B (k)B&(-k} . (10)
'5

ff If 8 g Q v(k)(S[i ' S„- ([)(Sf)
'

S)5 f)),
k& q, $

with 1~=k/lkl, and

v(k) = —
2 g I& '(k)]„g,g8()kfk ~

u, 8;)', &

(12)

This is a function only of the direction of the vec-
~ Se

tor k, and not of its length, because &,(f(k) is of
order k' [see (8)], and thus & ' is of order k '
As discussed by Sak,"v($) reduces to an angle-
independent constant for the isotropic case. We
shall come back to this case later.

In addition to (11), we have a spin-dependent
contribution in the first term of Eq. (7). However,
this is simply a shift in the temperature variable
r of Eq (3). .

In summary, our effective spin Hamiltonian at
this stage is

1
PIC= — v, (q)(S( S ~)

~ J( ( J; 5(q, +q, +q, eq)

x [u+v(q, +q,)](S& Sa)(S4 S& ),

where f&-=(2ff) ' Jff'q, with Iql&A,

0 if k=0
v(k) =

v(k) if kq50,
(14)

This may, in turn, be rewritten as a new effective
spin Hamiltonian, of the form

v, (q) = r+ q'.

At this point we can also integrate over all pos-
sible values of eo~~. This would correspond to the
constraint of constant stress. Again, the integrals
are Gaussian, and the result is simply a shift of the
parameters u and v in Eq. (13)by q-independent con-
stants. " As we shall see, our results for the an-
isotropic cases will turn out to be independent of
these constants. Thus, our discussion will apply
to all types of constraints.

III. RENORMALIZATION GROUP

We are now ready to perform renormalization-
group iterations on the effective "spin" Hamilto-
nian (13). This involves integrating (in the parti-
tion function} over S&, A/b& q& A (b& 1), and re-
scaling the remaining spin and space variables so
that the new Hamiltonian, as a function of these
remaining variables, has the form (13). For mo-
menta in the range A/b & lql, the function v(q) is
analytic. If we have a term with v(q+q, ), where

lq, l
& A/b is the momentum of a spin variable which

is not integrated over, then we may assume that
lq, l« lq l

(we are only interested in the leading be-
havior for very small momenta, or long waves)
and expand

v(q. q}=v(q)+«q/lql}, lq, l«lql.

This approximation will be used whenever lql&A/b
and lql&A/b. After integration over q, terms of
order q, /lq~ vanish leaving only correction terms
of order q', . The contribution of these terms to the
four-spin couplings u and v are irrelevant and will,
therefore, be ignored in Eqs. (18) and (19}below.
The actual recursion relations near four dimen-
sions involve a perturbative expansion in u and v,
which leads to diagrammatic integrals contribut-
ing to the new values of v, (q), u, and v$). Using
the standard choice of the spin rescaling fac-
tor,""these recursion relations evaluated to the
order necessary to give exponents to second order
in e are

( )
[(q)=5 ((5* "ql , '[4(-:-2)e ~ 8 (p ~ 5 'ql[e, ([)) '

~ep

(18)

—52 [( ~ 2)[ ' ~ 2 (P ~ k)]+ (P ~ k) ~ 2 (P ~ k) (p ~ 5 q)), (p) ', (k) '', (5+k ~ 5 ql-') (l2)-'
p, k

u'=b' "' u —4 ' n+8 +12uv p +4v'(p v )~
P

+64 5n+22 u'+3 4n+11)u'v k)+27u'v p + 7n+8 v' k
p, k

~ 28 (k) (5) ~ 2( ~ 5)e '(5)+2 "()il 8 '(5l (5) ~ 8 (5) '(P)l, (Pl ':(l l ', (P+2) )
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and

'(b)=b' '(v(v) —4 [2( +2) v(r) ~ 4 (v)v(p) '(v)), (p)
P

~ bb (» f (b("»" b("b) (».4b»«(b)-"(b)
p, k

~ 4- lblv(b) 2( ~ ()v*(P)t', (b)-".(»~.()r b)-}, (19)

q =SEE,(n+2)(u*+vg)2,

where

K b 2d )H((/2F(d-/2)

(20)

In the isotropic case, Eqs. (18) and (19) are eas-
ily solved to yield four fixed points which were
found previously by Sak" and by Rudnick, Berg-
man, and Imry'4:

Gaussian: ug = 'Dog = Oy

spherical: u f = -vo2
——aA' j4nK2;

n-component Heisenberg:

(21)

(22)

where J-' means an integration over A/b&~p~A. In
P

the last two equations, we have used the simplify-
ing assumption (16), since parts in the quartic co-
efficient which vanish for vanishing momentum are
irrelevant. For simplicity, we have written Eqs.
(17)-(19)for the case in which there is a center of
inversion. Our final results, however, do not de-
pend on this simplification. We have also left out
contributions to these recursion relations which
are not proportional to lnb. " q is the usual expo-
nent describing deviations from Ornstein-Zernicke
behavior. For isotropic fixed points, v(k} is a con-
stant, v*, and u =u*, and )1 follows from Eq. (17),

A(b) = v, (k) ', (26a)

C(b) = v2(p) 'v2(k) 'v2(p+k) ',
"$,k

(26b)

(v) =A ' v(k)v, (k) 2, (26c)

and (L(u, v)), which can be obtained easily from
Eqs. (19), (25), and (26) are k-independent func-
tions. Since all the coefficients in Eq. (25) are q
independent, it follows that the only fixed-point
values of v(q) a2e those given in Eqs. (&1)-(24),

A

namely, k-independent ones. This result is quite
general and is independent of the symmetry of the
elastic tensor or of the explicit structure of the
functions v(q) and v2(q).

We next study the stability of the fixed points
(21)-(24) with respect to q-dependent perturbations
to v(q). Near each of these fixed points, we can
write v., in the form (15) with 2'= O(e}. Thus, the
leading logarithmic terms are A(b) =K2 lnb a.nd

C(b) = z~K4 lnb, and (v) is simply the average of

v(q) over all directions of q. Equation (25) thus
yields

(z)'=b' '"((v) —4K, Inb[2(n+2)u((rj+4(vj'+n(v')J

eA' 3(3n+ 14)
H 4K ( 8) ( 8)2 r OH

renormalized: u~ =u„*+v,*~,

(23)
+32K', lnb(vj(L(u, v)jj

Av' = ( v(q) —(v) \
'

(27)

eA' (n+ 2)(13n+ 44)
4K,n(n+ 8) (n+ 8)'

(24)

(Note that our notation differs from that of Sak,
Vla usm u+ VOr VHW VO )

Our main interest in this paper has to do with
the effects of anisotropy or with the q-dependent
part of v(q). We first note that Eq. (19) may be
written in the form

v'(q) = b' '"(v(q) —4A(b) [2(n+ 2)uv(q)

+4(v)v(q)+nv'(q) j + 64C(b)v(q)(L(u, v))),

(25)

where

A~„= e —221 —8K2(n+2)(u+(v))

+ 96(n + 2)K', (u + (vj )'. (29)

Substituting the values u = u* and (v) = vo, we find
near the Gaussian and spherical fixed points ~~
= E, whereas near both the Heisenberg and renor-
malized fixed points, we find

= b' 'o(btbv —4K21nb [2(n+ 2)(u + (v)) Av

+ n(t)bv)2 —n((Ev)2) J

+96(n+2)K'blnb [(u+(vj)2+O(Av)]AL),

(2 8)

For small », this may be rewritten as &U'=&™b,v,

with
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4 —n (n+ 2)(13n+44)
e ———

s E +0 s)n+8 (n +8) s
1

3K„=2 d'x C» ge'„„+C» ge „ess

Vg Vg
(30) (31)

where n„[nn= -n„/(1 —nn)]and v„[vn-—v„/(1 —nn)]
are the Heisenberg (renormalized) specific-heat
and correlation-length critical exponents. Near
the Heisenberg fixed point, this exponent is the
same as that of the parameter v, itself. Indeed,
general arguments show" that in that case this
exponent should be related to the specific-heat
exponent. We thus conclude that the "Heisenberg"
fixed point is unstable to magnetoelastic effects
whenever n„& 0, irrespective of the symmetry of
the elastic energy. At three dimensions, one thus
concludes that probably only the Ising case (n = 1)
needs further study.

The result is more interesting near the "renor-
malized" fixed point (24). Although all the thermo-
dynamic exponents at this fixed point are related
to those at the Heisenberg fixed point via a Fisher
renormalization, this does not apply to Xz,„, which
remains the same as for the Heisenberg fixed
point. Thus, both fixed Points are unstable with

respect to k-dependent pieces in v(~), or to asym-
n~etric elastic energies, whenever a„&0. Note
that for n„& 0, the renormalized fixed point is
stable against k -independent variations in &', .

For a„&0 we thus expect any anisotropy, as re-
flected by 4v, to grow larger, and a crossover to
some other type of critical behavior to occur.
Since we were unable to find any fixed point with
a k-dependent v(k), the flow in Hamiltonian space
probably exhibits a "runaway, " out of the region
of validity of our perturbation expansion. To in-
vestigate the behavior implied by this runaway,
we must integrate the recursion relations until
the correlation length is no longer large, and then
try to use mean-field-like arguments. ' As point-
ed out by Bergman and Halperin, this procedure
is rather complicated in our case, owing to the
last term in Eq. (13), which may generate com-
plicated forms of v, (q) for low symmetries in v(k).
This complication does not occur in Ising cubic
case." However, previous experiences with such
runaways usually lead to a first-order transition.
The actual nature of the transition in the cubic
case has recently been investigated by Bergman
and Halperin using a different approach. " Indeed,
they find a microscopic instability which prevents
T, from being reached which thus leads to a first-
order transition.

IV. CUBIC CASE

For cubic symmetry, the elastic energy is of
the form

1f =C „—C „—pC44

measuring the cubic anisotropy. One can now

check explicitly that
1

k, (A, ) 5
(C„+4C44)k~ks

( I+/')( C„+fk ')

(~C„+fk'),
with

(33)

(34)

0' = (C„+«„)Q k'„/(-«„+fk~) (35)

Combining (34) and (12) we thus find

2 2

(k)= —.&,
2 C i2+4C44 l +Q

Clearly, v is k independent for f =0. In this case,
it reduces to the value found by Sak" and by Im-
ry." For small values of f,

(36)

2g2 f A 3

( ), Qk'„—
d 2

+O(f ). (37)

We thus expect deviations from Ising, or renor-
malized Ising behavior to be felt when

2 2gf
(2C „+C„)' (38)

where ( is the correlation length. As we men-
tioned in Sec. II, the Hamiltonians (3) and (4) ap-
ply only in cases in which the symmetry of the
spin variables is independent of that of the space
variables, and is of rotational invariance. For
realistic structural phase transition of cubic crys-
tals, one must consider more general Hamilto-
nians, allowing coupling terms of the forms
(n= d)"

QS'„e„„, Q (8 -S'„)e„, Q S„Sse s. (38)

In previous work, " such terms were studied with
emphasis on the zero-momentum parts [i.e.,
terms like the first one in Eq. (7)]. Since we find
that the phonon-generated f -dependent terms in
our analysis are irrelevant near the isotropic
Heisenberg (n =d =3) fixed point, it seems rea-

and g ~ in Eq. (4) must be replaced by g6 8. Thus,

A „s(~) = (C„+;C „)k„ks + (—,
' C 44k

' +fk ', ) 5

(32)

with
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sonable to conjecture that the same will hold for
the more general terms of Eq. (39). Thus, the
result of Ref. 24 would be retained even if these
terms were not ignored.

V. SMECTIC-A- TO-SMECTIC-C TRANSITION

particular case of n = 2 and d =3 describing the A—
to-C transition. The strain field e, can be de-
composed into a uniform part and a phonon part as
in Eq (5)., and the phonon part can be removed as
in Sec. II. If e,', is kept constant (i.e., if the length
along the z axis is fixed), we find

The smectic A liquid-crystalline phase consists
of parallel planes of long organic molecules with

their long axes perpendicular to the planes. The
smectic C phase is obtained from the A. phase by
tilting the molecules at an angle 4 relative to the
normal to the planes. Since the molecules can
tilt in any direction in the (d —1) -dimensional
smectic plane, the order parameter S (~S~—:4)
has d —& components. Thus, we can describe the
A -to-C transition in an incompressible lattice in
terms of the Hamiltonian (3), with n =d —1. In

three dimensions, S is a two-component order
parameter leading to the prediction that the criti-
cal exponents for the A -to-C transition should be
heliumlike. "

The harmonic elastic Hamiltonian for the smec-
tic-Q liquid crystal differs from that for a crys-
talline solid. The density of a smectic-4 liquid
crystal can be written as

p(z) = Q p„coen(qoz +ug),

v(k) =
0 if k=0

(42)

=zg', ' ~—:v$) if kw0.
Bk,'+K,k4

Note that v$) is now a function of both the direc-
tion and magnitude of%. It is convenient to write
v$) as follows:

v(%) = =',g'/B+w $), (43)

with

sin40
) =wk'

8 cos'8+K, sin'6 ' (44)

where w = ,'K,g'/B an-d 8 is the angle between Tc and
the z axis. In the Appendix, we show that w$) is
a. distribution in the small-k limit, which behaves
like

where & is the coordinate perpendicular to the
planes and qo =2m/a, where a is the interplanar
spacing. u, determines the coordinate-system
origin. If u, varies slowly in space, it gives rise
to an elastic27, 2s Hamiltonian

3C„=— [B(e„)'+K,(&,'u, )'],1
(40)

X,„, =g
J

d'xmas(x)i'e„.

(41)

The existence of this coupling has been demon-
strated by experiments in which a smectic-A. —to-
smectic-C transition was induced by uniaxial
stress. '

We will now analyze the critical properties of
an n-component order parameter coupled via Eq.
(4&) to an elastic continuum with an elastic Hamil-
tonain given by Eq. (40). We will then discuss the

where &~ us a gradient perpendicular to the z axis
and e« is given by Eq. (2). (V~u, )' terms are pro-
hibited in this Hamiltonianbecause they correspond
to a rigid rotation of the entire system which must
leave the energy invariant. This somewhat unusual
elastic energy leads to a fluctuation destruction of
long -range order in three-dimensional smectic -4
liquid crystals. "'" The order parameter is cou-
pled to uniaxial compressions via

if')=
I

„rtt: 's) ,o ).
nk k'

(45)

The second term in this equation is clearly more
irrelevant that the first. The first term rescales
under the renormalization group as

(45)

Thus u) is irrelevant for e &I, and there are no
relevant anisotropic quartic potentials above three
dimens ions. Therefore for d & 3, phase transitions
of an n -component order parameter coupled to
smectic-A -like elastic continuum with e'„held
constant are identical to phase transitions with
the order parameter coupled to an isotropic elas-
tic continuum. In particular, if the specific-heat
exponent n for the incompressible lattice is nega-
tive, there will be a continuous transition with n-
component Heisenberg exponents; if n is positive,
there will be a first-order transition. " At 4 =3,
there may be corrections to this picture arising
from the marginally relevant potential u. If, on
the other hand, e'„ is eliminated, i.e., if uniaxial
stress rather than strain is held constant, a dif-
ferent situation occurs. In this case, we can re-
place v by w(k) for k w 0 and zero for k = 0, and
we can replace u in Eq. (13) by u ,g /B In other——.
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words, there is no new relevant four-point poten-
tial coming from interactions with the lattice, and
the transition will be sharp with n -component
Heisenberg exponents for all n. (This case is in

fact equivalent to the Baker-Essam model. ') Thus,
within this model for n = 1 and d = 3 there would be
a first-order transition at constant strain and a
second-order transition at constant stress.

The elastic Hamiltonian in Eq. (40) describes
the energy due to changes in the single component
w, of the displacement variable u. The complete
Hamiltonian should include the energy resulting
from the changes in the components of u perpen-
dicular to z as well. The elastic Hamiltonian for
uniaxial systems, such as smectic-A liquid crys-
tals, that can support different stresses along the
two symmetry directions but cannot support shear
has been derived by Martin, Pershan, and Swift. "
We have considered the effect of coupling an n-
component order parameter to an elastic continu-
um with this Hamiltonian. Our results are essen-
tially the same as for the simpler Hamiltonian Eq.
(40). If stress along the z and perpendicular di-
rections is held constant, 8 has only irrelevant
parts above three dimensions, and there is a sec-
ond-order transition with Heisenberg exponents.
For any other external conditions such as length
in both the z and perpendicular directions or con-
stant isotropic pr essure, the cr itical behavior is
the same as for an isotropic medium above three
dimensions. At three dimensions a new marginal-
ly relevant variable appears in all cases as before.

The specific-heat exponent for two-component
systems in three dimensions is very close to zero
and almost certainly negative. " We would, there-
fore, expect that the smectic-g —to —smectic-C
transition in three dimensions should by unaffected
by lattice compressibility. In other words, we ex-
pect the critical exponents to be heliumlike as pre-
viously predicted. " (This statement must be tem-
pered somewhat because we do not know exactly
what effect the marginally relevant operator M

will have on exponents, though it will presumably
only lead to logarithmic corrections to scaling. )
If, however, the smectic-C order parameter could
be converted for n = 2 to an n = 1 order parameter
by externally imposing a preferred tilt direction,
the transition would be first order or second order
depending on boundary conditions. Unfortunately,
it is difficult to conceive of an external mechanism
for aligning the molecules (such as a magnetic
field) that would not also alter the elastic Hamil-
tonian. Furthermore, the aligning energies that
can be produced by external fields in liquid crys-
tals are so small that the crossover between XY
and Ising behavior would occur very close to the
phase transition.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have considered a generaliza-
tion of the Larkin-Pikin-Sak model ' in which an

H -component order parameter is coupled to a gen-
eral anisotropic (rather than to an isotropic) elas-
tic continuum. We integrated out the elastic de-
grees of freedom and obtained an effective spin
Hamiltonian with an anisotropic four -spin poten-
tial. The anisotropy of this potential is a reflec-
tion of the anisotropy of the underlying elastic con-
tinuum. We then analyzed this effective Hamilto-
nian using the e expansion and found that all fixed
points are unstable with respect to the anisotropic
part of the four -spin potential. This "runaway"
is completely independent of external boundary
conditions (constant pressure, constant volume,
pinned boundaries) and might, therefore, be in-
terpreted to represent some microscopic insta-
bility of the system. This interpretation is in

agreement with the more complete analysis of
Bergman and Halperin, "which shows that in cubic
systems, a microscopic phonon mode has a sound
velocity which vanishes at a temperature above
the transition temperature in an ideal incompres-
sible lattice. We have also studied the smectic-
A-to-smectic-C transition on a compressible lat-
tice and found that this transition should remain
heliumlike regardless of boundary conditions.

Two different approaches have been used to study
phase transitions on compressible anisotropic lat-
tices. In this paper, following the work of Larkin
and Pikin' and of Sak, "we consider an effective
spin Hamiltonian from which phonon degrees of
freedom have been removed. Bergman and Hal-
perin" consider the complete coupled spin-elastic
Hamiltonian and renormalize elastic constants and
spin-phonon coupling constants as well as the usual
two- and four -spin potentials. There are certain
advantages and disadvantages to both techniques.
The advantage of the method presented here is its
simplicity. With very little effort, we are able to
show that all fixed points show a runaway with re-
spect to anisotropy. Furthermore, we are able to
treat general, rather than just cubic, anisotropy.
On the other hand, we cannot provide any sound
physical interpretation for the runaway, nor can
we say anything about the behavior of elastic con-
stants near the phase transition. Bergman and
Halperin are able to discuss the behavior of the
elastic constants and to show that the instability
is microscopic in nature and will lead to a first-
order transition, presumably to an inhomogeneous
state.

We close with the observation that in practice it
may be very difficult to see any evidence of the
anisotropic runaway discussed here. This is be-
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cause the crossover exponent is equal to n, which
is alw'ays quite small.

In what follows, it will be convenient to express
g(8) in a sIightly different form,
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g,„can be related to the g»'s using standard trig-
onometric identities. Integrals of the individual
Fourier components are easily evaluated:
"'1

, cos2sedeicos ~+&

—1"
(1+ ea)&/a [I + 2/a 2e(I+ ea}t~a]

APPENDIX

In this appendix, we will derive Eq. (45). Let
f(8) be any integrable function which satisfies the
inversion symmetry of the nematic state: f(8)

f(w —8). We are interested in integrals of the
form

= (-1)"[1—2ne+ O(e')],

sin'""8d81
g cos 8+&

pl 1 , (1 —~a"dx
1

(A5)

I, =
~

d8 D, ( 8)f( 8)

in the limit that E goes to zero, where

1 ESU1 8
b,,(8 =—

7t cos'8+ c' sin'8

=-sin'8 —, , +R(8) .E

m cos'8+ &'

It is straightforward to verify that

&(8)f(8)« = O(e').

(A1)

(A2)

(AS)

Since

+—Q g (-1)~ g,„+O(e'). (A8)
n=z p=x P

g(&~2)=+[( I}"g.+g..]-=f(tt&2}, -

this is equivalent to

= 1+— (-1)2~ " 2n 1
+ O(ta). (A V)

1T p g p 2p 1

We, therefore, have

I, = g [(-1)"g.+g..] —e P (-I)"2ttg,„

g(8) = P [g,„cos2n8+g, „sin(2n+ 1)8]. (A4)

Thus to evaluate I, to order &, we can replace
e' sin48 by e' in the denominator of A, (8). sin'8f(8)
~g(8) can be expanded in a Fourier series,

(A9)d, ,(8) = 5(cos'8) + ah+ O(e ),
where b is the operator which yields the order 4
term in Eq. (A8). This is the same as Eq. (45) in
the text.
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