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Specific heat of normal and superfluid He on the melting curve*
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A method has been developed for determining the specific heat of liquid 'He on the melting curve as a
function of temperature and magnetic field. This approach depends on the accurate measurement of pressure

and volume responses to heat pulses applied to the 'He in a Pomeranchuk cell. Analysis of a number of
different experiments at a particular melting pressure yields both the specific heat of the liquid and its

temperature. The therrnodynarnic determination of the temperature has been separately discussed in another

publication. Measurements were performed between 1.1 and 23 mK in magnetic fields up to 8.8 kOe. From
the normal-fluid specific-heat data the low-temperature value of the effective mass at the melting curve was

found to be m*/m = 5.5 ~ 0.2. This is substantially smaller than that reported by Wheatley. Specific-heat

discontinuities at the A, A„A„and B superfluid transitions have been measured. These give values for
certain combinations of the coefficients of the fourth-order invariants in a Ginzburg-Landau expansion.

Comparison was made with thepredictions ofspin-fluctuation theories. It was found that these alone cannot

account for the behavior of 'He at melting pressures. The entropy difference between the A and B phases was

calculated from the specific-heat data and compared with that calculated from (i) measurement of the latent

heat at the B~ A transition, and (ii) measurement of the suppression of the B transition by magnetic field, B
phase susceptibility data, and a magnetic Clausius-Clapeyron equation. The different methods give a consistent

picture in which the thermal differences between A and B phases are quite small. The A-phase specific heat

at T/T, —0.5 appears to have a weaker dependence on temperature than that expected for the limiting low-

temperature behavior of the Anderson-Brinkman-Morel state.

I. INTRODUCTION

The superfluid transition in liquid 'He was
first observed' through the effect of its specific-
heat discontinuity on the cooling rate of 'He in a
Pomeranchuk cell. Although it was not under-
stood at the time, this effect was later correctly
identified by Vvendenskii. ' Measurement of the
specific heat by Webb et al. ' at a number of liq-
uid densities showed that this transition was of
second order with a. specific-heat jump. In par-
ticular, at the pressure 33.4 bar they observed
a discontinuity in the specific heat 1.8 times that
of the normal Fermi liquid. Qualitative agree-
ment on the melting curve was found by Anufriev
et al. ' This suggested an analogy with supercon-
ducting transitions giving support to the idea that
the liquid-'He ordered phases might be of the
BCS type. In the weak-coupling theory of BCS
the specific-heat jump of an isotropic super-
fluid is expected to be ac/c„= 1.43; anisotropy in
the energy gap function would reduce this value.
Larger specific-heat jumps, as observed for ex-
ample in Nb and Hg, have been attributed to
strong-coupling effects, a jargon that has been
carried over to the case of liquid 'He. Dundon
et al. ' used nuclear demagnetization refrigera-
tion to measure the 'He specific heat at lower
temperatures than had been previously reported;
however, they found structure and hysteresis in
their work which has not yet been explained.

In this article we report measurements of the

specific heat of liquid 'He as a function of tem-
perature in various magnetic fields. These were
performed at melting curve densities in the four
known fluid phases: the normal Fermi liquid
(NFL); and theA„A, and B superfluids. Mag-
netic fields up to 8.8 kOe were used to: (i) pro-
duce the field splitting of the A transition into
two separate transitions A, and A„and (ii)
suppress the onset of the B phase and thus ex-
tend the temperature range available for mea-
surements in the A phase. T„and T~ (T„&T„)Ai 2 1 2
are the temperatures of phase transitions to
different equal spin pairing states with the paired
spins aligned along and opposed to the applied
magnetic field. The splitting T„—T~ has been

1
measured' to be 6. 4H gKkOe ', which in 8. 8

kOe gave a 56-p.K region in which A, -phase speci-
fic-heat measurements were obtained. The li-
quid specific heats were determined with pulse
techniques which are unique to measurements
performed along the melting curve. In this work
we have found a new value of the 'He effective
mass at melting pressures and determined five
specific -heat discontinuities which fix various
combinations of the coefficients of the fourth-
order invariants in a general Ginzburg-Landau
expansion. These coefficients are a quantitative
measure of the strong-coupling effects in 'He.

II. EXPERIMENTAL METHOD

The experimental arrangement was essentia, lly
that of our previously reported work' in which a
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thermodynamic method was employed to establish
the 'He melting curve P -T relation. A compression
cell of adjustable volume, nominally 4.3 cm',
was used to produce 'He temperatures down to 1.1
mK. The pressure and volume of the 'He could be
independently measured with 0.01 and I/z accura-
cies, respectively. Calibrated heat pulses deliv-
ered to the 'He through a copper heater wire were
known to an accuracy of 0.3%. In this work we
have added a superconducting solenoid capable of
producing 10 kOe with a homogeneity of 10 '
across the cell. Consequently, the measured
variables in our experimental cell are heat, vol-
ume, pressure, and magnetic field.

Let us briefly discuss the compression cell
methods by which the liquid specific heat may be
determined in any fixed magnetic field. Consider
the effect of adding an amount of heat hQ to an
equilibrium mixture of liquid and solid He self-
cooled by adiabatic compression to a pressure P
and temperature T. Following a heat pulse the
response in pressure AP, temperature AT, vol-
ume aV, and the change in moles of liquid by con-
version to/from solid, nn, , are related by

b, Q= nT(n, c, +n, c, )+ vari, (s, —s, )T,

nV=nn, (v, -v, )-nP(u, V, +I,V, ).
(1)

(2)

These equations provide the basis for description
of all our thermal experiments on the 'He melting
curve. The quantities s, v, n, k, and V are molar
entropy, molar volume, number of moles, com-
pressibility, and volume, of liquid or solid as in-
dicated by the subscripts I and s. At 20 mK in
zero field, we found from measurement of vol-
ume and pressure that v, —v, =1.314+0.013 cm'
mole ' and k, = k, =a —bP, where a=9.17x10 '
bar ' and b=1.27&10 ' bar ' with an accuracy of
1.5%. Since the compressibilities are independent
of temperature, the molar volume difference be-
tween the liquid and solid phases remains essen-
tially constant below 20 mK: between 20 and 1.1
mK the melting pressure changes by 0.731 bar
from which we calculate, neglecting expansion
coefficients, that the molar volume difference
changes by less than 0.4% in this interval. The
molar amounts of liquid and solid are determined
(to an accuracy of 1.5/o) from the absolute vol-
ume measurements, where the molar valume of
the liquid at 20 rnK is taken' to be 25.621 cm' mole '.

In separating the thermal properties of the
liquid component in the cell from the solid frac-
tion and the container itself, we took advantage of
the fortuitous distribution of time constants in
this system. After a heat pulse AQ, the response
sT, as indicated by the pressure change AP,
shows two distinct characteristic relaxation times

cl=n/I T klvi+k V +

(3)

This analysis effectively a,ssumes that all of the
heat in the pulse goes first to the liquid, where
pressure and temperature equilibrium establishes
rapidly, and then subsequently leaks into the solid.
The melting curve slope (dP/dT)„c and the tem-
perature T at each melting pressure and field
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FIG. 1. Schematic shows the main features of the
experimental arrangement used to take liquid specific-
heat data and//or regulate the 3He pressure. Two ac
capacitance bridges (reference signals are not shown)
determine pressure and volume of the He through the
measured displacement of two flexible diaphragms.
The liquid He in the lower 5 cm volume shown at cryo-
genic temperatures was pressurized by heating of a re-
sistance wire inside this volume. This method of 4He

pressurization was used to control the He pressure at a
preset value of the SHe pressure gauge. The error sig-
nal from the gauge, combined with an appropriate dc
bias was amplified and then applied to the 4He heater.

differing by a factor of 30 at 20 mK and more
than 3000 at 2 mK. The shorter time (-1 sec) was
identified with the liquid component n, c, in Eq.
(1) and corresponds to equilibrium establishing
within the liquid and at the liquid-solid interface.
The longer time corresponds to thermal equilibra-
tion in the solid. The time constant of the container
appeared to be of the order of —,

' h. These observa-
tions are discussed in detail elsewhere. ""We
determined the liquid heat capacity in the pulse
method by inserting into Eqs. (1) and (2) mea-
sured initial responses in pressure and volume,
aP and 4V; then in solving for c, we could omit
the term nT n, c, in Eq. (1). Using the Clausius-
Clapeyron equation for the melting curve slope,
(dP/dT)Mc= (s, —s, )/(v, —v, ), this result can be ex-
pressed
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(4)

This method employs pulses of heat or cool from
pulsed melting or solidification of 'He, and can be
contrasted with that of Eq (3) w. here electrically
generated heat pulses are used. These techniques
produced specific-heat results in excellent agree-
ment and of equivalent precision over the entire
range of measurement between 23 and 1.1 mK.
Their accuracy of 4/a is determined by the com-
bined accuracies in the measurement of heat
(0.3%), volume (1.5/p), and pressure (0.01%). The
results were independent of effects from solid
'He other than a decrease in precision for solid
fractions greater than -30%. In Fig. 2 we show
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were obtained from measurements of the latent
heat of solidification of 'He, following the method
developed by Halperin et al."

We also obtained the liquid heat capacity using
another technique that is closely related to the
latent heat measurements. In this approach, use
is made of a device that regulates to a constant
value the 'He pressure, and hence the tempera-
ture. A schematic of the experimental arrange-
ment is shown in Fig. 1. When the 'He pressure
was abruptly shifted from one regulated value to
another by an amount b,P, a volume change AV

was measured that is related to the liquid speci-
fic heat by setting bQ= 0 in Eq. (3) above:

representative chart tracings of the outputs of the
pressure and volume gauges during a heat pulse
and during a compression pulse experiment. In
the latter the 'He pressure was not regulated in
order to more clearly display the relative changes
in volume and pressure. This data was taken at
6 mK in the normal Fermi liquid. At lower tem-
peratures, in the superfluid phases, the amount
of heat gQ was adjusted between 1 and 10 ergs
such that temperature and pressure excursions,
4T and hP, were of order 20 p. K and 0.8 mbar,
respectively.

In each magnetic field the pressure, volume,
and heater resistance calibrations were repeated
revealing that the only field-dependent effect was
that of the magnetoresistance in the copper heat-
er wire.

III. RESULTS AND DISCUSSION

A. Normal Fermi liquid

The results in the normal Fermi liquid, 2.75
&T& 23 mK, indicate that at melting pressure
the specific heat is essentially linear in tempera-
ture. We found that the empirical relation
c, /R = aT —bT' fits the data best where a = 4.33
K ', b = 11.0 K ', and g is the gas constant. Con-
sequently, at 34.34 bar we deduced the effective
mass in the liquid, m*/m= 5.5+ 0.2, and the cor-
responding Fermi liquid parameter, I'; = l3. 5

+0.7. This is in substantial disagreement with

the 10/a higher values reported by Wheatley"
who used an extrapolation to low temperatures
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FIG. 2. Chart recorder tracings of volume and pres-
sure gauge outputs are shown during measurement of
the liquid specific heat by heat pulse and pulsed com-

pressionon

techniques.
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FIG. 3. Normal Fermi liquid specific heat c, divided

by the gas constant R and the temperature T is shown
after adjustment to the constant pressure 27.36 bar.
The results of the current work are the open circles.
As described in the text when allowance is made for the
differences between the CMN magnetic temperature
scale and ours the data of Anderson et al. (1963), and
the data of Abel et al. @966) can be compared with that
of this work and are shown as solid and open triangles,
respectively.
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of specific-heat data of Abel et al." Although
the latter work is reported in the form r Q/bT'cM„,
where T~» is the magnetic temperature of
cerium magnesium nitrate, a comparison with
our own work can be made if we assume a re-
lation between T~„N and the melting curve tem-
perature scale: T~&„N = T —a —b/T Me. asurement
of the melting curve, P -P„vs TcM„by Johnson
eP aL."combined with the melting curve tempera-
ture scale P-P~ vs T, yields b=1.46 mK'. This
quantity can be presumed to be the same for each
salt thermometer according to Wheatley. " On the
other hand a must be estimated, and can be taken
to be a = 0.2 mK as suggested by Abel et al." With
the above prescription, the specific-heat results
of Abel et al."are recalculated and plotted as
open triangles in Fig. 3. Our data is given by the
open circles when adjusted to the constant pres-
sure 27.36 bar using the relation

The expansion coefficient n is given by Anderson
et al."to be a = -0.12 TK '. The earlier high-
temperature work of Anderson et al. ,

" similarily
adjusted to the pressure 27.36 bar, is shown by
the solid triangles. Even after allowance for
differences between T~N and T scales there
appears to be a 7% discrepancy between the mea-
surements of Abel et al."and ours. This could
be accounted for in the thermometry comparison
should a have the unlikely value of 1 mK. We note
that the T-TcM„relation that we have used does
not alter the conclusion of Anderson et al." that
the specific heat of dilute mixtures of 'He in 'He
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is proportional to the temperature and that the
diffusion coefficient is proportional to T '.

B. Superfluid phases

Specific-heat data obtained in zero magnetic
field in the A and B phases was obtained with the
heat-pulse method and Eq. (3). These are shown
in Fig. 4. The jump in specific heat at theA
transition was first quantitatively interpreted by
Vvedenskii' using pressurization data of Osheroff
et al. ' and was later measured in a liquid 'He-
CMN mixture by Webb et al. ' We have found in
four different experiments the specific-heat jump
at the A transition, hc„/c„„=1.98, 2.02, 1.99,
and 2.00; the solid fraction in the cell was 17,
23, 32, and 33/0 respectively. We have averaged
these to obtain Ac„/c„„„=2.00+ 0.08. This is in
reasonable agreement with the results of Webb
et al. ' when allowance is made for the different
values they have used for c»~ as discussed in
Sec. IIIA.

The temperature of the transition, whose in-
herent width was less than 1 p, K, was obtained
both from pressurization traces and analysis of
pulses that produced temperature excursions
which bridged the transition itself. The latter was
deemed a more precise method by which the trans-
ition temperature could be identified with a resolu-
tion of 0.03%.

At the B transition a smaller jump in specific
heat (cs —c„)/c„=0.091 was observed. This is
clearly displayed in Fig. 5 in which the major
temperature dependence is removed by plotting
c, (T,/T) vs T/T, . The straight lines in this figure
represent least-squares fits to the zero field data.
The open circles are the B-phase measurements.
The A-phase data points in zero field are equiva-
lent to the solid circles obtained in 3 kOe.
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FIG. 4. Specific-heat data in the superfluid phases
obtained in zero magnetic field is plotted vs the reduced
temperature, where the B transition occurs at T/T,
= 0.791.

FIG. 5. Specific-heat data in the superfluid phases is
plotted following multiplication by (T,/T) 3 in order to
remove most of the temperature dependence. The var-
ious lines are described in the text. The solid circles
are A-phase data taken in 3-koe field. The open circles
are B-phase measurements in zero magnetic field. The
open squares are B -phase measurements in 3 koe.
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In a 3-kOe field, decompression and compression
pulse data were interpreted via Eci. (4) and plotted
in Fig. 5 as solid circles for the A phase and open
squares for the B phase. Supercooling of the
A -B transition permitted A -phase measurements
to be performed to a temperature T/T, = 0.49. The
transition on warming in this field occurred at
T/T, =0.59. Since the field dependence of specific
heat is given by Bc,/BH = T B'M/BT' we expect
Bc,/BH = 0 in the A and NFL phases where the
magnetization is known to be "precisely" tempera-
ture independent. " This is confirmed in the A
phase by the data shown in Fig. 5. Using the B-
phase susceptibility data obtained at the melting
curve by Corruccini and Osheroff" and the rela-
tion above, we calculate that the B-phase specific
heat should increase less than 1% as the field is
increased to 3 kOe. This would not be observable
in the present work. From Fig. 5 we conclude
that theA. and Bphases have very. similar thermal
properties that are essentially field independent
other than that of the A -B transition temperature
itself. Paulson et al." have inferred a similar
result in lower pressure 'He, using static mag-
netization measurements and the profound effect
of small magnetic fields on the A -B phase dia, -
gram.

Some interesting results can be deduced from
the specific-heat data keeping in mind the third
law of thermodynamics which requires that the
entropy of the various phases at T=0, be zero.
First we use the normal fluid measurements ex-
trapolated to T = 0 to determine that the entropy
of the normal liquid at T, is 984 ergmole 'mK '.
Since the A transition is of second order this
therefore must be the entropy of the superfluid
at T, . Then, in any pa, rticular magnetic field
the entropy of the superfluid can be separately
evaluated from the specific-heat data in those
phases and compared with the above result. This
procedure depends on an extrapolation of the
specific-heat data to absolute zero temperature.
Consequently the entropy comparison can be
viewed either, as an internal consistency check of
the specific-heat measurements in normal and

superfluid phases, or as an indication of the valid-
ity of the extrapolation which, in fact, gives in-
formation about the low-temperature specific heat
in a temperature region not currently accessible.
When this procedure was applied to the zero mag-
netic field data it was found that the entropy at
T, deduced from the superfluid specific hgat was
only 2.6% less than that of the normal quid. The
B-phase specific hea.t was extrapeIhted to T = 0
by just extending the straight line in Fig. 5. The
entropy in the superfluid at T, was calculated
from I+c,T 'dT plus a small 0.7% contribution

JO

from the latent heat at the A. -B transition. The
most generally accepted candidate for the micro-
scopic state of the B phase, the Balian-Wert-
hamer state, " should have a specific heat at
low temperatures that decreases as exp —b, (k)/

ksT, where n, $) is an isotropic energy gap. This
behavior has not been observed in the available
temperature range of our measurements and

should it occur at lower temperatures would give
an entropy at T, that would tend to slightly in-
crease the 2.6% difference that we calculated
above.

In sufficiently large fields such that the B phase
is not stable, this entropy calculation can be per-
formed on specific-heat data obtained entirely in

the A phase. (As mentioned previously the A-
phase specific heat can be expected to be field
independent. ) Since the A phase is thought to be
the Anderson-Brinkman-Morel state it is useful
to bear in mind that the expected" low-tempera-
ture specific heat of this state is proportional to
T'. We have found that the superfluid specific
heat at T, is just three times that of the normal
fluid. If the A. phase were to have a pure T'
specific heat with this same jump then it would

have precisely the correct entropy at T, . Our
3-kOe data of Fig. 5 show that there is a some-
what steeper temperature dependence than T'
near T, which therefore must be compensated for
by a weaker dependence than T' at lower tempera-
tures; in fact near T/T, = 0.5 the A-phase data in-
dicate this sort of behavior. This result is not
that expected for the Anderson-Brinkman-Morel
state where only single particle excitations were
considered significant. Possible effects of col-
lective excitations or "mixing in" of higher-order
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FIG. 6. Specific-heat data taken in 8.8-kOe field are
shown in the vicinity of T, where measurements in the

A~ phase could be obtained, (T&2 &T &Tz&). The solid
lines above A& and below A2 in temperature are fits to
zero field data in the normal and A phases, respectively.
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TABLE I. Coefficients p&, $2, ..., $5, of the fourth-order terms in a Ginzburg-Landau ex-
pansion are determined in certain combinations by measurements of the specific-heat discon-
tinuities. The notation P;,& is used for the sum P;+P, +P&. The corresponding weak coupling
prediction for these sums is given, as is the calculation of the spin-fluctuation parameter 6
from the data.

A~NFL

Ai/ NFL

ACB /C NPL

Expt.

2.00+ 4%

0.74 + 4'
1.90 + 4/p

Gives P
sum

~245

»4
3j 12 ~ 345

P sum
equals

1.20+ 0.05

3.30 + 0.13

3.75+ 0.15

Weak- coupling
prediction

0.76+ 0.05

2.00+ 0.37

1.25+ 0.15

partial waves in the order parameter have been
discussed by Leggett. "

Some success has been reported" in accounting
for the specific heat of strong-coupling supercon-
ductors by phenomenologically scaling the BCS
energy gap by a constant factor. When this factor
is taken to be (Acs/nc, cs)'~' the procedure yields
the curved line in Fig. 5. In the ease of 'He this
approach does not appear to be very fruitful.
b,cs (1.8"t && 10' erg mK ' mole ') is the difference
at T, between the normal liquid specific heat and
that of the superfluid B phase extrapolated to T, .
The extrapolation was performed according to a
thermodynamic procedure that is described later
in this paper.

In a nonzero magnetic field the A-transition
specific-heat jump bcA becomes two separate
jumps hcA and b,cA at the transition tempera-

1 A2
tures TA and TA . Defining T, = 2.75 mK, which"2
is the temperature of the zero field transition
T„, it can be shown using Ehrenfest equations
that

(5)(T, —T„)/(T, —T„)= T„bc„ /T„-b,c„.
In Fig. 6 we plot specific-heat points obtained in
8.8 kOe with heat pulses and Eq. (3}. The solid
lines below A, and above A, in temperature re-
present fits to the zero-field measurements in
the A and NFL phases. The slopeof thelinedrawn
through the data in the A, phase is that of the
weak-coupling BCS prediction. The specific-heat
jumps at A1 and A, are indicated in the figure by
dashed vertical lines and are insensitive to that
particular choice of slope. [The temperature in-
terval corresponding to the A1 phase was not
large enough in our experiments to allow the tem-
perature dependence of the specific heat in this
phase to be determined. The choice of the weak
coupling slope therefore is intended as an in-
structive comparison. Judging from the magni-
tude of the jump at T~, hc„ /c~~= 0.74, versus

A1& Ag

the weak-coupling value of 0.60, we expect that
the a,ctua. l slope is slightly steeper (-20%} than

that indicated in Fig. 6. This would not significantly
affect the values we have taken for the specific-heat
discontinuities at T„and T„.] We found in 8.8 kOe
thatbcA1 =741 erg mk 1 mole land~cAR=1. 22
x 10' erg mk ' mole '. The scale of the temperature
axis in Fig. 6 was found by solving Eq. (5) for
T„,/T, and making use of the measurement T„,—T„
=(dP/dT)Mc(P„, P„)=56—p, K. Wefindthe result
T„,/T, =1.014 +0.001. Alternatively, although less
accurately, we can determine absolute temperatures
from the zero-field temperature scale' assuming
that the normal fluid specific heat is field inde-
pendent. This gives T„ /T, = 1.029+0.02. A
similar procedure applied to the A-phase specific
heat yields T~, /T, = 1.018s 0.01. We note that in
magnetic fields where iJH «e~ (p is the magnetic
moment of the 'He atom and cF is the Fermi en-
ergy), the expression in Eq. (5) is field indepen-
dent and is the ratio of the phase line slopes
dT/dH separating NFL and A, phases on the one
hand, and A., and A phases on the other. Our
value for this quantity is -1.75+0.07 as compared
with that of Osheroff and Anderson' who found
-1.67 + 0.05.

Ginzburg-Landau theory for P-wave pairing'4
predicts the three discontinuities AcA at TA, andA1 A1&

hcA and hcB at T, , in terms of different combina-
tions of five coefficients of the fourth-order in-
variants. These are coefficients of the fourth-
order terms in a series expansion of the free en-
ergy of the superfluid as a function of the order
parameter. Although phenomenological in origin,
once these parameters are specified they give a
complete thermodynamic characterization of the
liquid near T, . Our results give the experimental
values listed in Table I. The corresponding weak
coupling BCS predictions are shown for compari-
son. The "naive" spin-fluctuation model, "which
assumes that strong-coupling effects present in
'He can be described by a single adjustable para-
meter 5, also makes predictions for these dis-
continuities. Listed in the table are values of 5
determined separately from each specific-heat
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Using a previously reported method" we obtained
)»=15.4+0.6 ergmole '.

In Fig. 7 we show the entropy difference s„—s~
obtained in different ways. The curved line is de-
duced from the specific-heat measurements using
the expression above. The open squares are
found from latent heat measurements in 0- and 3-
kOe fields. In addition s„-q can be calculated
from the magnetic Clausius-Clapeyron equation

(X~ -Xs)H
dH ~ $A sB

I

0.5 risc
I

1.0

FIG. 7. Entropy differences between the A and B
phases have been determined from specific-heat data,
solid curve; latent-heat data, open squares; and the
measurement of suppression of the B transition by mag-
netic field, dashed line.

jump. Clearly the simple model cannot account
for the deviations from weak-coupling predictions.
Although the B-phase specific heat is not available
near T, , the jump b, c~ can be found by smoothly
extrapolating the line of B-phase specific heats
to T, , as indicated by the dashed curve in Fig. 5,
but subject to the rather stringent condition that

Tg
Ts(s„s)= Ts -(c~- cs)T "dT = j„s,

Tc

where )» is the latent heat measured in zero mag-
netic field at the 8 transition where T/T, = 0.791.

The phase line slope can be found from measure-
ments of the suppression of the B transition on

the melting curve, " and since y~= X „then the
susceptibility difference X~ —X~ can be deter-
mined from the B-phase susceptibility measure-
ments of Corruccini and Osheroff. " These re-
sults for the entropy difference are plotted as the
dashed curve in Fig. 7. The maximum in s„—s~
at low temperatures indicates that the A- and B-
phase specific heats cross near T/T, =0.5 con-
sistent with our direct measurements.
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