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Critical behavior of an Ising model on a cubic compressible lattice
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Renormalization-group methods are applied to the critical behavior of an Ising-like system on an elastic solid

of either cubic or isotropic symmetry. Except in the special case where d T,/d V = 0, the bulk modulus is

found to be negative very close to T„so that the phase transition at constant pressure must be at least weakly
first order. In the isotropic case the solid may be stabilized by pinned boundary conditions, if crystal fracture
can be avoided. A "Fisher-renormalized" critical point can then be observed. By contrast, the anisotropic
cubic solid will develop a microscopic instability so that T, cannot be reached, regardless of boundary
conditions. Estimates of the size of these eAects are given, and contact is made with the Baker-Essam model
and a liquid, as limiting cases with a vanishing shear modulus.

I. INTRODUCTION AND SUMMARY

The role of elastic degrees of freedom in the
behavior of systems near a critical point has
long been a subject of debate. In particular, one

may consider systems such as helium near its
4 point, a ferromagnet near its Curie point, a
binary alloy such as P-brass or a crystal such
as NH~C1 near its ordering temperature —all of
them systems which undergo either a critical
transition or a weak first-order transition from
a disordered phase above a critical temperature
T, to an ordered phase of lower symmetry below

T, . In each case one may hypothesize an idealized
model for the phase transition, such as the Ising
model or Heisenberg model on a rigid lattice,
for which the critical properties are known from
series expansions or other techniques, and one
may hope that the physical system shows the
same behavior as the idealized model. In making
such an assumption, one has to decide whether
various properties obtained for the model cor-
respond to properties of the physical system at
constant volume V or at constant pressure P.
As was pointed out by Rice, ' Domb, ' and Pip-
pard, ' and later by many others, this question
is of particular importance if the specific heat
of the ideal system diverges at T, , as it does
for the Ising model.

If one assumes that C~ diverges, i.e.,

CA
—

i T —T,(P)(

where o., &0 is the ideal exponent and T, (P) is a
well-behaved function, one can then show that
C„must be finite at the transition, except when
d T, /dP =0. More precisely, one can show that
close to T, , C„ is given by

C„=const+ const~ T —T, ( V) ~

where

is the 'swisher-renormalized" critical exponent. '
On the other hand, if one assumes that C„di-

verges, i.e. ,

C„-
I

T — T( V)i
"I (1 4)

where T, (V) is now well behaved, then one finds
that, as iong as dT, /d Vw0, C, as well as the
isothermal. modulus of bulk compressibility B
both become negative close to 7, . In a fixed P
experiment, one therefore expects to observe
a first-order transition, accompanied by a
volume discontinuity. The value of T —T, (V)
would jump at the transition from a finite positive
value to a finite negative value, and the regions
of negative B and C~ would be avoided. Although

a Maxwell construction must be made to find the
exact location and other properties of the trans-
ition, some idea of the location as well as the
size of the discontinuities can be obtained by

estimating the reduced temperature t, at which

8 vanishes above T, . This estimate leads to

T —T, (V)
T, (V)

T Cs;„„V dT,
B T, dV

where t, is a somewhat arbitrary value of l „at
the edge of the critical region, C„„, is the singular
part of the Ising specific heat at t„and 8, is
the value of B at t „where B is sti11 dominated

by its fairly constant regular part. The associated
volume jump is estimated by

2i T T,i-
dT, /d V

If we examine further the consequences of as-
sumption (1.4), we see that if an experiment is
perf ormed at fixed V, thermodynamic s pr edicts
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that for
~

T —T, ~
sufficiently small, the system

will break up into two coexisting phases of dif-
ferent densities. In the case of a solid, however,
such a breakup may require fracturing of the
solid. Thus, with appropriate boundary condi-
tions, the possibility exists of entering the meta-
stable region and even of exploring the region
where B is negative.

The assumption of (1.4) and the conclusions
which follow from it were named "magnetothermo-
mechanics" by Mattis and Schultz, ' a term we
will continue to use in precisely that sense.

In order to decide between the alternative (1.1)
and (1.4), a number of models were studied.
Mattis and Schultz considered a compressible,
nearest-neighbor Ising model with an exch3nge
interaction which depended on bond length, but im-
posed the artificial constraint that all bond lengths
be the same' (this may be thought of as a solid
with infinite rigidity but finite compressibility).
Vpon minimizing the free energy with respect
to the bond length, they indeed found that (1.4)
was valid. But other models (e.g. , various "dec-
orated Ising models" ) suggested that in fact (1.1)
might be correct.

More generally, Fisher as well as Lipa and
Buckingham proposed that the ideal exponents be
associated with transitions at constant values of
the intensive variables or fields. 4 Thus, for ex-
ample, in 'He-'He mixtures ideal behavior of the
+ transition should be observed at fixed partial.
pressures of 'He and 'He but not at fixed concen-
tration. Indeed, for a symmetr y-breaking trans-
ition in a. fluid, (1.1) is undoubtedly the correct
assumption to make since at constant pressure
there are only short-range forces in the liquid,
whereas a constraint of constant volume intro-
duces effective Long-range forces (see also the
discussion in Appendix D). However, in a solid
the situation was less clear because of the long-
range nature of the forces transmitted by the
lattice both at fixed P and at fixed V. In partic-
ular, Wagner and Swift' have shown that if the
elastic variables are integrated out in a nearest-
neighbor compressible Ising Hamiltonian, where
the interactions depend on the elastic displace-
ments, the resulting pure spin Hamiltonian con-
tains long-range, four-spin interactions.

One other model has received cons iderab le
attention: the Baker-Essam model. (henceforth
to be abbreviated as BE). That model was found
to have an ideal transition at P = 0, a first-order
transition at P&0, and a Fisher-renormalized
critical point at P&0, ' ' i.e.,

C~ =const+const~ T —T, (P)~

This model and some generalizations of it will

be discussed in more detail below.
The above-mentioned models were either too

intractable to yield definite results about the
critical properties (e.g. , Ref. 6), or did not ac-
curately represent the elastic properties of a
real solid —finite compressibility and rigidity
moduli (e.g. , Refs. 5 and 7-9). In 1969, how-
ever, Larkin and Pikin succeeded in analyzing
a model with finite rigidity and compressibility
and obtained results which strongly suggested
that none of the above hypotheses is completely
correct. " Their model, which had isotropic
elastic properties, agreed with magnetothermo-
mechanics in that a first-order transition is
found 3t fixed P. However, the size of their
transition is not given by (1.5), but by the usually
smaller amount indicated in (4.26) below. Fur-
thermore, if their model is examined at constant
V, one finds that C, does not have the ideal be-
havior of (1.4) very close to T, , but rather the
Fisher-renormalized behavior of (1.2). In ad-
dition, before the first-order transition occurs
at constant P, there is usually a region of tem-
peratures where the ideal, unrenormalized cri-
tical behavior can be observed. Therefore mea-
surements at constant P may be better suited
for observing ideal behavior than measurements
at constant V. In the limit where the shear mod-
ulus tends to zero, the size of the Larkin-Pikin
first-order transition vanishes, and pure ideal
critical behavior is recovered for fixed P, as
expected for a liquid.

These resul. ts for an Ising-Like transition have
been confirmed recently by Wegner" 3nd by Snk"
using modern renormalization-group tech-
niques, " "and are also supported by the present
work. Specifical. ly, we find for the case of an
isotropic compressible solid: (a) For free bound-

ary conditions (i.e. , constant hydrostatic pres-
sure), the solid will have a first-order transition
except if d T,/dP= 0. (b) If we consider pinned
boundary conditions (i.e., all displacements van-
ish at the surface), which may be realized by
welding the sample to the inside of a rigid con-
tainer, and if internal. fracture c3n be avoided,
then a critical-point transition with Fisher-re-
normalized Ising exponents will. be observed.
(c) The weaker constraint of constant volume
(which could be realized by placing the sample
in an incompressible liquid enclosed in a con-
tainer of fixed volume) is not sufficient to stabil-
ize the solid, and the critical point cannot be
reached in this way. (d) When the first-order
transition is very small, which is the usual. case,
one can observe critical behavior in a range of
temperatures before the transition. We will call.
this situation pseudocritical. behavior. At fixed
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P we find pseudocritical behavior with ideal Ising
exponents, while at fixed V there will be a cross-
over from ideal behavior to Fisher-renormalized
behavior as T, is approached.

Going beyond a purely isotropic solid, we have
found that the critical behavior of the isotropic
elastic Ising lattice is unstable with respect to
the inclusion of any amount of cubic anisotropy
in the elastic moduli. At constant pressure, the
phase transitio~ is still expected to be first order.
However, in contrast with the isotropic case, it
appears to be impossible to stabilize the solid
even by imposing pinned boundary conditions,
since the instability now involves microscopic
normal modes of the system. At some tempera-
ture above the critical point (i.e. , while the cor-
relation length $ is still finite), the crystal be-
comes very soft with respect to phonons along
some of its symmetry directions. Before reaching
this temperature, the solid will probably trans-
form by a first-order transition to an inhomoge-
neous state.

ln the special case when d T, /dP = 0, which cor-
responds to a maximum or minimum of T, , the
above discussions are inapplicable. One then
finds that a critical point can occur for any bound-
ary condition. C„and C~ are then equivalent and
diverge at T with the ideal exponent n, . For
small d T,/d P, one can estimate the size of the
first-order transition. This is done in Sec. IV
below. The behavior of the latent heat in the
vicinity of a maximum or minimum of T, (P) is
shown schematically in Fig. 1.

A consequence of the universal appearance of
a first-order transition at constant P is that an
Ising-like tricritical point cannot occur in an
elastic solid except when T, is independent of
P on the second-order side of P, . (A tricritical

point is defined as a pressure P, where the na-
ture of the transition between an ordered and a
disordered phase changes from first order for,
say, P&P, to second order for, say, P&P, .) How-

ever, since the size of the first-order transition
predicted by (4.26) is usually quite small, it is
quite possible to have a pseudotricritical point
at which the entropy jump ~S changes from an
appreciable fraction of k~ per particle to a much
smaller amount, given by (4.33) (see Fig. 2).
The tricritical points observed in" "NH4Cl and'

ND, Cl presumably are actually pseudotricritical
points of this type. Because of the smallness of
the jumps predicted by (4.32) and (4.33), it is
not clear whether they are observable in practice.
We find, however, that these jumps will be en-
hanced in the vicinity of a pseudotricritical point,
as shown in (4.31). As the tricritical point is
approached from its second-order side, the
latent heat increases at first as ) P —P, ~'"
but later saturates at a finite but enhanced value
ins ide the tr icr itical r eg ion.

The Larkin-Pikin model had the shortcoming
that unphysical. boundary conditions were em-
ployed. Although the over-all volume was per-
mitted to vary, the shape of the boundary was
constrained by imposing periodic boundary con-
ditions. " In the treatment of Wegner, "free
boundary conditions were assumed. An effective
spin Hamiltonian was constructed in terms of the
exact static elastic deformation modes associated
with the free surface. The contribution of these
surface modes was discussed explicitly using
renormalization-group theory, at the price of a
considerable complication of the analysis.

In the present paper, we separate the problem

~m

I

I

I

L j~ I

I

I

Pm

FIG. 1. Schematic diagram of latent heat L in the
vicinity of a maximum (or minimum) of the transition
temperature T, (P) for a transition that would have bepn
an Ising-like critical point except for lattice-compres-
sibility effects. The two curves are described by 7; (P)
—7' ~ (P -P ) andL o- (P —P ) ' ~ ~ The volume
jump at the transition is proportional to (P —P&)L .

FIG. 2. Latent heat L in the vicinity of a tricritical
point (schematic). Solid curve shows a pseudotricriti-
cal point, expected for real systems. Dashed curve
shows a true tricritical point, which is possible for an
Ising-like system on a cubic compressible lattice only
if dT~ /dP=— 0 on the second-order side.
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of boundary conditions from the renormalization-
group analysis by the following approach: We
assume that the standard results of 19th-century
thermodynamic and elasticity theory describe
macroscopic deformations of our sample at all
temperatures other than the transition tempera-
ture. Thus we assume that the system has a
proper thermodynamic limit, which is reached
when the size of the sample is much greater than

the correlation length (. The free energy per
unit volume is then independent of the details
of the boundary conditions, but depends only on

the temperature T and the density p and on the
local shearing strains e „8, if any. Changes in

the free energy due to variations in the strains
on a length scale large compared to $ are de-
termined by standard elasticity theory. Like
the free-energy density, the elastic constants de-
pend only on T, p, and e 8 ~ We can now eal.eulate
these constants, as mell as any other local prop-
erties of the system, using any convenient bound-

ary conditions. The behavior of the system under
other boundary conditions can then be deduced

by using 19th-century physics. Periodic boundary
conditions are normall. y the most convenient for
calculations, and these will be utilized in the
present paper.

In See. II of this paper we derive the renormal-
ization-group equations of our model —a Larkin-
Pikin-type continuum Hamiltonian but mith cubic
anisotropy in the elastic part. In Sec. III we
analyze the solutions of these equations, finding
their finite fixed points and their instabilities.
In particular, we find that while the isotropic
system only develops macroscopic instabilities
(e.g. , B&0) which do not prevent the Hamiltonian
from reaching a fixed point, the anisotropic sys-
tem develops a microscoPic instability, as men-
tioned above, and the Hamiltonian is prevented
from reaching a finite fixed point. In Sec. IV
me discuss the physical. properties of the system
that arise from these mathematical properties
of the renormalization-group equations. In par-
ticular, we estimate the location and size of the
first-order transition under various assumptions,
as well as determine what types of pseudocritical.
or pseudotricritical behavior can be expected.
In See. V we outline some alternative ways of
discussing the effect of different external or
boundary conditions on the properties of the mod-
el. In Sec. VI we discuss a few models that lead
to results which seem to contradict our general
results. We show that these contradictions, which
arise in some versions of the BE model as well
as in a mode l recently propos ed by Imry, "ar e
the result of the particular pathologies of these
models. More specifically, we show that these

models, which exhibit a true tricritieal point at
constant P, manage to do so by having different
elastic moduli for uniform strains and for finite-
wavelength strains. These models also violate
the rotational invariance of the free energy.

In Appendix A we develop some of the important
properties of an elastic continuum with cubic
anisotropy which are required for our discussion.
In Appendix B we analyze the Baker-Essam model
and some generalizations of it and show how they
fall. into the framework of our general discussion
as a special case of a cubic system where one of
the shear moduli vanishes. In Appendix C we
give a more careful discussion of the solution of
some of the renormalization-group equations. In

Appendix D we develop a mathematical analogy
between an Ising model in a compressible liquid
and an Ising model in an isotropie elastic solid
with periodic boundary conditions. In Appendix
E we show how to apply a Maxwell construction
for determining the exact properties of the first-
order transition induced in an isotropic solid at
fixed P.

II. DERIVATION OF RENORMALIZATION-GROUP
EQUATIONS

We will consider a system of one-component
Ising spins sitting on a harmonic elastic lattice
with cubic anisotropy. The spins are coupled
linearly a~d symmetrically to the elastic de-
formations. In the long-wavelength limit the bare
Hamiltonian can be written in terms of continuum
variables as follows:

(2.1a)

n=1 n& 8

C'„P e'„,), j2. )b)
n& 8

where )))(x) is the Ising-spin field variable and

8(x) are the components of the strain tensor,
which are related to the displacement vector
u(x) by

(2.2)

It is understood that only fluctuations with wave
vector less than some cutoff A (whichwewil. 1 take
to be 1) a.re to be included. In (2.1a), g, is the
bare coupling constant of the elastic and spin
variabl. es, while C,'„C,'„and C,', represent bare
values of the elastic moduli in ordinary units of
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u „(x)=,i2 Q u „,e"' *,
(2 3)

0'(x) =

where q, x, and u are dimensional vectors. In
terms of g, and u, for q&0, 0 becomes

energy per unit voLume. (The notation C„, C»,
and C44 corresponds to the usual Voigt notation
at d=3, but we shall use the same symbols for
all values of d. ) The spatial variable x is mea-
sured in a coordinate system which deforms with
the elastic solid, so that the integrations are
over a fixed volume V= L . The vector u(x) is
the difference between the actual. position of a
particle in the laboratory frame and its equilib-
rium position.

As explained in the Introduction, we will assume
periodic boundary conditions for g(x) and u(x).
It follows that the actual volume of the sample
is the same as the original volume L, and the
equilibrium expectation value of the strain
(e „,(x)) must vanish. [This folLows from a com-
bination of the translational symmetry of the
Hamiltonian and the periodicity of u(x). ]

We remark that, in principl. e, we could add
arbitrary higher-order terms to (2.1), including
anharmonic terms in the elastic energy, spin-
elastic couplings quadratic in the strain, and
couplings proportional to higher powers of the
spin and of the gradients. All. such terms turn
out to be "irrelevant" in the renormalization-
group sense (with certain qualifications discussed
in Sec. IVB below), provided that they preserve
the over-all cubic symmetry of the system.

Having assumed periodic boundary conditions,
we can define Fourier components in the usual
way:

0'
-T =g-'(r, +q')lL, (,+~V

ala2a

x-x' =x/b, q- q' =bq,

&(x) —0'(x') = b' 0(x),

u(x)-u'(x') =b" u(x), u, —u,' =b'~ i'u„
(2.5)

where b is a constant greater than 1, and the
scaling exponents a and a„will be specified later.
The equations are constructed by considering
the 0 and g terms as perturbations and making
a diagrammatic expansion. The renormalization
group constructed in this way is a simple gen-
eralization of the analogous renormalization group
used by Halperin et al."and by Achiam and Imry"
to discuss coupling between an Ising-like field
and a nonordering scalar field (e.g. , a mass
density or energy density).

Taking into account only the diagrams in Fig.
3(a), we get the following recursion equation
for the inverse spin-spin propagator:

1

a aa&

(2.4)
where Do s(q) is the bare dynamical matrix, pro-
portional to q', whose precise form is given in

Appendix A. The q =0 component of ((x) becomes
important only below the critical point, while
the q=0 component of u(x) is absent from Ho with
our boundary conditions.

Using aWilson-type approach, "we can now con-
struct a renormalization-group transformation
by integrating over intermediate wave vectors
in the domain

b-i(q(1

and making a change of scale

r„,+q' =b ' & + +
V

'
2 D, ' p+q) z(p +q ) pq+qq) .

V
p rgp V ~ y„p (2.6)

Even though we have included only the lowest-
order terms here, i.e. , those that will give rise
to 0(&) terms in an expansion around d = 4, we
seem to have an extra q dependence in the last
term on the right-hand side of (2.6). To investi-
gate this further, we rewrite this term as an
integral, and expand the integrand in powers of
q:

d'P &&(P+q). (2v)' r, +p'

— 8
'p ' z . '~ (p)= —8
( )~ ~ K (p)+q.

1
2 '-" p'p

(2.7)
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where we have defined

K( (q): 2~@ ( q 'D( (q) ' q. (2.8)
(Ic)= f '&(i) (2.14)

Note that K, really depends only on the direction
of q. We will often emphasize this fact by writing
the argument of K, in the form of an appropriate
unit vector, e.g. , q=q/~ q~. The integral in ( 2.7)
is separated into an integral over the magnitude
of P and an angular integral over the surface of
the unit sphere described by P. Because K, (-P)
=K, (p), the second term on the right-hand side
vanishes. The last term includes the second-rank
tensor e'K)/op„sp() which, when integrated over
the angles, must yield a constant second-rank
tensor. Because in cubic symmetry the only
constant second-rank tensor is the unit tensor,
we final. ly get

dr Bd—= (d —2a)r + (12u —8 ( K) ),dl 1+x (2.15)

d~ Bd
(d —4a)u+

( )~

Similarly we can derive recursion relations for
the remaining parameters uf+y, gf+g, etc. For
convenience, we will write all the recursion re-
lations in the form of differential equations. To
lowest order in & =4- d and in the coupl. ing con-
stants u, and g„ these equations can be obtained
in a trivial way from the discrete relations by

setting lnb = dl. We thus find, using the diagrams
of Fig. 3,

where

B, =—Q~ /(2v)',

and

(2.9)

(2.10)

x (-36u'+ 48u( K) —16 ( K') ),

(d —4a) + (d —2a„—2)cog g
dl 2

(-24 (6(K))),1+r '

= (d- 2a. —2)D„B(q)

(2.16)

(2.17)

0 =2)) '/I'( —,'d) (2.11)

is the surface area of the unit sphere in d dimen-
sions. Since K, is a homogeneous function of
order 0 in the components of P, it can be ex-
panded as a series of spherical harmonics with
constant coefficients. The angular integral over
&'K, vanis hes because the only spherical harmonic
which could have survived it, i.e. , Fo, is made
to vanish by V'. Consequently there are no q'
terms on the right-hand side of (2.6) other than
the usual one. This leads to the usual &-expan-
sion results

2 2 dR' qnqs (1 r)a)

dK(q) - B~
dl

=K(q) (d-4a)+ 1+i'

(2.18)

x [-24u+ 16(K) + 4K(q)} 1 (2.19)

where we have suppressed the subscripts l, and

where (K') is the angular average of K'(q). Note
that (2.19) is not independent of the other equa. —

tions —it was derived by combining (2.17) with
an equation for D ' obtained from (2.18).

n =o("),
d —2a = 2+O(c'),

d-4a = e+O(e').

(2.12)

The absence of extra q' terms on the right-hand
side of (2.6) could also have been verified from
the explicit form of K, (q) given below.

As a consequence of the above discussion, we
ean now write the recursion equation for r, in
the form

a)
l+I

b) X

c)

+ & + ~ ~

(Kg)

+ + + + ~ ~ ~

U~ Ul

+ + + ~ ~ ~

r, +, =6" " ~, + 129, —8 K,

(' 'cc) (2.13)

Uf Kg

K

Kt(Kf)

where the symbol (K, ) refers to an angular aver-
age:

FIG. 3. Diagrams used to obtain the renormalization-
group equations (2.15)—(2.19) .
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dC'"=(d —2a„—2)C,'„ (2.20)

d C' C' —(d 2a 2)(C& C& ) (2.21)

B~
dt =(d —K„—2)Ci~ —2gr (1 r )

(2.22)

In Appendix A we calculate K, explicitly. Using
Eqs. (A8) and (A13) we can write K, in the form

Using (2.18) and the explicit form of D [ see
(A7) in Appendix A] we can deduce the following
equations for the renormalized elastic coeffici-
ents:

A:—,0&A(pC

C» C»
(2.24)

Note that A =1 for an isotropic system. The de-
tailed form of Q, given in (A14), depends on d.
For d=3, Q is given by

K 1( )» % 12» 2 44)
Q( ) (2 23)

gs

where Q is a ratio of polynomials symmetric in
the components of g. These polynomials have
coefficients that depend only on the anisotropy
parameter A, which is the ratio of the two prin-
cipal shear moduli:

.
)

A(q', q', +q', q', +q', q,')+(1-A)(4-A)q„'q', q',

A'+4A(1-A)(q2q, +q', q', +q', q„')+12(1—A)'q„'q, q,
' (2.25)

We have not indicated any dependence on l in

either A or Q, for the simple reason that they
are independent of l, according to (2.20) and

(2.21). As discussed in Appendix A, Q has the
remarkable property that, for all allowed values
of A, it satisfies

that length at ra= 1, far from T, . (See Appendix
A for a derivation. ) Consequently, it is clear
from (2.20) and (2.21) that the physical values
of C«and C» C» are equal to the bare values
C«and C,', —C,', . It is therefore convenient to
choose the scaling exponent a„ to satisfy

0 ~ Q ~(d —1)/2d, (2.26) d-2a„—2= 0, (2.28)

C(t ) = (' '" '"C
I (2.27)

where C stands for C», C», C44, or any linear
combination of these constants, ( is the spin-
spin correlation length, and g, is the value of

the lower bound being attained when q is along
a cubic axis (( 100) in three dimensions), while
the upper bound is attained when q is along a body
diagonal (( 111) in three dimensions).

One might wonder at this point how the matrix
D and the vector u are to be generalized to noninte-
gral d. From the discussion leading up to (2.13)
it is clear that the perturbation expansion only
produces products of factors like K(q) that have
to be integrated over solid angles. While it is
not clear how to generalize the functional form
of K for nonintegral d, all that is really required
for evaluating these integrals is the distribution
of values of K(q) and of products q PK(q)K(P),
etc. These distributions, which can be found for
integral d, can presumably be continued an-
alytically to nonintegral values of d. As we shall
see in Sec. III, we will not even have to calculate
these distributions explicitly because we will
find that at a finite fixed point K has to be iso-
tropic, in which case the distribution is trivial
anyway.

The physical values of the elastic constants
are given by

since that choice ensures that these parameters
also do not change under the renormalization
group

C,', =C C» —C„—C» —C,2. (2.29)

We note that this remains true to any order of
perturbation theory —this follows from the fact
that the equation for D' always has the form

=(d-2a„—2)D'„z —2g', F(u, , K, , q)q qz

(2.30)

to any order in K and u, where F has cubic sym-
metry in the components of q. From the explicit
form of D [Eq. (A7)], it is now evident that the
shear modul. i are not renormalized when the choice
of (2.28) is made.

The physical value of C» wil. l. be given by

C„(t)=C,'gl&= i.(t/( ). (2.31)

From (2.22) it is clear that unless g=0, C'„ is
a monotonic decreasing function of l, and there-
fore that C„(t ) is always less than the bare va. lue.
We shall see in Sec. III that sometimes the value
of C»(t ) turns out to be negative, even though

Cps is pos itive, and this wil l natural ly have seri-
ous consequences for the stability of the system.

Returning to (2.30), we note that since F(u, K, q)
in that equation is a regular function for small
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q, D'„q(q) is analytic in the components of q near
q=0. Similarly, g„u„and r, will depend on

q in higher orders of perturbation theory, but
this dependence will be completely regular in the
components of q near q =0. Of all the quantities
that appear in the equations, only K is nonana-
lytic when viewed as a function of q (rather than

q) near q =0. This does not cause any problems,
however, since K only appears in connection with
internal wavy lines (i.e. , phonon propagators) in

diagrams, and in that case it is only integrated
over a shell in q space where I q I

&b '
By contrast, if we had tried to integrate over

the elastic variables completely before setting
up the renormalization-group equations, as has
been done by others, and as we shall do in (5.2)
below, we would have introduced singularities in

the Hamiltonian at q=0. These singularities,
which were ignored by Aharony and Bruce, '4

would presumably complicate the discussion in

that approach.

III. FIXED POINTS AND CRITICAL BEHAVIOR—
MICROSCOPIC AND MACROSCOPIC STABILITY

A. Fixed points

It is immediately clear from (2.19) that at any
finite fixed point, K(q) must be independent of

q. In that case (K) =K and ( K') =K'. It is there-
fore useful to rewrite (2.15), (2.16), and (2.19)
in terms of

ur —=ui —(Kr) ~ (3.1)

We write the resulting equations in their &-ex-
pansion forms, using (2.12) and (2.28), and re-
placing B, by B„and we note that it is quite easy
to restore the more general form to any of the
results. We thereby obtain

—= 2r + 4 (12u + 4 ( K) ),
dr B4

1+x (3.2)

=u(& —36B4u) —20B4((K ) —(K)'), (3.3)

dK(q)
dE

= K(q) [ & —B,(24u + 4 ( K) }]

+4B,K(q)[K(q) —(K)]. (3.4)

G- r*=u*=K*= 0 (3.5)

ES. r*= -- u*=O K*=2) 7 4B 7

4
(3.6)

K*=06' 36B '
4

(3.7)

The subscripts l have again been suppressed here.
These equations have four O(e) fixed points,

given by

E

3 ' 36B4 ' 12B4
' (3.6)

In this way we find

1 2~c
1 —e/2 1 —a~ '

2v~
2u~ =-1+ —+O(e') =

1 —™xr
'

(3.10)

(3.11)

where the subscripts clearly correspond to the
fixed points.

These fixed points and their stability properties
have been discussed by Rudnick et aE. ,

"who dis-
covered the point JI (it was called L in Ref. 25)
and found that it was the most stable of the four.
In agreement with that discussion, we find from
(3.3) and (3.4) the following regions of stability
for the various points:

G: Qo =Ko =0,

S: uo =0~ Ko)0

I: uo)0~ Ko =0 (3.12)

A: Qo) 0, Ko) 0-

Outside of these regions, the system will have
mic roscopic instabilities.

Thus, when uo&0 the system is unstable against
fluctuations of the local spin variable g(x) and it
will undergo a first-order transition. The points
G and S characterize tricritical behavior of the
spin Hamiltonian, as we shall discuss in Sec. IVB
below.

Another region not included in (3.12) is K,&0.
We do not consider this possibility since it would
mean that the bare Hamiltonian H is elastically
unstable: Some vibrational normal modes of the
lattice then have negative energies independently
of the spin states. We will not consider such in-
stabilities of the elastic Hamiltonian since we are
interested in the critical properties of the spin
system. The elastic variables are assumed to
have critical behavior only as a result of their
interactions with the spin variables and not as
a result of any intrinsic elastic instability.

The remaining possibility for being outside of
the stable regions of (3.12} is for K~(q) to be an-
isotropic. We will. return to discuss this case
later.

These are, respectively, a Gaussian, a Fisher-
renormalized Gaussian (i.e., a spherical), an

Ising, and a Fisher-renormalized Ising fixed point.
To verify the identification of the Fisher-renor-
malized fixed points, we can calculate from (3.2)
the index v that characterizes the critical be-
havior of the correlation length $:

(3.9)
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B. Isotropic E(q}

When uo 0 and Ko is isotropic, the renormalized
Hamiltonian H' wilt. ultimately tend towards either
I or R depending on whether Ao=0 or Aot0, since
by (2.8) that determines whether K0= 0 or K0& 0.
The physical meaning of Ao is established as fol-
lows. Suppose the sample is compressed or ex-
panded, so that the volume is changed by the
amount 5V. The spin-lattice interaction present
in (2.1) requires that H0 be modified by the term

tonically. From the explicit form of K, we con-
clude that C,', 0. Together with the fact that
C,', =C0«&0 (because C« is proportional to the
square of a sound velocity), this leads to the con-
clusion that detD'&0, so that no microscopic nor-
mal-mode frequency ever vanishes for q40.

The asymptotic behavior of C,', as H' approaches
R can now be found by noting that it must be the
same as the asymptotic behavior of A', . To find
the latter, we use (2.17) with u =u*„—K~+,

(K) =K~+, d-4a =e, and d-2a„—2=0 to get

8'0
V Q 42 0 -2. (3.13) dA-,

3 At ~ (3.18)

Clearly, this term merely shifts the effective
value of ro to

From the solution of this equation and using (3.17)
we find

2go 6 V
1 l + (3.14) Cl g2/2K' 00R

—ei/2«f 8 (3.19)

Assuming that i0 is the only parameter in (2.1)
which depends on T [this is a good approximation
for T very close to T, (V)], we can write for the
reduced temperature t,

The physical value of C« thus satisfies

C„=C„I,&

R Rcc[ T T
I

II I
R C 7 (3.20)

T —T (V) 2g0 5V
(V) 0 c 0 c Tl/2 VC C

(3.15)

where in the last two terms we have replaced
e/3 by the critical exponent that it actually rep-
resents and used the fact that

where &, is the critical value of xo. Consequently,
since r, is independent of V, we find

(3.21)

1 dP, V dT, (3.16)
We now turn to consider the bulk modulus of

compressibility B:

Thus, when d T,/dV=0 we have g0 =0, and there
is no coupling between the spins and the elastic
variables. In that case II' tends to I and the
critical behavior is characterized by unrenormal-
ized Ising exponents. When dT, /dV is nonzero
but small. , so that K, u„ there will be cross-
over effects between I and R.

We now turn to a careful analysis of the sta-
bility of the system when uo& 0, K, 0 and K, is
isotropie. An isotropic K, can be expected in

only two special cases of the cubic Hamiltonian
of Eq. (2.1)": A =1, corresponding to an iso-
tropie system; A =0, corresponding to a gen-
eralized and slightly modified Baker-Essam model.

To investigate further the microscopic stability
of the system in the isotropic case (A =1), we
consider the explicit forms of detD' and K, for
this ease [see Eq. (A26)]:

(3.17)

1 d-1 d-1,B=—
d

C«+
d

C,2
—C« —

d ~C44 (3.22)

d-1 I o d-11 o (3.23)

A negative value of B, no matter how small,
implies however that under free boundary con-
ditions (constant pressure P), the system will
become macroscopically unstable. In fact, even
if the total volume is constrained to be constant,
the system will still be unstable. To see this,
consider a distortion of the following type:

u(x) ~(n x)x ——,'x2n, (3.24)

where n is any constant vector. All. the shear
strains vanish for this mode of distortion, since

where we have used the fact that for an isotropic
system C» —C» = —,C«. As a, result of Eqs. (2.29)
and (3.19), we find that, as I -~,

K, =g', /2C,', . e „„=(n ~ x); e „2 --0 for II 0 p. (3.25)

From (3.3) and (3.4) it is clear that if u, and K„
are small and positive, then u, and K, both remain
positive and tend to their fixed-point values mono-

Therefore the elastic energy associated with these
"linear modes" is proportional to B, and they be-
come unstable when B-0. It is easy to see that
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for a body whose shape has inversion symmetry
around X' = 0, the linear modes involve no change
in the total volume to lowest order. For a body
lacking this symmetry, we can find a linear com-
bination of the "breathing mode" uo x and a linear
mode that will not alter the volume and will become
unstable when B-O.

Even if one manages to prevent both breathing-
and linear-mode distortions by a judicious choice
of boundary conditions, there is still a large num-
ber [O(N ~')] of surface normal modes of distortion
whose effective elastic constants lie between B and

As the critic al point is appro ached and C»
-0, all of these eventually become unstable. We
conclude that in order to stabilize an isotropic sol-
id completely in the vicinity of the critical point,
we would have to prevent all of these surface dis-
tortions from occurring. That would require a
complete pinning of all the surface atoms and not
just fixing the volume and the shape. One could
try to achieve such "pinned boundary conditions"
in practice by welding the solid body to the inside
of a very rigid container. For the case of pinned
boundaries as well as the case of periodic boundary
conditions in fixed volume, for which we have done
our calculation, there is no first-order transition.
The critical point can be reached, provided inter-
nal fracture does not occur. Furthermore, there
exists a. complete mathematical analogy between
the isotropic solid at fixed V with periodic bounda-

ry conditions and the one-component fluid. This
analogy, which is discussed in detail in Appendix
D, enables one to deduce many of the results for
the isotropic solid from the analogous results
known to hold rigorously for the fluid.

In the BE case (A. =0), detD' and K, are given by
[see (A27)]

T —T,(V)
T,( V)

(3.28)

The critical behavior at fixed P is described in
terms of a different reduced temperature,

T- T,(P)
T,(P)

(3.29)

To determine the critical behavior at fixed P, we
will first determine t„as a function of t~, and then
substitute that dependence into the thermodynamic
quantities whose behavior as functions of t„ is al-
ready known.

A simple calcula, tion, which follows Bergman
et al. ,

"yields

dt B[T/T, (V)]

T.(P) TT.(P) dT, sP a V

T,( V) [T,(V)]' dV 8 T v aP

In Sec. IVA we will show that if C»»C, 4, there
will be a range of t„where B is still positive and
exhibits Fisher- renormalized Ising behavior,

B(t„)—= B,(f„/t2) &~ ' 2~ for t2&(t„« t„( 331)

d(f„/f2) V dT, BP f I/(' I)

d(tq/t2) B, dV BT v t2

where t, defines the crossover from unrenormal-
ized to renorrnalized Ising critical behavior, while

t, defines the temperature at which B-0 [see Eq.
(4.17) below). In the region where (3.31) is valid,
(3.30) becomes

detD' = dB, (c,', —c,'2) ~ ' II q (3.26) /(- )

7
t2

(3.32)

K( =g)/2B(. (3.27)

By an analysis similar to that of the isotropic
case, we find that B) &0 Cy C =C C
and hence detD'&0 except along directions where
a component of q vanishes and therefore detD' =- 0.
Again, all the mic roscopic normal- mode frequen-
cies are positive except along those directions,
where some of them vanish identically. In this
case there is no further trouble due to macro-
scopic instabilities, since 8, is kept positive by
the microscopic renormalization-group equations.

The preceding discussion assumed periodic
boundary conditions. The critical behavior found
under that assumption is characteristic of the sys-
tem at fixed V. The reduced temperature is then

where we have used (4.35) as well as the fact that
(dP/eT)„=-dP, /dT to get the last result. Since the
second term on the right-hand side is much greater
than 1, the solution of this equation is

(3.33)

As a result of this, all the behavior that was
Fisher-renormalized-Ising-like as a function of
t, gets renormalized back again to ideal Ising be-
havior as a function of t~ for t~» t,. This is an ex-
ample of Fisher renormalization at work even when
the original specific heat is nondivergent at the
critj.cal pojnt.



13 CRITICAL BEHAVIOR OF AN ISING MODE L ON A CUBIC. . . 2155

C. Anisotropic E(q)

When A is neither 0 nor 1 (and g, &0, u, &0), Ko
has a nontrivial dependence on q. This will pre-
vent the system from ever reaching the point R or
any other of the finite fixed points, since (3.3) and
(3.4) are clearly unstable against nonisotropic per-
turbations of K, (q) around any K* such that (K,)
=K*: Wherever K, (q) &K*, K, (q} will tend to grow
whereas wherever K, (q) & K*, it will tend to de-
crease. We will now show that in fact the maxi-
mum value of K, (q), defined by

K',„—:max K, (q), (3.34)

Note that when C«=0, the system exhibits exact
unrenormalized Ising behavior at fixed P(i.e. , for
arbitrarily small values of t~), since B never be-
comes negative and there is no instability.

Before closing this subsection, we would like to
point out that the qualitative result that K(q} must
be independent of q at a nontrivial finite fixed point
is valid to any order in 0 and g. From (2.23) it is
clear that when K, (q) is anisotropic, its shape can
only be preserved with changing l if |"y']:Cl'I We
already noted that in lowest order, this would re-
quire g, =0. We now go further and argue that when
all the elastic moduli do not get renormalized, and
hence do not exhibit any critical behavior, then
we must have rigorously dT,/dV=dT, /dP=0. This
follows from Pippard's relations. ' Barring that
eventuality [which is what we mean by a trivial
fixed point for K(q)], C,', always depends on I.
Therefore, unless K, (q) is isotropic, it will keep
changing its shape with increasing l.

is [see (A17)]

(3.37)

In order to determine the behavior of this K' as
E-~, we consider a11 the conceivable alternatives:
(a) If we assume that g', /2C, ', remains bounded be-
tween two finite, positive values, then by (3.36),
8, -+ . Consequently, the coefficient of Q in
(2.23) will also tend to +~, while K, (q) -0 for all
q except along the cubic axes. This would lead H'

to the fixed point I, which is, however, unstable
even against isotropic perturbations of K. There-
fore this is not a possible alternative. (b) If we
assume that g', /2C, ', - 0 for some l (including l = ~),
then both coefficients in (2.23) must diverge to +~,
and again K, -0, which is unstable and hence im-
possible. (c) By elimination, we thus arrive at
the conclusion that g', /2C, ', = K',„-+~ for some l
(again including I = ~).

We will show below that K',„always diverges to
+~ at a finite value of l, denoted by l„, and then
jumps to —~ and continues to increase with l. We
will also show that g, does not diverge at that point.
Therefore, it is clear that Q,', -0 and then becomes
negative. This means that if ( is large enough
(i.e. , if T is sufficiently close to T,) so that $/(,
& e', then the physical value of ply will be nega-
tive. Consequently, the square of the isothermal
sound velocity will be negative for longitudinal
modes with q along or near a cubic axis, and these
modes will be unstable.

Turning to the bulk modulus, we can write

diverges at some finite value of l, and then changes
sign and becomes negative.

In order to do this, we will focus attention on the
ratio R, of the two coefficients in the expression
for K, in terms of Q [Eq. (2.23)]:

d —1
B, = C,', — (C„—C,', )

(C„—C„)(0 as l- l . (3.38)

C44 —2(C» —C,',) A —1 C,'~ (3.36)

This can be either positive or negative, depending
on whether A & 1 or A. - 1. It is useful to write down

the equation satisfied by R„derived from (2.20)
and (2.22):

This means that even before K'„diverges, there is
some l& l„at which B, becomes negative, and we
get into a macroscopic instability such as we al-
ready found in the isotropic system.

In the case when 0&A &1, K', ,always occurs
when q is along a body diagonal, where Q also has
its maximum, and its value is given by

dR, 4' 8',
R —= 4B gi R .

dl (I+rg)' 2C' ' 2C~ s (3.36)

gi
2C,', + 2[(d —1)/d][—,'C~~ —(C,', —C,',)]

It is clear that as long as g,'/2C, ', & 0, ~R, ~

is a
monotonically increasing function of l. That in it-
self already shows that the anisotropy of K, will
always grow with increasing ).

In the case when A & 1, K' always occurs when

q is along a cubic axis, where Q =0, and its value

2/B, + [(d —I)/2d]C4j
(3.39)

[see (A18) and the subsequent remarks on the case
A & 1]. We again consider all the conceivable al-
ternatives for g', /2C, ', as I-~: (a) As before, if
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g, /2C, ', is bounded we find ~R, ~

-~ and consequent-

ly, when
x"-'dx

' . A, (l„—l)+A, x'

IR, lq...=- IR, I 2d
=I, (3.40)

K .„will diverge to +~ since now R, & 0. This will
occur at some finite l. (b) If we assume that
g', /2C, ', -0 for some l, then the coefficients in

(2.23) diverge to +~ and —~, respectively. But
because Q is anisotropic, the two terms cannot
cancel each other except at some isolated q's.
Consequently K'(q) -0, which is unstable and im-
possible. (c) The last possibility is g,'/2C, ', -+~
for some l. Then, by (3.30), (R, ~

-~ too. Con-
sequently, for some finite l before that point,
(3.40) will hold and K' -+~.

Using the above-quoted behavior of K',,„and g,
near l„, where K',, „diverges, it is now clear that
the denominator in (3.39) vanishes at l„and then
becomes negative with further increase of l. Since
the denominator is proportional to the squared ve-
locity of the longitudinal mode with q along the body
diagonal, it is clear that this mode becomes un-
stable when $/t', & e'". Moreover, the vanishing of
this denominator means that

d-1,
B,—— —,'{.,', & 0 as l l„, (3.41)

dK'„Illhll 4B (K g
)

Q (3.42)

The solution of this equation is

1/K', „=Co —4B,l, (3.43)

where C, is a constant. %e see that K'„,„-~at

l„=C/4B, . (3.44)

In order to determine the behavior of other quan-
tities near l = l„, we expand K, '(q) around l„and
qmaX&

Kg '(Pj) =A, (l„—l) +A,x', A „A,& 0, (3.45)

where x is a, (d- 1)-dimensional coordinate system
on the surface of the unit sphere in q space with
its origin at q,„,„. Consequently, for l & l„we find

and therefore that again there is some l& l„at
which B, becomes negative, and we get into the
associated macroscopic instability.

In order to determine more precisely when and
how K',„diverges, we note that K, (q) becomes
sharply peaked as K',„grows large. In particular,
we expect that K',„will become large relative to
the average I7, . If we choose q in the direction q,„
which maximizes K, (q), then we should approximate
(3.4) by

(&-3) /2

=-2A'd 3
—1

(3.46)

where we introduced an arbitrary upper cutoff in
the integraL Although the constant part of (K,) will
depend on this cutoff and will thus not be faithfully
reproduced by (3.46), we a.re mainly interested in
a possible divergence of (K,) as l-l„, and this is
well represented. An analogous calculation of (K', )
leads to

x' 'dx
[A,(l„—l) +A,x']'

(&-5) /2

2A d 5 A
(--l)

2 — 2

du 20BII

dl (1+ r)'

d 320' g
(1+R'A'(5 —d) A,

for 1&d&5. (3.48)

The solution of this equation has the form

u, —u, ~ (l„—1)"-'&~' for d ~ 3,

u, —u,~In(l„—l) for d=3.
(3 .49)

This means that while u', remains finite for d& 3,
it diverges like (K,)' for d & 3. In any case, this
is weaker than the divergence of either (K', ) or
(K'„)', which completes the justification for using
the Eqs. (3.42) and (3.48) as approximations to
(3.4) and (3.3).

Finally, we can use (3.46) and (3.49) to substitute
in (2.17) and investigate the behavior of g, as
l- l„. %'e see that although the right-hand side of
(2.17) is singular, the solution of that equation for
gf does not diverge at l for d ) 1, and our earlier
claim regarding this matter is thus proven.

Returning to consider (3.49), we note that, while

u, is only weakly diverging for d~ 3, it diverges to
Therefore, at some l& l„ it will already have

to become negative. This suggests that the system
will in fact undergo a first-order transition before

(3.47)

Returning to (3.3) we see that, near l = l„, we can
try to approximate that equation by
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l reaches l„. This transition, which should occur
for pinned boundary conditions in fixed volume,
would presumably be accompanied by inhomogene-
ities that resemble longitudinal sound waves along
the soft directions. Of course for free boundary
conditions, or free boundaries with constrained
total volume, we expect that a first-order trans-
ition associated with a macxoscoPic instability wi11

occur first. In Sec. IV we will estimate the sizes
of some of the discontinuities, as well as discuss
the question under what conditions is the critical
behavior nevertheless observable.

IV. MAGNITUDES OF THE ELASTIC EFFECTS

The actual physical properties of any system
near its critical point depend on the path that the

Hamiltonian H' follows when &0 is very close to the

critical value r, . In particular, if &0 —y, is too
great, H' will never come close to any of the fixed
points and no simple critical behavior will be ob-
served.

In this section we will attempt to analyze the be-
havior of the cubic magnetoelastic lattice along
these lines. In particular, we will try to calculate
where some of the instabilities discussed in Sec.
III actually appear, as well as the size of the dis-
continuities that char aeter ize the resulting fir st-
order transitions. This will be done first for a
nearly isotropic system (A =1) both for the case
when the system exhibits critical behavior governed

by I or R, and for the case when the system ex-
hibits tricritical behavior, governed by G or $.
We will then analyze the transition in the case of
the extremely anisotropic systems A. »1 and

A. Pseudocritical behavior in a nearly isotropic system (A =—I )

stability in the same way as a precisely isotropic
system. On the other hand, under pinned or peri-
odic boundary conditions at fixed V, the anisotropy
must become important sufficiently close to T, ,
and then it will be the cause of an instability.

To proceed further, we will also assume that

0&Kp(&up(( (4.4)

It is then clear from (3.3) and (3.4) that, at first,
u, (which is still nearly the same as u, ) and K, in-
crease at the same rate u, ~K, (x-e ''. This goes
on until u, tends asymptotically to its fixed-point
value uz

——e/36B„which occurs at l—:l„where

1 u* 1
l, = —ln~ =——ln

E up 6 36B4up
(4.5)

3 K„* 3 36
l —l = —ln "=—ln

e K e Kl1 0
(4.6)

As l increases beyond l„both u, and K, remain
at their fixed-point values u~ = ur* and K~, but C
continues to decrease monotonically, as it did
from the beginning [see (2.22)]. In order to deter-
mine its behavior, we need to know g', . We there-
fore rewrite (2.17) in its e-expansion form,

dg)' =g2(e —24B,u, —8B, (K, )). (4.7)

Assuming that u, and K, have appropriate fixed-
point values in the various regions of l, we now

find

As l increases beyond l1 uf remains equal to

u,*-=u„*while K, continues to increase but at a
slower rate than before, namely, K, =K,,e'"
At this stage, K, increases up to its fixed-point
value KR = e/12B, . This takes place asymptotically
over an interval l, —l, given by

When a system is nearly isotropic, i.e. ,

(4.1)

' g2efl

n. 2 ~ ~2eEl1ef(l —l1)/3
gg = gpe

for 0&l&l,

for l, & l & l, (4.8)

then

=C'—
11

d —1,
2C44

0 0 0
Bp =Cyy — (Cpt Cy2)

(4.2)

cx2e&11 e6(l2- l1)/3e- 6(l- l2)/3 for l (i gp 2

We use these results to substitute on the right-
hand side of (2.22), and then integrate that equ."-
tion to get Ci

The ratio of the two coefficients in (2.23} satisfies C„—C„—2B, g2i dl

C

~ 11
(4.3)

' Co, [1 —(Ko/Kz)e" J for 0& l & l,

C„(1—e'" '2' ') for I, & l & l, (4.9)
Consequently, K, is also nearly isotropic. ~ There-
fore H' will approach at least one of the fixed
points very closely before the anisotropic insta-
bility is felt. Thus, we may expect that under

ee boundary conditions of either fixed P or fixed
the system will encounter a macroscopic in-

~0 —e(l- l2)/3 for l2&l.

C,', = 2 C~» (I —tanh[(e/ 6)(l —l, )][. (4.10}

A more careful treatment, given in Appendix C,
yields an expression that is valid for any l,
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This reduces to (4.9) inside the various regions of

l, but gives a more precise result at the edges;
e.g. , for l =l, (4.10) leads to

(4.10')

C11, —l, = —l, , l, oo/, ;
E 2 44

(4.11)

)
0 1 2 44 (( I

C, , d C„

To calculate l„which is where B,-0, we must
make further assumptions about C,', /C~». The two
interesting cases are

( )
d —1 —,'C44

d C'
11

where we find

(4.13)

so that the difference between I~ and l, is small on
the general scale of variation of l.

Thus far we have employed recursion relations
valid only to lowest order in e. It is not difficult
to extend the renormalization-group arguments to
arbitrary order in ~. This is aided by the fact,
discussed in Appendix D, that there is a complete
mathematical analogy between the Ising model in a
liquid and in an isotropic solid with periodic bound-
ary conditions and fixed U. Thus, the factor 3/e
which appears in (4.6), (4.11), and (4.12) is re-
lated to the inverse of the crossover exponent
which characterizes the growth of K, and the spe-
cific heat. We can therefore make the replace-
ment

where we find
= [-', e ——,", e'+ O(e')] (4.14)

C
l, —l = —ln - ", l « l « l, . (4.12)

p Ji

In case (b), the instability occurs while the be-
havior of the system is still governed by I, where-
as in case (a) the instability occurs while the be-
havior is governed by R.

The point l =l, is the limit of metastability of the
disordered phase for a sample at constant pres-
sure. The thermodynamic transition will occur at
a slightly higher temperature, which should be
calculated from the pressure-vs-volume curve
via a "Maxwell construction" (see Fig. 4). We de-
note the value of I at the thermodynamic transitior
by l~. In Appendix E we perform the Maxwell
Construction and find that, for case (a),

1 1 1 1
E d —4a e —2g~

(4.1 5)

In order to translate the above results on the
behavior of H' into conclusions about thermody-
namic properties, we note that corresponding to
every region of l there is a region of t where the
correlation length $(t) exhibits a simple behavior:

'

(o(t/to) ' ' for t, & t & t,

$(t) = ( e'&(t/t, ) '& for t, & t & t,

foe'2(t/t, ) 's for t, &t,

(4.16)

where we have introduced the characteristic tem-
peratures t„t„t„ t„defined by

Similarly, the factor I/e appearing in (4.5) is
related to the inverse of the crossover exponent
that characterizes the growth of u, . We can there-
fore make the replacement

$(t, ) = („$(t,) = $,e' t~= 1, 2, 3. (4.1 7)

I

vc

FIG. 4. Maxwell construction for the isotropic sol. id
(schematic). When the equal. pressure points A and I3

are chosen so that the shaded areas are equal, the first-
order transition at fixed P takes place by a jump from
A toB. The point C is where the Fisher-renormalized
Ising transition would have occurred under pinned boun-
dary conditions —it is an inflexion point where 8 P/8V
passes through ~ and changes sign, rather than simply
vanishing, as it would at the inflexion point of an ordin-
ary van der Waals loop. D is the limit of metastability for
fixed P—where the bulk modulus vanishes. The curve P (V)
has been drawn to be asymmetric around C, so that in
general Vg-V~ &V(: -Vg.

We may choose to to be any convenient tempera-
ture outside the critical region. From (4.16) and

(4.17) we get the following results for t, and t, :

(4.18)

—(13-11)/VI3=~

Co K u+ &/

t, in case (b),
Bo K~ uo

—( 3- &)/ &
—(l2-l1)/&I t3=8 8

' d —1 —'Co (1 ~r)/' I g u*2 44 t,d C„ Kz uo

(4.19)

in case (a). (4.20)

Note that t, is the reduced temperature at which
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T, d& '-'
V d T,

4C0~ dt Tt dV
(4.21)

We now note that the mean-field approximation,
which can be applied to (2.1) for t & t„predicts a
jump in the constant-volume specific heat at T, ,
given by

deviations from Landau's classical theory become
important, and that (4.18}can also be obtained
from the Ginzburg criterion. ' '" While there is
some arbitrariness in the choice of tp, the final
result for either t, or t, must be unaffected by
these different choices: This can come about be-
cause the initial values („u„r„K0, and, in prin-
ciple, also C«and C44 depend on tp.

We can now identify C» and C,', with the actual
physical elastic constants at t =t,. In order to
similarly express K, in terms of measurable quan-
tities we assume, as in Sec. III B, that rp is the
only parameter in (2.1) which depends on t (this is
a good approximation if to«1). Using (3.16) we
find

by B,. Equation (4.25} then becomes just a spe-
cial case of (4.26). The exact location of the first-
order transition at fixed P when T, is approached
from the disordered side is denoted by the reduced
temperature t~. Throughout the rest of this sec-
tion we will use t, as our estimate for t~, based on
the assertion of (4.13). In Appendix E, where we
actually make a Maxwell construction for case (a),
we find in fact that, for d = 3, t~ = 33t,.

An alternate approach for estimating t, is to
choose tp inside the critical region, i.e., t, & tp & t„
so that u, =u,*. In that case we should use t, in-
stead of t, in (4.19) and (4.20). We can still iden-
tify C» and C44 as the actual physical constants at
t =t„and we can still use (4.21). Note, however,
that the value of K, depends on tp through &0. Since
we can no longer use (4.22), we will try instead to
relate the present value of K, to the previous val-
ue, obtained when t, &t, From. (4.8), (4.9}, (4.16),
and (4.5}we find that the ratio between the two
values of Ko/uo is given by

dr, ' 1

dt 8up
' (4.22)

( O/uO))))')) ( 0} )I)I ll g(l-l(I/E'
(K, /u, }„„, z(,*

Therefore, if it is possible to estimate ~C'„by
extrapolation of the observed specific heat from
outside of the critical region, we can write

Kp 2T AC„V dT, (4.23)

uI 6 VI
R I 0 57 ford 3

(4.24)

Combining (4.23) and (4.24) with (4.19) and (4.20),
we now get an estimate for t„where B-0 when

T, is approached from above (i.e. , from the dis-
ordered side). We find, for d =3,"for ease (b):

1.1T,bC„V dT,
'- 'i I

B T dV0 C

Finally, to estimate the factor uz /K~, which is
equal to -', in the limit c -0, we note that since the
initial rate of increase of K, is characterized by

nz/vz, we can write Ks oo az/vz We can .therefore
make the following estimate (we assume az =-, ,
v, =0.64 for d =3):

for d =4

0 n(.'«(t )„,.„"z C sing

t, ~C'. ' (4.27)

(Co /3 Co )
(1- ((z I/)2g « I (4.29)

In practice, this factor is indeed often very small
even though CO, /3C,', is only moderately small—
this is due to the rather large exponent

where C„-„ is the singular part of the rigid Ising
specific heat at the new t, . We thus get, for d =3,"

I )~ I t 1.1T,C'„„, V dT,
3Co

(4.28)
where this expression applies to both cases (a)
and (b).

Comparing these results with the result of mag-
netothermomechanics, Eq. (1.5}, we see that our
case (b) leads to essentially the same result. This
is the case when the shear modulus —,'C4, is much
greater than the bulk modulus B,. But in case (a)
our result differs from (1.5) in that it includes the
factor

tg « t3 « t1,' (4 25)
(1 —az)/nz =—"t for d =3. (4.30)

for case (a):
C' "- I)i"I 1 1T ~C' V dT44 C V

3C„ Cpa Tc dV

We conclude that whenever C,', /3C;, =1 —6, where
& is not too small, our estimate for t~ will be con-
siderably smaller than that of (1.5).

Note, however, that

(4.26) t ccu' ' I=u '
3 0 0 (4.31)

with az =——,'. Note thatsine, e in case (a) Bo= C,'„
we can replace C~» in the middle factor of (4.26)

[see Eqs. (4.18)-(4.20)], which means that t, in-
creases as one approaches a tricritical point,
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where up =0. In that case the treatment of this
subsection breaks down, because (4.4) is violated.
We shall see below that while t, increases, it does
not in fact diverge when u, -0, as one would be
led to believe by (4.31).

Having calculated t~, we can easily estimate
the volume jump at the transition:

(4.32)

where a„ is a number whose value depends on the
ratio of the singular parts of B at the same value
of ~t

~

above and below T, . When that ratio is 1,
a„=2. In general 1&a„&~, and to determine its
precise value requires a Maxwell construction.
In Appendix E we find that a„-= 9 at d = 3.

The latent heat may be calculated from the
Clausius-Clapeyron relation:

(4.33)

T —T, (P), i.e. , at fixed pressure, will however be
characterized by unrenormalized Ising exponents
even for t& l„as we showed in Sec. IIIB.

Until now, we have discussed features in the
behavior of the system for which the sma11 an-
isotropy was unimportant. Under pinned boundary
conditions, or periodic boundary conditions in a
fixed volume, H' develops without any instability
until the anisotropy becomes important. Since
K, is already large (i.e. , of order K~) when
this occurs, we can infer from the discussion
in Sec. IIIC that K'., will diverge very soon
after R, becomes of order unity. We therefore
estimate the point l„, where K'., diverges, by
demanding R, =1. With the help of (4.9), this leads
to

l —l, = —ln", » max l, — 1) 4.36)
C„A

e C4~ A —1

and to a corresponding instability temperature"

Furthermore, in our model the magnetic part of
the free energy depends on temperature and vol-
ume only through the combination (r, + g05V/V), so
that along a line where this quantity is constant,
we have

- f2 )/vga
QO 2

A —1 C &' r& ~r 11TACv V dT
A C

3Q 1)" i' "it, «both t, and t, . (4.37)
dV

dP= d
V

+p V

Thus we get

dT, V dT,
dP 3p dV

(4.34)

(4.35)

These last results, which show that l„» l, and
t„« l„also justify our total neglect of the small
anisotropy in the discussion of the transition under
conditions of fixed P or fixed V but with nonpinned
boundaries.

At a pressure P„where dT, /dP = 0, the above-
calculated jumps will vanish. In the vicinity of

P, we expect that dT, /dP will be proportional
to P —P, and hence f, ~

~
P —P

~

'u "i' i. This
is shown schematically in Fig. 1.

From (4.26) or (4.28) we can conclude that in

practice t„and therefore also &V and L, will
usually be very small. The actual transition tem-
perature will thus be nearly the same as the criti-
cal temperature T, (V) or T, (P), and the impor-
tant slope dT, /dV can be simply determined from
the observed line of transitions. Moreover, for
P&t3 there will be regions of temperature where
the system will exhibit critical behavior charac-
terized by a set of well-defined critical exponents.
In the region t, &t&t, [which only exists in case (a)],
the behavior at fixed V, i.e. , as a function of
T —T, (V), is governed by R and one observes
Fisher-renormalized Ising exponents. In the re-
gion l, & /&t, the behavior is governed by I and one
observes unrenormalized Ising exponents. In the
region t, &t, the behavior is governed by G and one
oberves classical behavior, i.e. , Gaussian ex-
ponents ~ The critical behavior as a function of

B. Pseudotricritical behavior in a nearly isotropic system (A = 1 )

We still assume that (4.1) and therefore also
(4.3) are valid, but replace (4.4) by

0 up Kp 1. (4.38)

1 Kg 1
l~ =—1.n —= —ln

Kp e 4B K (4.39)

In the next stage, u, continues to increase until
it eventually reaches ug asymptotically. This
occurs after l„where

1 u* 1
l, = —ln~ =——ln

up E 36B4up
(4.40)

[this is the same as (4.5)]. At the same time, K,
decreases slowly towards Kg, but this only begins
to happen after u, has become sizable. As long
as l, «l«l„we can therefore assume that K, is
constant. Using the following approximation for

As a result of this, it is clear that H' will initially
approach S rather than I. At this stage, K, will
tend asymptotically towards Kg = e/4B„and this
will occur when l & l„where l, is now given by
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K, :

K, =
K,e"& Ks for 0& l l

Kf for l, & l& l„
(4.41)

t, denotes the temperature at which control over
the behavior of the system passes from G to S:

(4.48)

we can solve (4.7) for g', to get
g e" for 0& l&l

g 2

g e"1e " '1' fOr l &l& l .0 1 2

Using this to solve for C,', as in (4.8), we get

C„=C„—2B4 l g', dl

C,', (1 —e"' '&') for 0& l & l,

C'e " '1' for l & l & l .11 1 2'

(4.42)

(4.43)

We again identify C» and C44 with the actual
physical elastic constants at t= t, ~ Except for
anharmonic effects not included in (2.1), these
constants should have the same values as in the
previously discussed case (Sec. IVA). We can
still use (4.21) for K, but we now relate dPo/dt
to the latent heat Lo and to the spontaneous value

go of the spin variable on the first-order side of
the tricritical point, evaluated by mean-field
theory. In order to do this, we must include a
term vof' in the free energy of (2.1). Then for
u0 & 0 we find a first-order transition with

l, -l, = —ln, l,«l, ~

1 C11

0
(4.45)

Note that the left-hand-side inequality in case (a)
is more restrictive than (4.38). In fact, if u, /K,
does not satisfy the more stringent inequality,
then 0' will reach R before becoming unstable.
In that case the system will exhibit critical (rather
than tricritical) behavior just before the insta-
bility. A more precise solution of the renormal-
ization-group equations, performed in Appendix C,
confirms all of the above results and justifies the
implicit assumption that K, remains nearly iso-
tropic until well beyond l, .

The temperature corresponding to the actual
first-order transition must again be found by a
Maxwell construction, as described in Appendix E.
The temperature t„at which B(t) =0, is found as
in (4.19) and (4.20),

-13/ Gt 2( 1- 3)e 23=e O=e 0

To calculate when B, —0 we again have to make
further assumptions, as in Sec. IVA:

I

(a) o« 44 « I
d-1 2C

K d C0 11

then

lo —l, = —ln I 'o, l, « to &l, ; (4.44)
d C,',

2 44

(b); «I, thenBO

C1,

,dr, , 1 luol

VO

The Landau theory is believed to be valid near
the tricritical point for d «3, except for logarith-
mic corrections at d= 3.""These will be small
if vo«1. As an approximation, we may assume
that v, is independent of T and V, that r, depends
only on T —T, (V), and that u, depends only on
V and varies as V —V„where V, is the volume at
the tr ic r itical point.

We note that the inclusion of a g' term in H'
and an explicit dependence of u, on the local den-
sity or dilatation ratio V ~ u (this must be done for
consistency once we allow u, to depend on V) will
generate some new terms in the effective spin
Hamiltonian H, j-;, obtained if we integrate out the
elastic variables in H'. The density dependence
of uo leads to a term

(4.49)

(4.50)
~

V (V u)g d x

in H, and this generates an effective spin-spin
interaction proportional to g' in H, jf, which is
however an irrelevant term even near the tricrit-
ical point. On the other hand, cross terms be-
tween (4.50) and the term goT 't'(V u)g' of (2.1)
lead to an effective spin-spin term proportional
to g'. We can take this into account by an ap-
propriate redefinition of v, . Using (4.49) to sub-
stitute for de/dt, we find, for d=3, for case (b):

t in case (b),
Bo K

( 3 lit "Se 1t3 0

(4.46)
Tfo 4, Tc dV Ks+ -i

for case (a):

(4.51)

d —1 -'C'
t, in case (a), (4.47)

11 S

where t, is defined as before in (4.17). Similarly,

C' ' L 'T VdT '1-'
c4(& o c

(4.52)
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a, [u, [ foru « —u0 1

for u0=0L=' a2

a3zlo & for uo~ u2r

where, for d = 3,

u, = a, /a„
(a /a )

((g/(I 2 AI )

T,
2v T(2

(4.»)

Here we have written B0 instead of C» in the
middle factor of (4.52) [see the remarks following
(4.26)] so that (4.51) becomes just a special case
of (4.52). This is the finite limit towards which
I;3 of the Sec. IVA increases as the tricritical
point is approached from the second-order side.

On the second-order side of the tricritical
point (i.e., for u, )0), the estimates for nV and
L of (4.32) and (4.33) are still valid. Consequently,
they too will become greater near the tricritical
point, merging finally into the values one expects
for the ideal {i.e. , incompressible) model when

u, & 0. Comparing our estimates of L for u, ) 0,
u, = 0, and u, &0[Eqs. (4.20), (4.49), and (4.52),
respectively], we can make a crude interpolation
for the variation of L throughout the tricritical
region:

demand [see (A24)]

d C„
d 1 C11 C12

(4.55)

in order to ensure that not only B but also Ko(q)
is indeed extremely anisotropic. It follows that

We will also assume, similarly to
(4.4), that

0 +Kmax &+ u0 (& 1 r (4.56)

so that H' does not come near to $.
Sta.rting at l= 0, we find tha. t u, and K)(q) in-

crease at the same rate, given by e", up to I = l„
given by (4.5) where u, -ut*. The shape of K, (q) is
preserved at this stage. In the next stage satura-
tion effects begin to appear in K, which alter its
shape, and we can thus no longer ignore the an-
istropy. Because of the extreme anisotropy of
K„we can now ignore (K,) as compared to K„'... ,
and the equation for K„'„., becomes

z

d+n&;i@

dt 3 +4Knlax +max ' (4.57)

This can be solved exactly, yielding

K* K*+K'i
e &() )))/3 1 for l & l (4 56)K nlax Kmu

Clearly, K,'„.„x diverges at l„where

C,", '- L. 2T, V dT, 22
3C,', T, (l)', B T, dV (Kg)''

3 KzL„—/, = —In
nla x

We can thus write

3Q~=——ln ~ (4.59)

C44 I ~ L T V dT
a, = 44 03C„(T,)t/' Bo T, dV (ur*)'

'

(4.54)
This behavior is shown schematically in Fig. 2,
which indicates that a first-order transition aris-
ing from the spin-lattice interactions might best
be observed near the pseudotricritical point at
u0 =0.

For t, & I, the system will exhibit the usual tri-
critical. behavior, governed by G, that is a char-
acteristic of the Ginzburg-Landau-Wilson Hamil-
tonian for a one-component spin variable. " At
fixed V, this will change over to a Fisher-renor-
malized tricritical behavior governed by S for
t, & t& t, in case (a). Using the arguments of Sec.
IIIB, it can again be shown that for fixed P, this
spherical-like behavior gets renormalized back
to a simple Gaussian tricritical behavior.

C. An extremely anisotropic system with A &) l

We start by defining more precisely the kind of
system we shall be discussing in this subsection.
As shown in Appendix A, it is not enough to say
that A» 1. One must make the more stringent

C k nlsx

0 clK max for 0&l & l,
(4.60)

K+ (e-E(l-) )/3 1 )-) for

and use this to substitute in the following equation
for lnC'„, obtained from (2.22) and (A17):

d lnC,', g,= —4B~
2 )

= —4B4Km, r
ll

{4.61)

Consequently, we can write

B =B -{" e ''" ' for l~&1& t.f„.

We see that B,—0 at l = l„where, if we assume
that ly« l3& l„, we find

e'
= —In

B0
(4.64)

Solving this equation by a straightforward inte-
gration, and neglecting some small terms, we
find

Co»[1 —{Ko,„/If/)e" ] for 0& l &l,

(4.62)

C»(1 —e ' '" '/') for l, & l& l„.
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The temperature t„at which B(t) = 0, is found to
be

t =e '3 'l It =e'" '3 Ie ' 'l 'It,

C P KP 4 l/n&ll f)la~ I
tlat

Bp up Kz
(4.65)

where t, is the size of the Ginzburg critical region
and is again given by (4.18).

We can now use (4.23) as an estimate for K'.Ju„
and (4.24) as an estimate for ur*/Ks*. In this way,
we obtain an estimate for the reduced temperature
t3 where B- 0,"

1.1Tc+C„V dTc
B T dV0 c

(4.66)

which is the same as (4.25). In order to ensure
that ll« l3, as assumed, we must require that

&& Mp g =Op
p MI

(4.67)

1/nr
0

CP t3.
ll

(4.68)

which is somewhat more stringent than (4.56). If
(4.67) is not satisfied, we will find that the transi-
tion occurs for l & l„ i.e. , while the system is
still governed by G. The jumps 6 V and L can be
estimated as in (4.32) and (4.33).

Under pinned boundary conditions, a, transition
will still occur due to the microscopic instability
encountered at l„. The temperature where that
instability occurs is denoted by t„and is given
b

Kp
(t -l )p max QI1 Itl

up K~

1.1T,aC„' V dT,

The last form of this result shows that t„can be
much smaller than t, if B,/C,', is considerably less
than 1. At t„, the longitudinal phonons along the
cubic axes become soft, and a distortion of the
lattice can be expected to appear in those direc-
tions. In practice, a first-order transition asso-
ciated with this instability will probably occur
somewhat before t„ is reached. One can find the
detailed properties of this transition by means of
a Maxwell construction, if one knows how' to cal-
culate the equation of state on the other side of
the microscopic instability.

D. An extremely anisotropic system with A (( 1

This is the kind of system that in the limit A =0
becomes a BE model with isotropic K(q). For
A w 0, K will still be nearly isotropic if (A23) is
satisfied. Otherwise, K will be anisotropic, be-
coming extremely anisotropic if (A25) is satisfied.
However, even if to begin with (at l =0) (A23)
holds, (A25) will a.lways become valid for suf-
ficiently large l, if A. IO, andK, will then become
very anisotropic. As long as the anisotropy of
K, is negligible, 0' develops as in BE and there
are no instabilities, microscopic or macroscopic.
Instabilities appear only when the anisotropy of
the K, becomes appreciable. %'e will first dis-
cuss the case where Kp already has considerable
anisotropy, then we will discuss the case where
K, is nearly isotropic.

We assume that the inequalities of (4.56) are
valid when K, is already very anisotropic. Con-
sequently, the system at first tends to I over an
interval I, given by (4.5). At this stage, K, (q)
increases according to e" without any change of
shape. After that, the rate of change of K'..., is
described by (4.57), and K'n'i is given by (4.60).
The first deviation from the behavior described
in Sec. IV C occurs when instead of (4.61) we
write the following analogous but different equa-
tion:

d»[B, +[(& - I)/d1':C'„&
4

g',
' 2(B, +[(d - I)/d]-,'C,",&

= —4+4Kmai ~ (4.69)

The solution of this is, like (4.62),

K

d ' d —I,
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where I„ is given by (4.59). We can therefore
write for l, & l& l„,

(1 a() l)/3) aCO e a() ))/3

(4.71)

d —1 —,'C
44 ))1.

d B' (4.72)

To calculate l„where B, —0, we again assume

l, « l, « l„, and find

3 d -1 —,'C'„
d Bp

(4.73)

The temperature t„at which B(t) =0, is found to
be

We note that, according to (A25), we have in this
case

wrw lf~ mav l l

dl
= 4 BaKmar (Krrraa -K)rr) ~ (4.80}

The solution of this equation is given by

lattice is expected to appear in those directions.
As in Sect. IV C, we expect that a first-order
transition will occur somewhat above t„. The cal-
culation of its detailed properties requires know-
ledge of the equation of state below t„and use of
a Maxwell construction.

Turning to the case where Kp is nearly isotropic
and assuming that (4.4) is valid, we find that H'

first develops similarly to the nearly isotropic
case discussed in Sec. IV A. This continues up to
I„given by (4.6). After that, H' would remain
near R except for the small anisotropy that now

becomes important. For l & l„we can write the
following approximate equation for K,'„... derived
from (3.4) by assuming that u, = us* and (K, ) =Ks:

1 pC44 Kmav

Bp up KR
(4.74) R 1 R 6'(l l23 /3

l
Kmav Kmav

(4.81)

where t, is again given by (4.18). To make con-
tact with measurable quantities, we have to modify
our expression for K.'„„since for A & 1,

which can be rewritten in a different form by
noting that, because the shape of K, remains un-
changed up to l„we can ~rite

2

K
8'0

2(B, +
I (d —1)/d]-'C'„) (4.75)

K,'„„., d 2T, 4C„V' dT, (4.76)

Using this result, as well as (4.24), we find for
d = 3, under fixed P, that B- 0 at"

[see (A17), (A18), and the subsequent discussion].
Instead of (4.23) we now find, using (4.72),

Km2a.v &ma,

(K, ) (K,)'
and therefore that

1 —
1 0

Ks K maa —( Kp)
Kmav Kmav

We can thus write, for l & l„
l + 0

Kma& KR K ma~ (Kp) a ( ) ) ) /32
KII&av Kmav

(4.82)

(4.83)

(4.84)

1 1T gC y dT ~'f~I

Bp T, d&' (4.77) and note thatK'. , diverges at l = l„,, where

i.e., the same as (4.66) and (4.25). To ensure that

l, « l, we have to require

K mav

K,„—(Kp)
(4.85)

d —1 —, C44 up KR up1«
d Bp Km.„uI* K mav

(4.78)
We can summarize the results for Kmav in the form

which, in view of (4.72), can be more stringent
than (4.56).

Under pinned boundary conditions, a transition
can only arise because of the microscopic in-
stability, which occurs, for d =3, at32

~p + 'f cI-(l ~-l y3 f vI — ~ ma'v It„=e I y
up KR

Kmax e for 0& l& l,
Kn, a, —— Ki,ia,e"'e' ' " for l, & l & l 2 (4.86}

KR(1 e' ' '" ') —1 for l, & l & l„.

We now substitute these results into (4.69) and

integrate it to get

'1.1Tc &Cv V dT, t
'f I

(4.79)

At that point, the longitudinal phonons along the
body diagonals become soft and a distortion of the

B + C = B + C' (e'~'" ')/' —1)
d —1, d

l d 2 44 0 d 2 44

Kma.v —( Kp) -If„,.

(K,)

for I,& I & I„. (4.87)
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In view of (A23), from which it follows that

d BO

d —1 -'C 00 && 1

we find that Bt —0 at l„where

„—l, =- —ln '- 44 ~ o I(i

d B, K'„,, -(K,)

(4.88)

(4.89)

(l~ l2) /vRe-(l2-l l&/vI &
Oo t l

(K ) &i-u/)/a/ (K ) y
i/ca/

+0 R

a-1c'„—c'„, „,)" ' ""
Co ~ 0

ll

1.1y PC' V dg 2-I/ol
C f/ C

BQ T dV
(4.95)

With the help of (Al'I), (A18), and (A21) of Ap-
pendix A, we can show that in this case

Kmaa —(K p) yi/n & maa —Kmin=(a A)
max max

d —1 C' C'
11 12 (u A)1/2((u g)1/2

Co 0 0
ll

(4.90)

where a, is a number of order unity. Consequently,
we find that

3 C„Al„—l = —ln1+ " — eB a0 0
(4.91)

where e is the base of natural logarithms. The
temperature t, at which B(t) = 0 is given by

e(lN-l3&/vR e-(l~-&2&/vR -(l2-l] &/vr t3 e I

CQ g I/2 (l ay&/og KO jK g (1 0| 1&/0t I]+ ll e max X Ol

BQ aQ K

(Kp) uf
&0 KR

(4.92)

where t, is given by (4.18).
To make contact with measurable quantities, we

must modify our previous expression for K' /up.
Although (4.75) remains true, we now have the in
equality (4.88) instead of (4.72). Consequently, we
find

(Kg K P 2T,ACP V dT, (4.93)

Using this to substitute in (4.92), and using also
(4.24) and (4.90), we find, for d=3,"

= ' ' "" "' """ '") ' ""
d B C'

0 ll

t1.1V,~C'„V dv, '-'
X

I Bo T dV
(4.94)

The first factor is clearly much less than 1, going
in fact to 0 when' -0 (and therefore also CP«-0).

Under pinned boundary conditions, no transition
will occur as a result of the macroscopic instabil-
ity at t„but a transition will still occur as a re-
sult of the microscopic instability at l„. The tem-
perature where this instability is encountered is
given by"

Again we see that the first factor is much less
than 1. Comparing (4.95) with (4.92), we see that
t„ is smaller than t„but not necessarily much
smaller.

V. ALTERNATIVE DISCUSSION OF THE EFFECT
OF EXTERNAL CONDITIONS

(P —P,)(V —V,) = (P —P, ) d x g— e (5.1)

to the Hamiltonian of (2.1). Here P„V, charac-
terize the equilibrium state against which the dis-
placements u(x) are measured. Clearly this term
will only affect the q =0 part of the Hamiltonian.

In order to discuss the effect of various types of
external conditions on the critical properties of the
system, we have taken the point of view that this
can be determined from the macroscopic pheno-
menological equations of classical (i.e. , 19th cen-
tury) physics once all the phenomenological param-
eters are known. These parameters, of which the
elastic moduli are typical examples, are entirely
determined by the microscopic properties of the
system and are independent of the external condi-
tions. That is the reason why, although the micro-
scopic calculations of the previous sections were
performed for a system at fixed volume for rea-
sons of convenience, the results we obtained suf-
ficed to discuss the properties of the system under
any external conditions.

It is instructive to compare the methods of the
present paper with other treatments of compressi-
ble spin systems under various boundary conditions.

Thus, Larkin and Pikin, "and later Sak,"dis-
cussed the properties of an isotropic elastic spin
system under constant pressure by including small
uniform strains as well as strains that arise from
a periodic displacement field u(x) in the Hamil-
tonian of (2.1). The elastic variables are integra-
ted over completely right at the beginning, leading
to an effective spin Hamiltonian. In this integra-
tion, the uniform strains must be treated sepa-
rately because they have d(d —1) independent corn
ponents as compared to the Fourier transform of
the displacement field, which has only d indepen-
dent components for every q. The effects due to
small variations in the pressure can be found in
this picture by adding the term
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We note that since we will get (e ) ~ P —P, in this
picture, we are restricted to small values of
P —P,. (If large va.luce are used, then e will
typically include a large uniform dilatation, which
can lead to unphysical results, as discussed in
Sec. VI, below. )

Applying this method to our cubic system, we
obtain the following effective spin Hamiltonian:

qfo

(5.2)

where

r, = r, —2g—,(P P,)/B, T'~' o- T T,(P). (5.3)

Obviously, this offers an alternative starting point
for a discussion of the critical properties of the
system. It is important to not:e, however, as we
mentioned earlier in Sec. II, that the nonanalyti-
city of K,(q) at q = 0 now appears directly in the
Hamiltonian and one must be careful about taking
limits of q- 0. Holz" has recently discussed a
discrete Ising system on a compressible bcc lat-
tice by integrating separately over the macro-
scopic elastic normal coordinates, as we have
done in this section. He has, however, ignored
the above-mentioned singular behavior of the four-
spin interaction term Ko(q) as q-0, and has con-
cluded, erroneously, that this term can be ignored
to lowest order in q.

When K is isotropic this difficulty disappears,
and H,«can be rewr itten in the form

(5.4)

where, as before,

LEO —Qo Ko (5.5)

For an isotropic system, this is just the form
obtained by Sak." In that case, the coefficient of
the quartic pairing term [the last term in (5.4)]
satisfies

2 2 2
go go ZO (0

2BO 2Cxz o
(5.6)

which is the cause of an instability in this approach
leading, as expected, to a first-order transition.

For a BE system, the coefficient of the last term
in (5.4) vanishes, and therefore at fixed P the
system behaves exactly like a rigid Ising model

and exhibits unrenormalized Ising exponents, as
we saw before.

A different method was used by Wegner" to dis-
cuss an isotropic elastic spin system under fixed
pressure: He first eliminates the elastic variables
by minimizing the energy with respect to the dis-
placement field u(x) for a given spin configuration.
The resulting static displacement is expanded in
terms of exact static normal modes of the solid
body. The resulting effective spin Hamiltonian
separates rather naturally into a short-range part
due to the microscopic modes, and a long-range
part due to the macroscopic surface modes. A
renormalization-group analysis is applied to this
Hamiltonian. The actual calculation of these static
surface modes, which is necessary in order to
discuss the effective long-range forces in this
approach, is in general very difficult. Further-
more, it must be repeated every time a new shape
for the solid body or a new type of external condi-
tion is selected.

VI. PATHOLOGICAL MODELS

There have been various models proposed for
Ising-type transitions in compressible systems.
In some of these, features have been found which
seem to be inconsistent with what we have observed
in the previous sections. We will now analyze two
of these models in order to understand how this
comes about.

The first of these is the Baker-Essam model
(denoted by BE), where a tricritical point has been
found at P=O"'. At P&0 there is a Fisher-renor-
malized Ising transition while at P(0 there is a
first-order transition. At P=0 the system exhibits
an unrenormalized Ising transition.

These results differ from our present results for
the modified BE, where we always found an unre-
normalized Ising transition at any constant P, be-
cause the two models are actually different: Where-
as we defined the elastic moduli by expanding the
elastic free-energy density around the equilibrium
state of the elastic system (neglecting, however,
the contribution of the spin-lattice interactions to
the equilibrium state), and then assumed C« ——0,
the original version of BE, henceforth to be called
BE1, effectively assumes that C« ——0 only in the
case that P =0. The same elastic harmonic Hamil-
tonian is then used to calculate the properties of
the system under arbitrary external conditions.

For example, BE1 turned out to be rigorously
reducible to a simple, nearest-neighbor, rigid
Ising model with an effective exchange coefficient
if the system is under fixed uniaxial stresses which
have the same value P along all the cubic axes.
Using our approach, this would correspond to add-
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ing the following term to the Hamiltonian of (2.1):

P d"x Q e~~=PV, Q e~~. (6.1)

This term clearly affects only the q =0 part of the
Hamiltonian, but in a. way which does not alter
any of the elastic moduli. Therefore the critical
behavior under fixed uniaxial stresses is exactly
the same as at P =0; namely, one finds an unre-
normalized Ising transition.

One could not seriously discuss the properties of
BE1 under constant positive pressure as it is usu-
ally applied: Since C44 ——0, any positive hydrostatic
pressure, no matter how small, would cause the
system to collapse to a line in the direction of the
body diagonal. It was therefore necessary to re-
strict all the surfa. ce atoms on one half of all the
faces of the crysta. l to lie upon given, mutually
perpendicular planes. The volume was defined in
the following way:

V=—V, 1. + e (6.2)

2B 2(B+ ',P)— (6 4)

This coefficient will be positive or negative de-
pending on whether P&0 or P&0, and the usual
results of BE1 are reproduced. This is evidently
a result of the pathological aspects of the model-
the fact that it is not rotationally invariant" and
that some of the elastic moduli for uniform strains
differ fromthe elastic modulifor q40 strains. Note,
however, that the fact that the shear modulus C4,
vanishes in itself is not really pathological. It can
in fact be quite useful to consider this a,s a limiting
case of cubic anisotropy if it is discussed within
the framework of a realistic physical approach, as
was done in Secs. III a.nd IV. The pathological BE1
model discussed above is interesting mainly as a
solvable mathematical model with a. non-Gaussian
tricritical point.

The other model we shall briefly discuss has
been proposed by Imry, "who used the isotropic
version of (2.1) for the Hamiltonian at P =0, and

Using this definition, and adding the following term
to H':

e'()'- (,)=e'(,(g(e„) Q( „,)( ee)

we find that while the q t 0 part of H' remains un-
cha, nged, in the q =0 part C» gets replaced by C»
+P. Consequently, if we now integrate over all the
microscopic and macroscopic elastic va.riables as
in Sak's method, we produce a quartic pairing term
whose coefficient is

added to it a P(V —V,) term as in (6.3). Integra-
ting over the elastic variables he produced a quar-
tic pairing term with the coefficient

g
2C„2(B+—', P) ' (6.6)

which is positive or negative depending on whether

d —1,P & d gC~~o (6.6)

Obviously, this model suffers from the same path-
ologies as BE1. Furthermore, since in the q =0
part of H C» gets changed to C» +P, it is clear
that when the upper inequality of (6.6) is valid, i.e. ,
when the transition should be second order, the
system is in fact unstable against the uniform uni-
axial shear strain e„„=—e„. One should therefore
constrain the system to have only dilatational
strains in order to stabilize it.
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APPENDIX A: DYNAMICAL MATRIX AND RELATED
FUNCTIONS FOR AN ELASTIC CONTINUUM

WITH CUBIC ANISOTROPY

In Cartesian notation the free-energy density of
a continuous elastic system is given by

1
F~

2 ~ ~agy6eegey6 ~

0 B~5
(Al)

In a system with cubic anisotropy, there are only
three different elastic moduli:

1
af ~ —C j.g) Xaif)fgg C12) ~atg&g —4C4@) + 0 I )

(A2)

where C», C», C4, would correspond to the usual
Voigt notation in three dimensions.

The dyna. mical matrix is defined in general by

Dgg(Q) —Q e(. ()„6(l (A3)

The physical values of the elements of the inverse
matrix D ' a.re related to the physical (i.e., the
dressed) correlation functions of the Fourier com-
ponents of the displacement vector u„

T[D '(q)],8 =(u, u~,)r =b' "~(u,,u)), , )r e (A4)

where we used (2.5) to get the last result, and the
brackets ()r stand for a thermal average. The

The authors are grateful to Y. Imry, A. Aharony,
and G. Ahlers for stimulating discussions. Aha-
rony, Imry, T. C. Lubensky, and M. de Moura
have independently investigated the properties of
anisotropic compressible magnets, andhavereached
conclusions similar to ours.
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Since D is linear in the elastic coefficients, we
find that the physical value of any elastic coeffi-
cient, denoted generically by C(t), satisfies

«t) =e "" "'C(Ii=1 ((I( ) ~ (A6)

More generally, (A6) holds for any l satisfying
l ~ ln($/$, ). However, for 1 &ln($/$, ) the renor-
malization-group equation for D, (2.18), reduces
to a trivial change of scale, since r, &1 and thus
only the first term on the right-hand side of that
equation remains. The resulting dependence of C,
on l exactly cancels the exponential factor in (A6),
so that C(t) remains unchanged. Moreover, for
l &ln($/$, ), r( is small compared to 1, so that the
renormalization-group equations can be evaluated
as if we were at T,. It follows that except for a
finite correction of order &, the quantity C, en-
tering (A6) may be evaluated at T„provided l = ln

dressed correlation function can be approximated
by the bare correlation function (i.e. , calculated
neglecting the spin-lattice interactions) when
t):—e'= $/$o or q ', whichever is smaller. There-
fore, for ( finite but large (i.e., T 4 T, but close to
it) we find

llII1 q (D '(q)], = e" "
)( limq'(D, '(q)] ql( )„((t( ). (A5)

(g/(, ) as indicated.
In a cubic system, we find by an explicit calcu-

lation

2 2D = p.q + p, 2q

D 8
——p. ,q q8, aCp

where

(A V)

1 1
p,

—= —,C44, p(—:C„+—,C44, t(., =—C„——,C4, . (A8)

In what follows, we will give expressions for
various symmetric functions of the components of
the unit vector lj—:q/lq l. We will therefore define
the following basic symmetric homogeneous poly-
nomials:

F((l)) —= Q q' =1, F„„(q)-=

0.48, y

F,(q) -=g q', q,', o(q) = g q q()
a, &8

e, 88r, 6

E,(q) -=q'q, 'q,', F„,{q) =- Q q-' q,'q„', etc
~«r 0( &8&r

0ts 8s r ~ |)s f))

(A9)

Note that F„and F 8 can only be defined for m ~ d.
We will use the convention that F —=F 8=—0 when
m&d. In terms of these polynomials we find

detD=[q'~t(~ ((p+ p, )+ p,
" '(1(,', —1('()F,+ t(~ '{1(,, —1(,}'{p,,+2{(,,)F, +y~ '(p. , —{(()'(1(,, +31(()F,+ ~ ~ ~ ], (A10)

(detD)D ', = q'~ '[t(~ '+ ((" '()Q(, + t(~ '(p,' t('()F, ~ t(~ '(p, t(()'(t(.,+ 2t(()F„,+ ~ ~ ~ ], (A11)

(detD)D I(= —p q q q((lt( + (( (t(p —tL()F( ()+ V (pp —1(() Fg 8 +' ' '], &~P (A12)

From these expressions and (2.8) we can calculate
an explicit expression for K(q) and Q(q),

(A13)

A'= "' "' = 1&A'& ~.1

2p, A (A15)

We note that while it seems clear how the expan-

(1+A')F~+ A'(3+ 4A')F, + 4A "(2+3A')F + ~ ~

1+ 4A 'F + 12A "F,+ 32 A "F + .- ~ ~

(A14)

where we have used a slightly r5odified form for
the anisotropy parameter

sions in (A10)-(A14) should be continued to arbi-
trary order in F and F 8, we have verified them
by an explicit calculation only for d = 2, 3, 4. In
this way we could only obtain the terms which are
exhibited explicitly in these equations.

In both two and three dimensions, we found that
Q' reaches its maximum value, & and 3, respec-
tively, when q is along the body diagonal (i.e. , the
(11) or (111)direction), while the minimum value,
0, is reached when q is along a cubic axis (i.e.,
the (10) or (100) direction). We conjecture that
this is true for any d, and that consequently

0 & Q ~ (d —1)/2d. (A16)

In order to prove this, one would have to show that
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Q does not have its actual extrema in nonsymmetry
dir ections.

We would like to note the remarkable fact that
the extrema of Q are independent of the precise
value of A'. Because of this, Q can never be rig-
orously independent of q. However, when A'- ~
we find that q- (d —1}/2d, the maximum value,
for every q outside of a small region around each
of the hyperplanes q„=0, q, =0, etc. , whose size
shrinks to zero as A'-~.

The extremum points and values of K(q) are
easily found from (A13), (A15), and (A16):

(a) For A'&0 (A &1),

or when

for A ~ O(1), (A22}
d —1 C„—C,2

8
ll 12

(b) K(q) is extremely anisotropic when

(A23)

or when

«» ~ O(1), (A24)
ll 12

are determined by the following conditions:
(a) K(q) is very nearly isotropic when

2(u+ p, ) 2C» ' (A17)
B

ll 12
(A25)

with q along the cubic axes, and

2

2[&+ &.+ [(d - I}/d](~, —p,)}

2(B + [(d - 1)/d] —,
'

C»» } ' (A18)

(K) =K —O(A'~')(K —K „). (A19)

with q along the body diagonals.
(b) For A'&0 (A&1), the roles of K, q

and K,„,q,„are reversed as compared to (a).
The degree of anisotropy of K(q) is not deter-

mined entirely by the anisotropy parameter of the
system A (or A'), nor even by the ratio R of the
two coefficients in (A13) [see (3.35) for the defini-
tion of R]. The reason for this is that K becomes
approximately isotropic either when ~R

~

is very
small, or when Q is nearly isotropic, which occurs
when A « 1 (also when A » 1 for d = 2, see Ref.
26). In the latter case, K(q) can be very nearly
independent of q everywhere except in the vicinity
of the lattice planes q„=0, q, =0, where R dips
down rather drastically towards its minimum val-
ue. From the form of Q, we see that these dips
occur when q is at a distance of the order of A' '
from one of these planes. Therefore, we can write
the following estimate for (K):

detD=q" g' '(p, + p, ,) =q"(,C«)" 'C-„,

Q(q) =F,(q),

K(q) =g'/2C„.

(A26}

A BE system is a cubic system in which p. =0,
i.e., A'=~ and A =0." In that case we find

detD =q (p, —p, ,) '[p., + (d —1)p. ,]F»(q)

=dq (C„—C„} 'BF»,

q(q) = (d 1)/2d (A27)

2] p, ,/d+ [(d 1}/d]g,} 2B '

where the last two equalities hold everywhere ex-
cept in certain high-symmetry planes, and where

Note that (A22) and (A24) allow A & 1 but not
A «1. Note also that if the elastic moduli in
(A22}-(A25} are taken to have their renormalized
values B„C,'„etc., then the right-hand side of
these inequalities always decreases monotonically
towards zero with increasing l. Consequently, for
sufficiently large I, K, (q} always becomes very
anisotropic unless A = 1 or A = 0 exactly.

An isotropic system is a cubic system in which

p 1 p 2 i.e., A' = 0 and A = 1~ In that case we find

A relevant measure for the anisotropy of K would
be

1 d-1
B=d C 1+ d

C (A28)

(K —(K))/K,„,
and we now find

(A20)

K —(K) (A, i,)K —K „K —K „
(A21)

Using (A20) to measure the anisotropy of K, we

find that the qualitative features of the shape of K

is the bulk modulus of compressibility. These are
the only cases when K is isotropic.

A fluid is of course a system where both p. , = p, 2

and p. =0, i.e., an isotropic BE system. In that
case detD=—0, since all but one of the eigenvalues
(the longitudinal sound mode) vanish, B=C», and
K=g'/2B. In that case, the Hamiltonian depends
only on one scalar elastic variable, & u, and re-
duces completely to the form discussed in Refs.
22 and 23 (see Appendix D, below).
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APPENDIX B: GENERALIZED BAKER-ESSAM MODEL

The Baker-Essam model was originally intro-
duced as a system of Ising spins on a compressi-
ble, simple-cubic lattice with a rather special de-
pendence of the Hamiltonian on the elastic vari-
ables': Both the elastic energy and the exchange
coefficient of a nearest-neighbor pair were as-
sumed to depend only on the projection of the pair-
separation vector onto its equilibrium direction,
which was along one of the cubic axes, and all oth-
er interactions were taken to be zero. Assuming
a quadratic elastic energy and a linear exchange
coefficient, Baker and Essam were able to inte-
grate over the elastic variables completely, there-
by reducing the statistical mechanics of the model
to that of an incompressible Ising model with only
nearest-neighbor interactions and an effective ex-
change coefficient which could depend on the ther-
modynamic state of the system. This model was
later generalized to include arbitrary nonquadratic
elastic energies and nonlinear exchange coeffi-
cients. ' Another generalization was that one could
allow neighboring bonds to interact in the elastic
energy and still be able to integrate out the elastic
variables. " The resulting effective incompressible
Ising model then includes next-nearest- neighbor
interactions too. We will now derive the continuum
limits of these models.

The Hamiltonian of the simple BE (no interac-
tions between different bonds) in the uniaxial-stress
ensemble (called the X ensemble in Refs. 8 and 9)
1s

ff = P{-'@.(5;;—$.)'+[d. +d, (k;; —h.)] ;c;o

+ &(5;; —(.)],
where )o is the lattice parameter, A/)~o

' is the ex-
ternal uniaxial stress, (;; is the bond-vector pro-
jection described above, 0,- =+1 are the Ising spins,
and the sum is over all nearest-neighbor pairs of
sites on a simple-cubic lattice. In the continuum
a,pproximation, written explicitly for d = 3, the
components of strain become

and x, y, z are the unit lattice vectors. In going
over to the field-theory form of the long-wave-
length part of H, we replace e„„c,.o,,„- by e„„(x)$'
(x), and we thus obtain a Hamiltonian that has the
form of (2.1) with d= 2 and

Cll = 42/~o~ Clo = Coo = 0~ R = dl/to (B4)

&. =&(.&=(a,&=«.&,

A2 = &(5; —&o)& = &(ri; —4)& = ((&; —&.)'&,

B2 -=&((;—4)(n; —ko)& = &($; —ho)(r};=, —4)&

(B6)

(Bv)

=((n, —&.)(~, —4)& = &(n, —(.)(&. ;—&.)&

=((~, —&.)((,—&.)& = &(~; —t.)((;;—V&, (B8)

where A, & 0 and J32 & 0, but A, &
( B2 j (this is required

for stability), and that all other correlations of the
bond projections vanish. Note that stated in this
form, we have made a simple assumption about the
inverse matrix of the quadratic form V,. V. itself
must, however, be very complicated in order to
lead to the simple results of (B6)—(B8).

If we now view the function e ' as a statistical
distribution function for the components of strain
treated as statistically independent quantities, and
make the identification

e„„(l}= * ', e„(i)= ' ', e„(i)=n;-&0 . &; —&0

0 0 0

The modified BE (including interactions between
nearest-neighbor bonds) cannot be given as explicit
a representation as (Bl). We write it as follows:

H=~, (&, n, ~)' Q{[d. d, (&, —&.)1; „;
i

+ [do+7, (r};—go)]c,a,„-

+ [do+dl(&(- &o)]O;&;.;&

where the sum is over all lattice sites and (, q, ,

(; stand for bond projections originating from the
same site in the direction of x, y, z, respectively.
V, is a quadratic function of the various bond pro
jections with the property that every bond is cor-
related only with itself and its nearest-neighbor
bonds; i.e., using e ' as a statistical distribu-
tion function, we require that

e „=(&„-(,)/(„etc. , (B2)

where („ signifies the projection of a bond that
normally lies in the x direction. We can thus ap-
proximate H by

we find that

(e',& =A, 5', ,

(e eoo& =B2)o for o.'v P.
(B10)

H = P{—,
' 4,(e ' + e ', + e'„)&,

'

+ [J', +J,e„„)o)o,.o;,-„+(do+ J,e„go)&r,o,;,
+ (d, +J,e„) )o~g, ,~]+A)o(e +e„+e„)),(B8)

where the sum is now over all the lattice sites,

Using (2.1b) for a similar calculation, we find

(e2 )
(Cll+ Cl, )T

(C„—C „)(2C„+C„)
(B11)

12
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dc'
——(d —2a„—2)C,', —2g', . (B12)

which clearly demonstrates this fact. There is
thus no fundamental significance to the fact that
C j 2

—0 in the original version of BE, since this
property is not conserved by the equations. On
the other hand, the fact that C4, =0 is significant,
because it is responsible for the fact that Q and
hence K are independent of q, and that property is
conserved by the equations [see (2.20)].

APPENDIX C: SOLUTION OF THE EQUATIONS
l

FOR C„and E,

In order to obtain the asymptotic behavior of Cg]
for the situation described in Sec. IVA, we start
out by solving the equation for K, more care-
fully. Assuming that K, is isotropic and that l )l„
(3.4) becomes

dK)
dl

'=K, (e/3 —4B,K, ) for l)l, . (c1)

Its solution is

A comparison of the two results (B10) and (Bll)
enables us to determine C„and C„ in terms of
A, and B,. Since the Hamiltonian of (B5) still has
no dependence on the other strains, e„,e„,e»„,
we still get C,4=0.

This generalization of the BE model is a very
natural one from the point of view of renormali-
zation-group theory: Even if we started out with
C» -—0, as in (B4), the renormalization-group
transformation would generate a nonzero value of
C„. From (2.21) and (2.22) we can get an equation
for C„,

which differs from (4.8) by the extra factor —, .
Using (C5) to subsitute for gP, in (2.22), we can

integrate that equation to get Cyg We thus find

C„=C„—2B4 g, dl
0

=C» —2B,gp +e icosh —, ln
(e )—1 ) p 3up

&& — 1 —tanh —,
' ln ' ——(l —l,)

= 2 C„ 1 —tanh —(l —1,)—6 ' 9uo
(c7)

Turning to the situation discussed in Sec. IVB,
we first note that when K, is isotropic, the equa-
tion for u„(3.3), is independent of K,. Its exact
solution is then given by

ug uj—up -z)—=1+ e
Zll Qo

(c8)

Under the assumptions of that subsection [see
(4.36)], u, remains very small nearly up to f„so
that we can neglect it in solving (3.4) for K,. We
thus get

for 0(l (l .K, 1

K~ 1+(K)/Kp) e " (C9}

dgr p ) K$ &l

K,
=Eg tanh & ln ———.

The solution of this equation is

(C10)

Using this result in (4.7) and neglecting u„we get
the following equation for g', :

Kge 6(l~l1) /3
R

) 3u /gQ i ele)l))I3 t

where we used the fact that

K~ 3uo

(K, ) (Kg

Using this result, (4.7) can be written as

(C2)

(C3)

g, cosh —,
'

1n(Kg/Kp)

g, cosh[ —,
' in(K)/Kp) —el/2] '

which leads to the following result for C,', :

l

Cii = Cii —2B~ g) dl

(Cl 1)

2

=-t,", —ta )t —p t,) —,
' t '

) fo ))t,.
(C4)

The solution of this equation is

=C» 1+2 tanh & ln———K$ el
Ko 2

—& tanh & ln-) ) K$
Ko

(C12)

g, cosh[& 1n(3up/(Kg)]
g, , cosh[ —,ln(3u, /(K, )) —(e/6)(l —l,)]

' (c5) Evaluating this expression in various limits leads
to

For most values of l this has the same form as
(4.8). However, as l -l, we find

C'„ for 0& l «l,
(c13}

gE gl 3u /(Kp) (C6) C',e-'"-'1' for l, « l « l



2172 J. BERGMAN AND B. I. HALPERIN 13

APPENDIX D: RELATION BETWEEN THE ELASTIC SOLID

AND A COMPRESSIBLE LIQUID —EXPONENTS TO ALL
ORDERS IN e

As was mentioned in the Introduction, if a sym-
metry-breaking transition occurs in a one-com-
ponent liquid, idea' exponents are expected for
the system at constant pressure. This is most
easily appreciated if one considers a fixed, finite
volume, in which', the total number of atoms, is
permitted to vary with temperature so as to keep
the total pressure constant. One may then rep-
resent the effective Hamiltonian entering the
partition function as

dx —,r, ('+ —, 1vg1 +u, p'

VdT CIy dT v
(D5)

This constraint leads to variation in pressure
given by

It is clear then that the critical properties of the
isotropic solid and the one-component liquid are
identical when considered at fixed volume and
periodic boundary conditions, except that the bulk
modulus of the liquid is replaced by C]] in the
solid. In principle, a solid with periodic boundary
conditions can show ideal behavior (e.g. , ideal
temperature dependence of the magnetic suscep-
tibility) if the volume is constrained to vary as

Bop dT Cir dT v
(D5)

where p(x) is the deviation of the liquid density at
point x from some specified value, B, is a bare
value of the bulk modulus, p. , is a. constant, and
the other symbols are the same as in (2.1). We
shall assume periodic boundary conditions. Since
p enters only quadratically, the associated de-
grees of freedom lead only to Gaussian integrals
in the partition function, which can be performed
explicitly. The resulting effective Hamiltonian
for ( has the Ginzburg-Landau-Wilson form, and
leads immediately to ideal exponents for the
transition (see Refs. 13—15).

The model (Dl) can be modified to represent a
liquid with a constant number of atoms in a fixed
volume, simply by imposing the constraint

We now use the equivalence of the liquid-Ising
and the isotropic-solid-Ising models to derive
the critical behavior of the bulk compressibility
of the solid B„~from the specific heat of an in-
compressible Ising model. We begin by noting
that the bulk compressibility of the liquid Bbq
satisfies the following relationship near T, (this is
one of Pippard's relations' ):

(D7)

where the singular part of C~ is the same as the
specific heat of an incompressible Ising model,

(D8)

Here and later, the notation A, refers to t ~&0.

Writing a similar expression for Bpq,

(D2)
1

B~q
= —+ B andB &0

B Br
(D9)

p= V'u. (D3)

The constraint (D2) is automatically satisfied,
since u is periodic. The elastic energy associa-
ted with a longitudinal displacement field is
simply

Such a constraint must then lead to Fisher-renor-
malized exponents, if nr&0 andg, u0, as was
shown in Ref. 4. The model described by (Dl)
and (D2) is mathematically equivalent, however,
to our model (2.1) for the elastic solid with pe-
riodic boundary conditions in a fixed volume, in
the isotropic case. We see that the transverse
components of the displacement field u do not
couple to the order parameter g, while the longi-
tudinal part can be replaced by a scalar field

we find, using (D7),

B+ A.

B A+
(D10)

The equation connecting t~ and t„ is, following
(3.30) and (D9),

dt& B+
(D11)

141 "'
B~ 1 nr

(D12)

when the right-hand side is much greater than 1.
Consequently,

.C„(V.u) —~C„P (D4) and when this is substituted into (D9) we get
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Bl/(1- +g)

(D13)

B„,= b, +b-, j t„("("'"~),
b(, and b, &0

where

d —1,
b = 2C~~,

(D14)

al /{1-Otl }
b —B&/{&-&I}

r

(D15)

Note that by (D10), the ratio b+/b is simply
connected to the specific-heat ratio A, /A of the
incompressible Ising model,

Invoking the above-mentioned equivalence, the
same type of equation also describes the behavior
of C 3 y in the isotropic solid. Since B~~ only diff ers
from C» by the nonsingular term -(d —I)2C«/d,
(D13) also describes correctly the singular part
of B &. More precisely, we can write

the isotropic-solid- and the liquid-Ising models.
We will consider specifically the case of an

isotropic system in which the transition takes
place in a region of t where Fisher-renormalized
behavior is observed [this was called case (a) in
Sec. IVA]. The bulk compressibility then has
the form

B(t)= -b.+b, lt. ~"" ", b. and b, &0 (E1)

for sufficiently small t of either sign, where the
notation b, here and later refers to tk 0. The
values of b, and b, can be determined from cal-
culations for t &0, while the ratio b„/b is
related to the specific-heat ratio A, /A. of the
incompressible Ising model by (Dl 6). That ratio
can be determined from various calculations, but
we have chosen to take it from experimental data
on C„at the gas-liquid critical point. (Note that
C„and not C~ of the gas-liquid system corresponds
to the ideal Ising specific heat. )

The equation of state P(T, V) near T, (V) can be
found by integrating over B(t ),

dV T dVP(t) -P(t,)= — —B-=-~ '
I B(t)dt.

y V V, dT~,
b A. +

(o16)

Equation (D14) is valid when the singular part of
1/C» is greater than the regular part, which
requires t «t„ i.e. , that the system be governed
by R under periodic boundary conditions and fixed
V. This is the range of t where Fisher-renormal-
ized Ising exponents are observed.

The resulting function P(V) has the characteristic
shape shown schematically in Fig. 4. The equal-
area rule for the Maxwell construction is

APPENDIX E: MAXWELL CONSTRUCTION FOR THE
FIRST-ORDER TRANSITION iN AN iSOTROPIC SYSTEM B t I dt, (ES}

In Sec. IV we calculated a temperature t, where
B(t)=0, as well as a temperature t where a
longitudinal phonon became soft. Both of these
are limits of metastability at which the system
becomes unstable with regard to arbitrarily small
fluctuations. We will now try to estimate where
the first-order transition really occurs at fixed
P by means of a Maxwell construction applied to
the equation of state P(V) in the vicinity of V, (T)
for an isotropic system.

This is a fairly straightforward procedure,
since we know how to calculate B(t ) down to t = 0
for the isotropic system by assuming periodic
boundary conditions. This calculation could
have been extended to the other side of T, by a
technique similar to the one used to obtain the
equation of state of the rigid Ising model below
T, ." Instead of doing that, we will use the cor-
respondence, established in Appendix D, between

where t, and t are a pair of reduced tempera-
tures above and below T, such that

rt+
P(t ) —P(t )~ B(t}dt =0. (

Equations (ES) and (E4) must be solved to find
t, and t', which characterize the first-order
transition.

By carrying out the integrations in (ES) and

(E4), we get

b 5 — b t (2 ~) (
2 p +

2
+ +

t2 b ( I j(2 —n)/(( —n)
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where we have suppressed the index I on n, and
will continue to do so in this appendix. By con-
sidering the way in which the equal-area rule is
applied, it is clear that both sides of (E5) must
be negative, and hence that

i„y(, ~) ~b 1-o/2
b, 1 —~ ' (E7)

t I~hi „) ~b 1-n/2
b 1 —n (E8)

We thus obtain equations for a, and a:
(E9)

1 — 1- —a = —1 — 1 ———'a.
. .

(E10)

Depending on whether b,&b or b, &b, we also
deduce from (E5) that t+&t or t,&t, and that
both sides of (E6) are negative or positive, re-
spectively.

To facilitate the solution of (E5) and (E6), we
make the following substitution, which is especial. —

ly suitable for the case b &b, encountered in
practice:

a = 1.008, a, =0.749. (E 11)

These values satisfy (E7) as well as all the other
inequalities mentioned after (E7), and lead to the
following result:

if i=—8.05f, . (E12)

The constant a„ in (4.32) is therefore given by

a„=(f,+ i t i)/t, ==9. (E13)

The reduced temperature t, was defined as the
positive value of t for which B(f ) =0. From (El)
and (E8) we see that

a, b, 1 —u/2
b 1 —~ 3' (E14)

Identifying t, with the upper transition temper-
ature f r of Sec. IVA for case (a), we can now
calculate the difference between l ~ and l, for
d 3

i 1,b, I — /2)L~ —l3 =v„in~ = —v, —lnt, o. b 1 —u

a /a, is only moderately large. Using o.'= —, and
b, /b =2.053 Lthe last result was obtained from
experimental data on the specific heat at the gas-
liquid critical point of CO„Ref. 39, with the aid
of (D16)], we find, for d=3,

which can be solved numerically rather easily
by an iterative procedure once it is noted that
(a /a, )'~' ~ is a very large number even when

= —4v

This confirms the assertion made in (4.13).

(E 15)
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