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A simplified model for the dynamics of the gas-liquid and binary-fluid transitions is studied with the

renormalization group. An exact scaling law is found, connecting the exponents for the diverging transport

coefficients to static exponents for arbitrary value of the dimensionality d & 4. This scaling law had been

anticipated by Kadanoff and Swift, and Kawasaki, on the basis of approximate mode-coupling arguments. The
"Kawasaki-Stokes" relation between the diffusivity, the shear viscosity, and the correlation length is shown to
hold exactly, but with a universal amplitude which differs slightly from its mode-coupling value. Critical

exponents for the transport coefficients are evaluated to second order in e = 4 —d, and lead to the prediction

of a weak divergence of the shear viscosity [g(T) ~ (T—T,) '] in three dimensions. The weakness of this

divergence reflects the existence of a small parameter in the theory, which explains the excellent agreement

between Kawasaki's evaluation of the Rayleigh linewidth and experiment. Corrections to the simple Kawasaki

theory carried out by various authors are reviewed, and a number of suggestions are made for refining these

calculations. The simple model studied in this paper is shown to have the same dynamic properties as real

fluids, sufficiently close to the critical point.

I. INTRODUCTION

The dynamical properties of binary-fluid and

gas-liquid phase transitions have been studied
extensively, both experimentally and theoretical-
ly, inrecent years. ' Of primary interest are the
temperature dependence of the transport coeffi-
cients (e.g. , the thermal conductivity or the shear
viscosity) and the temperature and wave-vector
dependence of the characteristic frequency of
fluctuations of the order parameter, as measured,
for instance, by inelastic light scattering ("Ray-
leigh iinewidth"). These properties were calcu-
lated some years ago using the mode-coupling ap-
proach, '' with results which were in remarkably
good agreement with experiment, ' as regards both
the critical exponents and amplitudes and also the
scaling function for the Rayleigh linewidth. Thus
the critical dynamics of the gas-liquid and binary-
fluid transitions is a case where a simple dia-
grammatic treatment yields accurate exponents
and scaling functions in three dimensions (d=3),
which differ significantly from their mean-field
or conventional values.

The renormalization-group method' provides a
systematic means of proving scaling relations
for general d, and of calculating exponents and
scaling functions in expansions near d=4. In the

present paper, we apply this method to a simple
model of the binary-fluid and gas-liquid transi-
tions, for T ~ T„on the critical isochore. ' We
derive a number of exact scaling results which
were in part anticipated by the mode-coupling' ~ '
and dynamic-scaling' approaches. In addition, we
find that some of the results of the Kawasaki the-
ory, ' in particular the numerical values of the
critical exponents and scaling functions, are only
approximately correct for any dimensionality.
The success of the simple Kawasaki approxima-
tion, ' which neglects the critical variation of the
shear viscosity in lowest order, is traced to the
existence of a small para. meter, of order 0.05, in
the theory. This parameter is of kinematic ori-
gin, and arises from the transverse nature of
current fluctuations which couple to the order pa-
rameter.

A principal result of the present work is an
exact scaling relation between the exponents xz
and x—„ for the transport coefficient A, of the order
parameter (e.g. , the thermal conductivity in a
simple fluid) and the shear viscosity g. This re-
lation reads

where e -=4 —d and g is the usual static exponent. '
An alternative and physically more suggestive
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statement of the above result, is in terms of the
"Kawasaki-Stokes" relation, "which in three
dimensions is

D=—X/yp =Rk~T/q(, (1.2)

xq = ~~e[1 —0.033' +O(e')] = 0.916,

x~ =
9 e [1+0.238m+ O(e ) ]= 0.065,

(1.3a)

(1.3b}

which satisfies Eq. (1.1) since q =-'e'+O(e'). The
ratio x—

„/x&, is the small parameter referred to
above, which is responsible for the unusually good
accuracy of the earlier mode-coupling calculation. '

Another exact -result of our work is the dynamic
scaling relation' "

w~(k) =Dk'Q(k)) =Do(' '
kQ(k )t (1.4)

for the characteristic frequency of the order pa-
rameter, valid in the limit $ - ~, k- 0, k$ arbi-
trary [the function Q(x) is defined so that Q(0)
= 1]. It must be noted, however, that since the
order -parameter corr elation func tion is non-
Lorenztian in the "critical region" k(»1, the
scaling function Q(k)) will depend on the precise
definition chosen for the characteristic frequency
w&(k). On the other hand, any reasonable defini-
tion of u&(k) will lead to the form (1.4), with an
appropriate function Q(kt). From the preceding
discussion it also follows that the critical expo-
nent z is not precisely equal to 3 as in the Kawa. —

saki theory, ' but rather to z =4 —g —x~; our esti-
mate based on Eq. (1.3) yields x =3.065 when ex-
trapolated to d = 3.

Many features of the above results were in fact
already contained in the various improved mode-
coupling calculations, ' ' which appeared after the
original work of Kadanoff and Swift' and of Kawa-
saki." In particular, the self-consistent approx-
imation of Kawasaki'" satisfies Eqs. (1.1) and

(1.4) (with g= 0), and can yield estimates of the
parameters in those equations, including the expo-
nents x), and x—. Our examination of the e expan-
sion to second order leads us to expect that an
accurate solution of these self-consistent equations

where y& is the static susceptibility of the order
parameter (X&

CC C~ in a pure fluid) and $ is the
static correlation length. Equation (1.1) is an ex-
act result, which differs from Kawasaki's original
relation" only in that the value of the universal
constant R is estimated from the e expansion to be
R =0.064 rather than (6v) '= 0.053. Note that ac-
cording to Eqs. (1.1) and (1.2), it is only the com-
bination Xg whose exponent is determined by an
exact scaling law, and not the transport coeffi-
cients A. and g separately. The individual exponents
x„and x—„may also be obtained in an e expansion, '
and we find, to second order,

II. ANALYSIS OF A SIMPLE MODEL

The model we consider is very close to the one
introduced earlier in the mode-coupling theo-
ries. '''" It was denoted as model H in Refs. 20
and 21, and is defined by the following equations,
in d dimensions:

d'x 2r,g'+-,' VP '+u, g'+ —,'j', (2.1a)

ay zw ew—= AOV —goVg . + 6),Bt 5g 5j (2.1b)

, aw - 5w
Bt Oj 5g

goV =. — +goVg —+ f (2.1c)

( e(xt ) 8(x't')) = —2A V'5(x —x')5 (t —t'), (2.1d)

( g.( t)xg, ( tx')) = 2q,V'5(x x')5—(t —t')5., —

(2.1e)

should yield parameters which are correct to bet-
ter than 5% in three dimensions.

The simple model of a fluid employed in most
treatments of the critical dyna. mics'' omits a
number of features of real fluids, such as the
longitudinal current and pressure fluctuations and
the asymmetry of the free energy with respect
to a change in sign of the order parameter. These
properties may be studied using the renormaliza-
tion group, "'"and it is confirmed that they are
irrelevant, asymptotically close to the critical
point. Thus, provided the e expansion is a reli-
able guide to the behavior for d=3, the scaling
relations found for the simple model should also
apply exactly to real fluids. Moreover, a con-
crete result of our study of more realistic models
of the binary fluid is the statement that the trans-
port coefficient Dk~ should remain finite at T, ,
in agreement with the conclusions of Swift" and
others" which had been questioned by Papoular. "

In Sec. II our model for the critical dynamics
of a fluid is defined, ' and the lowest-order recur-
sion relations are discussed in detail. Generali-
zations to higher orders are then considered, in
order to prove the scaling relation (1.1) to all
orders in e and to calculate the second-order
values (1.3}. Details of the computations are
given in the Appendix. Section III justifies the
application of our simplified model to the binary-
fluid and gas-liquid transitions. Thermodynamics
and linearized hydrodynamics establish the con-
nection between the physical parameters of real
fluids and those of our model. It is also argued
that the simplified model provides a complete
description of the critical point. In Sec. IV we
compare our results with previous work, and
comment on the experimental situation.
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The scalar field g is the order parameter, which
represents the deviations of the concentration or
density from its critical value. The transverse
vector field j in d dimensions corresponds to the
momentum density or velocity in an incompress-
ible fluid. The matrix 7 is a projection operator
which selects the transverse part of the vector in
brackets (E, o =b

&
—k,k&/k'), and 8 and g are

Gaussian noise sources. The background or bare
viscosity and the bare order-parameter transport
coefficient are given by gp and A„respectively.
The parameters in the thermodynamic potential
Whave their usual meaning, and we have dropped
certain unnecessary constants. A value of g, dif-
ferent from unity has been allowed for, since we
will define scale changes that leave the correla-
tion functions invariant but cause trivial reseal-
ings of g, . Our model contains both dissipative
and reversible interactions. The former arise
from quartic terms in the effective enthalpy for
the order parameter [Eq. (2.1a)), with the cou-
pling constant u, ~ The effects of dissipative cou-
plings on critical dynamics were first studied
with the renormalization group by Halperin, Ho-
henberg, and Ma." The reversible interactions
(proportional to gp) are needed to make the theory
Galilean invariant. It may be seen from Eqs.
(2.1a)-(2.1e) that there is a dimensionless bare
coupling constant fp for the nondissipative inter-
actions,

fo =+o8'o~ /~o'6o. (2.2)

The recursion formulas for the static parameters
r, and u, are the same as found by Wilson and
Fisher. " Dynamic effects, in particular the re-
normalization of A. and g, are calculated by means
of the Martin, Siggia, and Rose" formalism which

We use A to denote the ultraviolet cutoff and de-
fine Ko as the geometric factor' (2v) o2v ~'

x[I'(-,'d)] '; note also that W is here defined to be
dimensionless (i.e. , koT, =1). Because j istrans-
verse, g is conserved. The equilibrium distribu-
tion of g and j is proportional to e and the static
critical properties of g are clearly the same as in
the Ginzburg-Landau-Wilson model. '

We define a renormalization group on the equa-
tions of motion by thinning the degrees of freedom
and rescaling, ""with scale factors chosen to
preserve the form of the correlation functions at
T, . The scaling transformation is

(2 3a)

(2.3b)

(2.3c)

(2.3d)

Z„,= 6"" 'Z, (1+-,'f, lnb),

q„,= b' 'g, (1+ f, lnb),

yz 3+ t/2g

(2.4a)

(2.4b)

(2.4e)

We have retained the static exponent g in the scal-
ing factors although it is of higher order in e. The
equation for f, follows:

f„,= b' "f, (1 —'-' f, ln b). (2.4d)

We see that f is a relevant variable below four
dimensions, and that a stable fixed point exists
with f„='-,e + O(e').

After iterating the recursion formulas L times,
where L =in()A)/inb, the effective correlation
length is of order unity and further renormaliza-
tions are regular. It follows that the physical
temperature-dependent transport coefficients A(1'}
and g(T) are

(2.5)

(2.6)

(These equations are exact to lowest order in e.
More generally, these relations are correct up
to a multiplicative constant of order unity, pro-

is summarized in the Appendix. For dimension
d =4 —e, we find a fixed point at which the vertex
f„ is of order c. (Above four dimensions the Van
Hove theory" "is correct. } We can then order
the perturbation expansion in powers of the small
parameter fp and show that it is the only dimen-
sionless coupling constant required to calculate
the critical contributions to the transport coeffi-
cients to order e.

At sufficiently high order in e, the dissipative
coupling of the order parameter to itself via the
vertex uo in Eq. (2.1) will also affect the critical
exponents and scaling functions. The lowest-or-
der effect of u„which influences exponents in

order e', may be included in the mode-coupling
formalism of Kawasaki' by using the correctstatic
susceptibility it& (k) rather than the Ornstein-
Zernike form. In our present calculations, these
effects are included when we insert the value of
the static exponent g, to order e', in Eq. (A25) of
the Appendix. It should be noted, however, that
there are additional affects of u, which are not
included in the Kawasaki formalism. ' These first
occur in the exponents at order e3 and in the Ray-
leigh lineshape for large k( at order e', orders
which are not reached in the explicit calculations
of the present paper.

By applying the rescalings to the equations of
motion and calculating the simplest mode-coupling
diagrams [Figs. 1(a) and 2(a)] in four dimensions,
we find
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vided the exact renormalization group is used for
A. , and 5, .' } As $-~ we define

Z(T) = $"),

g(~) =h"~.

(2.7)

(2.8)

If we choose z such that A. , approaches a finite
fixed point, then z is the exponent of the charac-
teristic frequency of the order-parameter relaxa-
tion. From Eq. (2.5) we have

f„='-,' e + O(e'). (2.12)

correct to all orders in e (see the discussion of
the corresponding interaction vertex in the models
of Ref. 20). We will show in the Appendix that all
higher-order contributions to Eq. (2.4d} can be
expressed as a power series in f, and u, with fi-
nite coefficients, so that the vertex f, approaches
a finite fixed-point value

Similarly we find

x-„=,e + O(e').

(2.9)

(2.10)

(2.11)

[The vertex u, approaches its static value u„
=e j4K,(n+8}+O(e').] From Eq. (2.4d) it follows
that the physical temperature-dependent vertex
f(T) =K,g—oA '/t)(T)A(T) varies as

(2.13)

Note that q, and g, do not approach finite constants
as l- ~, if we adjust the frequency scale to make
A„ finite. The dimensionless coupling constant f,
does remain finite, however. The frequency for
momentum relaxation scales as k' "&, which is
much faster than k* [cf. Eqs. (2.9) and (2.11)].

A. Analysis of higher-order terms

The analysis of higher-order terms is very
similar to that outlined in Ref. 20. First of all,
the fact that the recursion relation for g, contains
only the trivj. al scaljng factor b +' is not a co-
incidence. The absence of renormalizations of
the convective vertex arising from the interactions
is a consequence of Galilean invariance, and is

B. Universal amplitudes and scaling functions

Associated with the exponent relation (2.14) there
is also a universal amplitude ratio'

g. '&( T)8(-T)X ~'( T)t' ', (2.15)

or

A = (ksT, ) 'Z(T)q(T)yq'(T)$' ', (2.16)

in the more usual units where g, =1 and the free
energy W has units of ksT. Equation (2.16) may
be rewritten in the Kawasaki-Stokes form'' in
terms of the diffusion constant

where a, is a universal constant of order unity.
Using Eqs. (2.7}, (2.8), and (2.13), we thus find the
exact sealing law

(2.14)

D = A.X g (2.17)

p-k

k k

(a)
p+q

(b)
Q

(b)

q+p-k
p-k P

k k

-k p+q -k

(c)
FIG. 1. Self-energy ~2 that renormalizes A. The wavy

lines represent momentum propagators and the solid
lines denote the order parameter. The vertex g is a dot.

P P+Q

(c)
FIG. 2. Self-energy II

2 renormalizing g. The lines
have the same meaning as in Fig. 1.
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as

D = RksT, /rl( (2.18)

R = Kpg e ' [1 + 0.06' + 0(e') ] .

If we simply set d=3 and a=1 we obtain

R =0.042 =0.79(6v} '. (2.20)

From the second-order calculation described in
the Appendix we find

In Sec. IVwe shall discuss a different method of
extrapolating Eq. (2.19), which we consider to be
more reliable and which yields the value A =0.064
= 1.2(6w) ' for d= 3, quoted in Sec. I.

In obtaining both the above result and the next
term in the e expansion of the critical exponents
we have used Wilson's Feynman-graph expansion
method, "rather than the recursion relations. The
calculation is outlined in the Appendix. The main
results are the exponent and amplitude values in
Eqs. (1.3} and (2.19), and the expression for the
order-parameter decay rate,

(up (k) $) = (RksT/t)(T)$' ')k'Q(k() —= k'D(k)),

24@ dp x y'p ~ x
I2o)' p*t& ~ ( ~ p)*j p*I& 0')}

(2.21)

We shall compare these results with previous
work in Sec. IV.

From the calculated scaling function we may ob-
tain another interesting universal amplitude ratio,
namely,

R —= [~p (k, $ = ~)/(up (k =0, $)] (kg) *. (2.23)

The calculation of R using Eqs. (2.21) and (2.22) is
straightf orward, and we find

8= 1+,—a+0(e ). (2.24)

(up(k, t') -=lb. (k, g}k'/yp(k), (2.25)

X '(k, g) =—k'lim
(2.26)

where It&(k)—:Itp(k, &u =0). Alternatively, one can
attempt to fit the frequency dependence of the
correlation function to a Lorentzian and define

up (k, $) as the appropriate half-width, or employ
the definition of Ref. 7 in terms of the median
frequency of the correlation function. The latter
methods are more difficult to calculate, but cor-
respond more closely to an experimental deter-
mination of u&. It may be shown, however, that
to zeroth and first order in e, the correlation
function is a Lorentzian for any value of k$, so
that Eqs. (2.25) and (2.26) are correct for any of
the above definitions.

As was mentioned in Sec. I the definition of the
characteristic frequency ~& (k, g) is not unique for
k(»1, owing to the non-Lorentzian form of the
correlation function. The definition which is most
convenient computationally is in terms of the low-
frequency response function p& (k, u),

cise correspondence between the parameters of
the simple model and those of a real fluid, and
also to show that the features which have been
omitted from the model are irrelevant near the
critical point.

The choice of thermodynamic variables in a
fluid requires some care, in order that their stat-
ic fluctuations be independent. " For the liquid-
gas transition ina pure fluid, it is convenient to
use as the order parameter a quantity q(x), which
is equal to the fluctuations of the entropy per unit
mass, s, times the critical density p, times the
temperature T„ i.e.,

q(x) = [e(x}—(P+ T,s)p(x)] =p.T,s(x), -
where e(x) and p(x) are the fluctuations in the
energy density and the mass density, and s and

p, are the equilibrium entropy and chemical po-
tential (per unit mass), respectively. Thus q(x)
corresponds to g(x) in Eq. (2.1). For the vector
j(x) weuse the momentum density of the fluid,
also denoted j (x). The fluctuations in the pressure
are not thermodynamically coupled to the other
variables under these definitions, and appear
only through the sound waves in the dynamics.
The sound-wave frequency is always much faster
than the diffusive modes, "and is irrelevant at
the critical point. We will systematically neglect
both the pressure and the longitudinal component
of the momentum density. The critical tempera-
ture is taken as unity.

At equilibrium near the gas-liquid transition,
the probability of fluctuations q(r) and j (r), at
wavelengths long compared to the coherence
length, is given by

lll. REAL FLUIDS

In order to compare the results of Sec. II to
experiment, it is necessary to establish the pre-

(P =e (3.2)
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dq, . 6W—= ~p,-'V2T ==- gV2 —,
Bt ' 6q' (3.4)

= np. 'V'& = nV'=. .
dt ' 6j ' (3.5)

where W represents the enthalpy, and the specific
heat C~ = p, (as/o To)o plays the role of the static
susceptibility r '

(W. e have returned to units
where k~T, = 1.) The linearized hydrodynamic
equations are

tions are reliable guides to the behavior of a real
fluid in three dimensions, and it is not definitely
established that the asymmetry is irrelevant in
the latter case. )

For the binary fluid we choose the fluctuations
of the concentration c(x) as the order parameter,
and the total momentum density as j. There is
now another scalar field s(x}, which has diffusive
behavior; the correct linear combination of s(x)
and c(x) whose static fluctuations are orthogonal
to those of c(x) is"'"

They define the transport coefficients a (thermal
conductivity) and Tl (viscosity).

As is well known, ' in order to use the renormal-
ization group to calculate static properties, it is
necessary to supplement the Gaussian free energy
(3.3) with nonlinear and gradient terms which de-
scribe the interactions of fluctuations with wave
vectors of the order of $. Similarly, we must add
appropriate coupling terms to the hydrodynamic
equations (3.4) and (3.5) in order to obtain the
dynamic critical behavior. It is of course impor-
tant that the dynamic coupling be chosen in such a
way as to preserve the important conservation laws
of the fluid, just as the static couplings are chosen
to preserve the relevant symmetries. The system
of equations (2.1), with the variables interpreted
as noted above, are the simplest equations which
preserve Galilean inva, riance and the conservation
of q, appropriate to a simple fluid. In principle,
we must allow for all possible couplings and non-
local effects, consistent with the symmetries and
conservation laws of the fluid, but it is rather
easy, at least within an e expansion, to show that
these additional terms are irrelevant near T, .

As an example, let us consider a free energy
which is asymmetric with respect to a change of
sign of the order parameter,

W, = d x[zrog'+ —,(VP)'+cog'+uog

8 p,
q(x) =-p, s(x)+ p, — c(x}.

c, P
(3 7)

The long-wavelength static fluctuations are de-
scribed by the enthalpy

Note that the fluctuations in the chemical potential
and the temperature are

, 6W 6W
p(r) =p, '

5 ( ), T(r) =5
( )

. (3.9)

Following Landau and Lifshitz" we define trans-
port coefficients from the equations of motion

~C—= np, 'V g+Pp, 'V T (3.10a)

, 6W , Bp, 6W= (yp 'V' —+(yk p
' — V' —,(3.1Qb)

6c T ' ac T ~
6q'

g+ +k'T —" V'

(3.11a)

W= — ~dx p, — q+p, — c+p, j
]. ,

I ~ ~8+ 2 BP, 2 -1 '2
2 Bs

&
~c

(3.3)

+ opo ) +~ok) —poll (3.6) 8 p, 6W
+ (yk p' — V2-T c

T, P
(3.11b)

It has been shown" within the ~-expansion near
d=4, and also" using Wilson's approximate re-
cursion relations for d =3 (Ref. 29), that the free-
dom to adjust the additional parameter p. p to
achieve criticality permits one to shift Q in such a
way as to eliminate v, . The sta. tic critical prop-
erties are those of the symmetric model, since
6, is an irrelevant field, and it is clear that the
same conclusion holds for the dynamics, when

W, is inserted into (2.1) in place of W. (Of course,
our considerations are valid only so long as the
e expansion or the approximate recursion rela-

~l —
g 2. —

2 6W
=&pc V j =r]V

Bt ' 6] (3.12)

As in the case of the simple fluid, we assume in
all of the above equations that the pressure and
longitudinal current are held constant, an assump-
tion which is valid for variation on a time scale
long compared to the sound-wave period.

The introduction of nonlinear couplings into
Eqs. (3.10)-(3.12) is complicated by the existence
of the extra field q(x), in addition to P(x) =—c(x) and
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T(x). If we assume that q is decoupled from c and

I, we again obtain Eqs. (2.1) as the simplestnon-
linear model consistent with the conservation
laws of a binary fluid. In order to study the pos-
sible effect of the field q(x), we have examined
a three-field model (which one might denote as
H', in the notation of Ref. 20). Its defining equa-
tions are

F= d~x [ , r,g'—+-, (VP) '+ u, g'+ ~ X, 'q '

Specifically, L is finite at T„which implies that
okr(ap/sc)r ~ is finite [Eq. (3.19)]. This quantity
was denoted as DK~ by Swift, "who reached con-
clusions similar to our own. We therefore disa-
gree with the assertions of Papoular, "which con-
tradicted Swift. The transport coefficients A. and

q diverge with the same exponents xz andx —„as in

the absence of q. Finally, we find that the true
thermal conductivity»=K L'/-X [see Eq. (3.20)]
remains finite at T„ though with a weak cusp from
the divergence of A. .

+y, qq'+ —,
'

P, 'I ' —Zlf], (3.13)

25F ~OF ~ 5F
Bt ' 5p ' 5q ' 5J

A.0V + L0V g0V) ~ +

oq, aF, GE 6F—K0V + L0V —g0Vq ~+ g,0 pq 0
pq 0

a~, eF - OF —eF
Bt 5J 5p 5q10V ~ +g0V$ —+g0Vq —+ g

The noise sources (9 and y satisfy

(e (1) 6 (1')) = —2X,V'6 (1 —1'),

(q (I) y (1')) = —2K,V'6(1 —1'),

(y (1) 9 (1')) = —2L,V'6(1 —1'),

(3.14)

(3.15)

(3.16)

(3.17a)

(3.17b)

(3.17c)

(g~(1) gg(l')) = —2q,v'6(1 —1') 5„s. (3.17d)

IV. DISCUSSION AND CONCLUSIONS

The present paper conta. ins the exact e expansion
for the critical dynamics of fluids, carried out to
second order for the critical exponents and for
certain amplitudes. In order to assess the rele-
vance of the results for real systems, it is useful
to compare them with previous approximate three-
dimensional mode-coupling calculations, which
have been quite successful in describing experi-
ments. '

The simplest approximation, that of Kadanoff and
Swift' and especially of Kawasaki, ' neglects com-
pletely the critical behavior of the viscosity and
leads to the following expression for A. (k, () (in
units where g, = 1, but ks T t 1):

From a comparison of the linearized form of
(3.13)-(3.16) with Eqs. (3.10)-(3.12) we mayiden-
tify the dressed (or physical) transport coefficients
as

X(k, ()= '
Yl

dP k K k (41)(2»)' P '[h '+ (p - k)']

A. = ~p

L = nkrpc
BC p p

K= K+ ~k~-
BC g p

(3.18)

(3.19)

(3.20)

The exponents are therefore

x-=0
'g (4.2)

and they satisfy Eq. (2.14) with e=0. Within this
approximation we may define the characteristic
frequency

while q is the same in both systems. Note that the
free energy F may be chosen to be symmetric in

since any asymmetry is shown to be irrelevant
by the same argument as for the simple fluid.

If g, is neglected, Eqs. (3.13)-(3.17) are just
those defining model D of Ref. 22, except that the
terms proportional to L, have been added. It was
found for model D, and is equally true here, that
there is no renormalization of the transport coef-
ficients by the dissipative interactions. The dia-
gramatic rules of the appendix may be generalized
to Eqs. (3.13)-(3.17) with a. convective coupling.
One finds, at least for L', «A0K„ that there are no
critical renormalizations of the transport coeffi-
cients other than those already calculated in the
absence of q and L0. The type of diagram which
renormalizes A0 vanishes identically for Q and L, .

(u~(k) =—A(k, $)k'/It~(k) = (R»ksT/q)) k fT»(k f)

(4.3)

and evaluate the quantities R~ and Q~ for d= 3,
with X&(k) = (k'+ $ ') '. The result is'

R»= (6») ', (4.4)

O»(x) =—x 'K, (x) =';x '[1+x'+ (x'-x ') arctanx],

(4.5)

which is the original "simple" Kawasaki approxi-
mation. " From Eqs. (4.3) and (4.5) we see that
the corresponding approximate value of the coeffi-
cients R, defined in Eq. (2.23), is

(4.6)

In d dimensions Eqs. (4.1) and (4.3) for k= 0 yield
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(1-d)/2 Z 2

2

—1 I'(I+ d)

m
x sin -(d —4), (4.7)

which has the c expansion

of Ref. 11, pointed out in Ref. 13, the values of
K/K, —1 have been divided by 2 in writing Eq.
(4.10).] It follows from Eq. (4.10) that the self-
consistency hardly changes the value of R from
that in Eq. (4.4). Moreover, since the self-consis-
tent approximation obeys the exact scaling rela-
tions (2.21) and (2.14) with ti = 0, we must have

R»= K, (,'-', e ')',-', (1 —~e). (4 8)
( ) ~ by2-8+x j (4.11)

n, (x) = x-'K(x)/K(0),

R, = (6a) ' K(0) = (6v) ' (1.027) = 0.053,

(4.9)

(4.10)

where K(x) is defined in Eq. (7) of Ref. 11. [Note,
however, that due to a. factor-of-2 error in Eq. (5)

Comparing with the exact expansion (2.19), we see
that the simple Kawasaki approximation is incor-
rect even in the lowest order in e, but only by the
factor ~.

It has been remarked by several authors" that
the Kawasaki-Stokes expression (1.2) with R given
by (4.4) corresponds to the Brownian-motion for-
mula for the diffusion constant of a sphere of radi-
us $. From our general expression (2.18) it may
be seen that a similar result holds for arbitrary
dimensionality d, but that the radius of the sphere
is precisely equal to $ only for d= 3 and in the
simple Kawasaki approximation (4.4). More gen-
erally the radius is only proportional to (; indeed,
near four dimensions the Stokes law for a sphere
of radius r may be shown to yield D = ~ kaT/tt qr',
whereas the exact result (2.18), (2.19) is
D = 19kaT/192m'eq$', so we have r = (6/v 19)e'~'(
= 1.38m '~'(

An improved approximation is the self-consis-
tent scheme of Kawasaki, ' which consists of two
coupled integral equations for X(k, e) and q(k, &u)

[or equivalently Z(k, &g) and II (k, ur)], obtained by
retaining the diagrams in Figs. 1(a) and 2(a) and
solving self-consistently for the self-energies.
This approximation differs from the exact solution
by the neglect of proper diagrams ("vertex correc-
tions") and by the use of the Ornstein-Zernike form
for the static susceptibility }(&(k). We shall exa.m-
ine below the validity of these two approximations
in second order in e, but we first wish to discuss
the results obtained from the self-consistent
scheme in three dimensions. Up to now no one has
solved the full self-consistent equations, but a
number of authors have obtained approximate so-
lutions, and argued that these were rather close to
the exact ones.

Kawasaki and Lo" neglected the frequency de-
pendence of A. and q and obtained integral equations
for A(k) and t}(k) which they then solved numerical-
ly. The result may be cast in the form of Eq.
(2.21) with 0 and R now given by

that is,

K, '(y) K(y) ~ by" & (4.12)

ti($) = t},+ (8/15»') ln(q D$), (4.13)

with qD an adjustable parameter, and a scaling ex-
pression for q($, q, u) inserted into the equation for
X(q, (). The resulting expression for ~&(q, ]) was
then found to be rather close to the original form

Unfortunately, it is not possible to extract the ex-
ponent x from the published results, since 0 may
not have reached its large-y behavior in Fig. 3 of
Ref. 11. Nevertheless, it seems clear that x-„re-
mains rather small, and it would be interesting
to extract a value of x—„and R [Eq. (2.23)] from the
equations of Kawasaki and Lo."Kawasaki and Lo
have also examined the validity of neglecting the
frequency dependence of the transport coefficients,
and they concluded" that the error was at most a
few percent for large k(, and negligible for small
k(.

It is interesting to ask why the sirwple Kawasaki
approximation (4.1)-(4.5) is so successful' both
near d=4 and at d= 3, i.e. , why x-„seems to re-
main small relative to g~. We believe that the an-
swer lies in the geometric factors appearing in the
numerators of Eqs. (A6) and (A7) of the Appendix.
The extra factor of p ~ k in Eq. (A6) leads to a fac-
tor-of-18 difference in the coupling terms of the
recursion relations (2.4a) and (2.4b) near four di-
mensions, and to the corresponding difference in
exponents. A similar effect occurs for all values
of d in Eqs. (A6) and (A7) and in higher diagrams
as well (see the Appendix). Thus all corrections
to the simple Kawasaki approximation (4.1)-(4.5)
will contain the small parameter x—„/x„, and the
exact answer for d= 3 is expected to be rather
close to the lowest approximation.

The theory of Perl and Ferrell" is in principle
equivalent to the self-consistent scheme of Kawa-
saki, ' but slightly different approximations were
made in obtaining quantitative results. Perl and
Ferrell" used an iterative method of solution, with
the simple Kawasaki solution (4.5) used in lowest
order. In the next approximation a (weak) ( de-
pendence of q was obtained in the form
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(4.3)-(4.5) as a result of a cancellation between the

q and ~ dependences of Q. This feature differs in

detail from the estimates of Kawasaki and Lo,"
but in any case the effects are all rather small.
Equation (4.13) may be exponentiated to yield

x-= 8/ I br'= 0.054, (4.14)

and from the evaluation of w& made in Refs. 12 and
1 we estimate the Perl-Ferrell value of 8 to be

R = (67T) '(1.05). (4.15)

It is difficult to extract A from the published re-
sults, "but according to Swinney and Henry, ' its
value is slightly larger in Ref. 12 than in Ref. 11.

In an interesting extension of the work of Kawa-
saki and Lo,"Oxtoby and Gelbart" have calculated
q(T) numerically, with no adjustable parameters,
by including background terms A,~ and g~ in the
self-consistent equations (see below). The results
agree rather well with experiments on xenon, "but
the approximations made are such that the authors
cannot extract the asymptotic exponent x—„ from
their analysis. "

In order to assess the validity of the self-con-
sistent approximation, a number of authors have
made direct estimates in three dimensions of the
omitted terms. The effect of vertex corrections
was studied by Lo and Kawasaki, ' and by Garisto
and Kapral, "and although the quantitative estim-
ates differ, the qualitative conclusion of both
groups is that these effects introduce errors of
less than 3% for ~&(k, $). [For t)(T) Garisto and
Kapral" found somewhat larger effects, which im-
proved the agreement with experiment. ] The Orn-
stein-Zernike approximation was considered by
Swinney and Saleh, "who replaced X& by the Fisher-
Burford form, and found a modification of the scal-
ing function which corresponds to'

R = (6tt) '(1.02) = 0.054,

R =-;» (1.03).

(4.16)

(4.17)

There is also a modification of x—„owing to the
exponent q, but this was not explicitly considered
in Ref. 35.

Another way to test the validity of the self-con-
sistent approximation is to examine the c expansion
in second order. Indeed, as emphasized recently
by Gunton and Kawasaki, " the self-consistent
scheme is exact in first order in c, and it is rea-
sonable to ask how well it compares with our sec-
ond-order results. The approximation consists in
omitting the proper diagrams in Figs. 1(d) and 2(c)
(vertex corrections), and setting q = 0 in the scal-
ing relation (2.14) (the other corrections to Orn-
stein-Zernike do not affect A or the exponents in
this order). If we repeat the calculation of the Ap-

pendix with these omissions, we find the c expan-
sion for the self-consistent approximation,

f, = ~» [1+0.062'+ O(e')], (4.18)

xg ——~ e [1 —0.013» + O(e')] = 0.935, (4.19)

»-„= ~ e [1+0.242' + O(~')] = 0.065, (4.20)

R =—R, = K»(Pe ') [1—0.023'+ O(e')] = 0.039.

(4.21)

These results are indeed very close to the exact
second-order expansion (1.3) and (2.19). We may
therefore rewrite the exact coefficient A in an al-
ternate form,

R = (R/R, ) (R,/R»)R». (4.22)

where A~ is the simple Kawasaki approximation
(4.7) and R, is the self-consistent answer (4.21).
According to the arguments given earlier, we ex-
pect the factors R/R, and R,/R» to be close to un-
ity for all d, so that the primary d dependence of
A will come from the known d dependence of R„.
Thus a reasonable way to extrapolate A to d=3 is
to expand the small quantities R/R, —1 and R,/R»
—1 in powers of e, and to evaluate A~ exactly for
d= 3. The extrapolations of Eq. (4.8), (4.21), and
(2.19) yield

R,/R» = 1+ ~+ ~ c —0.023e = 1.116,

R/R, = 1+0.083m= 1.083,

so that

R = 1.20R» = 1.2/6» = 0.064.

(4.23)

(4.24)

(4.25)

A. Correction terms and "background subtractions"

Thus far we have discussed only the universal
aspects of the problem, which should be applicable
very near the critical point. In practice, however,
owing to the weak divergenoe of the viscosity q(T),
the region of strict universality is unattainable,
since it corresponds to those temperatures where
the singular part of q(T) dominates its background.
In all experiments to date, t)(T) never rises by
more than 20%%-30%%uo, so that it is essential to treat
the "correction" and "background" terms properly.
This point has been emphasized by many au-
thors, "'"but there remains some ambiguity in

This last estimate differs from the direct extrapo-
la.tionR =0.042 in (2.20), but is expected to be
more reliable. We may also compare the result in

Eq (4.23) w. ith the numerical estimate by Kawasaki
and Lo, Eq. (4.10), and we find a rather large dis-
crepancy whose origin is unclear to us at thispoint
(note tha. t we have divided the result of Fig. 3 in
Ref. 11 by 2 because of the error mentioned above. )
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deciding precisely how to perform the background
subtractions.

The simplest scheme, which is in the spirit of the
lowest-order Ka.wa, saki approximation and would be
correct for x-„=0, is to replace X(T) by A.(T) —Xs
and to keep the full r((T) in the mode-coupling equa-
tions. This is the method used by Kawasaki and
Lo,"and it leads to Eqs. (4.3) and (4.9) with X(T)
replaced by A. (T) —Xs. (X~ and t}s are the back-
ground values, which we may identify with A., and
q„respectively. ) A similar scheme was discussed
in Ref. 20 for the thermal conductivity of helium at
the A. point, where the specific heat has a very weak
singularity. It was seen there that there are slow
transients which appear as nonuniversal correc-
tions to the leading singularities, and whose impor-
tance is measured by the difference between the ef-
fective exponent z„,,-, and the true exponents n
= max(o, 0) of the specific heat. In the present case
a similar analysis is possible, and singular cor-

cffrections appear which are proportional to x—„-x-„
(herex —„remains positive). There is, however, a

more practical way to take into account the back-
ground terms and to generate the appropriate cor-
rections, namely, by solving the self-consistent
equations for the full X(k, $, u) and q(k, $, ~), in
eluding the background terms. This scheme was
used by Oxtoby and Gelbart" and by Garisto and
Kapral, "and it did lead to nonuniversal behavior,
generated by the terms A.~ and g~. The statement
by Oxtoby and Gelbart" that the nonuniversality
persists right up to the critical point is misleading,
however, since this is only true at finite q, and the
nonuniversal corrections vanish in the scaling lim-
it, i.e. , when@ and $

' 0, for any fixed@(. It is
nevertheless interesting that according to the esti-
mates of these authors"" the nonuniversal cor-
rections to u„(k, () which arise out of the self-con-
sistency are of order 3%-5% in the experimental
range.

From the preceding discussion we conclude that
the most accurate way to obtain q(T) and u&(k, $) is
by solving the following self-consistent equations
in three dimensions:

Z, (k, (u) = —ksTX~ '(k)
( ),

- , Re[ —i&a'+ x,p', x, '(p, ) —z,(p„(u')] '

i(„„)+qp Il,(p, ~ ~ }
(4.26)

II,(k, (ar) = —2k T(d —I)

-}Re[-~~'+XoP X~ (P )-E2(P, ~)1
i((u —~-')+x.P'Xi, '(P. ) -E2(P. ~ —~') ' (4.27)

with p, =p+ —,
' k. Together with Eqs. (All), (A23),

and (A24) of the Appendix and Eqs. (2.25) and (2.26),
the above equations fully determine the Rayleigh
linewidth and transport coefficients if the Fisher-
Burford approximant"'" is used for X&(k} and the
background values Ao and qo are replaced by smooth
function xs(T) and qs(T), extrapolated from experi-
ments far from T, .' The universal limit of the solu-
tion should be rather close to that obtained by Kawa-
saki and Lo,"with a factor of 2 corrected and the
"correlation function" modification of Swinney and
Saleh" also taken into account (note, however, that
in contrast to previous work, this scheme will
satisfy the scaling relation x& +x—„=e —q with finite
q). The most important difference with the solu-
tion of Kawasaki and Lo will be in the nonuniversal
corrections, which are now included in the theory
in a complicated way. These will not be negligible
and they must be considered in any comparison
with experiment. The main feature missing from
Eqs. (4.26) and (4.27), apart from the approximate
nature of the static X&(k, $), is the vertex correc-

tion, which can be taken into account approximate-
ly, as was done by a number of authors, "'"but in

any case is not expected to change the values of
&u&(k, $} significantly. In this way the theory may be
improved to an expected accuracy of roughly 3%-5%,
which is quite remarkable for a first-principles
calculation with no adjustable parameters. Indeed,
the above scheme has in large measure already
been implemented for the static viscosity q(T),"
and to a considerable extent for the Rayleigh line-
width u&(k, ])." " It is hoped that the refinements
mentioned above will bring about further improve-
ment in the agreement with experiment.

APPENDIX

A. Formalism

The systematic perturbation theory we use to
implement the renormalization group has been pub-
lished some time ago" and reviewed in the con-
text of helium and the antiferromagnet' recently.
We will say very little of a general nature here and
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merely list a few of the intermediate steps in our
calculations. In order to have Feynman-like rules
it was necessary to enlarge the set of fields P and j
by two others, g and j, which act as their formal
adjoints. In addition to the correlation functions
(())g )(k, (d) and (jj *)(k, (k)), there are two nonphysi-
cal response functions to calculate. A dressed
perturbation theory exists if one introduces two
self-energies. For the model of Eqs. (2.1) the

physical correlation functions are

(A4)

(
. . „) 2q, k'

i(k)+t) k [' (A5)

integral of the correlation function is just the stat-
ic susceptibility. In the limit of small k and (d the
wave-number prefactors of the self-energies match
those in the bare theory and the correlation func-
tions may be written

~)
2XDk'+ Z,

2 II*) 8 2@ok + "
—11

(A1)

(A2)

In other words, one may use either self-energy to
renormalize the transport coefficients. We will
analyze only Z, and II, in what follows.

B. Lowest-order recursion relations

where

'Ek —= 5(kg —k(kk8/k'. (A8)

The self-energies Z and II may be expressed as
expansions in the vertices g, and u, of Eqs. (2.1a)-
(2.1c). From the fluctuation dissipation relation it
follows that Z, is proportional to k'(r, + k'), while
Z y II and II, are proportional to k' bec ause the
corresponding fields are conserved. We assert
that at each stage of renormalization the frequency

In Ref. 22 it was shown tha, t in model B [g, = 0 in

Eq (2.1.)] the transport coefficients are unaffected
by interactions. In our more general model, the
four-point interaction u, renormalizes only static
parameters, up to order c'. At any step l in the
renormalization procedure our equations properly
reduce to the equations for the free energy of Wil-
son and Kogut. ' The transport coefficients are
therefore renormalized only by go, at least up to
second order. To first order we find in 4 dimen-
sions

d —1 (2v)" (r, +p') [—i(u+ P.,p', (r, +p', ) + Z, p'(r, +p')] '

g(2)gdp(klan
k)

(2v)' (r, +p', )[—i~+@,p'+z, p', (r, +p', )]
'

(A6)

with p, =p z —,
'

k, the integrals being over a momen-
tum shell A/b &p & A. The recursion relations (2.4a)
and (2.4b) then follow from the equations

„,= kk k, — li ('k'r, ) 'Z, (k, )),
t

(A8)

g„,=b' g, —lim k II' k, ~
I

(A9)

with the integrals in (A6) and (A7) calculated for
d=4. Our self-energies are similar to those found
from mode-coupling theory. It should be noted that
A. , p', (r, +p', ) may be omitted in the denominator of
Eq. (A7) because it is small compared to )I) p'. The
integrals are logarithmically divergent in four di-
mensions. Had we retained higher-order terms in
k in Eqs. (A8) and (A9), we would genera. te contri-
butions to q and A. proportional to k', k', etc. , of
order g', /X, q, . If such terms are reinserted into
Eqs. (A6) and (A7) the convergence properties of
the integrals are unchanged and terms of order e'
appear in the recursion formulas. Thus terms in
the equations of motion which are of higher order

in wave numb r than those involving A. and q are ir-
relevant.

C. Higher-order terms

We shall now outline the argument which shows
that higher-order diagrams will not modify the
recursion formulas to order e. In addition, for the
e expansion, we must show that the dimensionless
constant which measures the strength of the non-
dissipative coupling is simply f, =g, /X, q„ in the
limit ti, /X, -~, which occurs when I-~. Consider
the proper fourth-order self-energy diagrams in

Figs. 1(d) and 2(c). (Improper diagrams may be
treated inductively. ) In Fig. 1(d) which contributes
to A., there are two loops and five propagators.
Performing the internal frequency integral will
leave just three denominators, each one being the
sum of some subset of the five characteristic fre-
quencies in the diagram. The most divergent term
occurs when both internal frequency scales are set
by the order parameter, since it is of order A. , P'
while ] relaxes as q, p'. But there are two momen-
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turn propagators, each relaxing as q, P', which
carry through the internal frequency integrals. The
final result has at most one denominator out of the
three which can be of order X,P'. The others are
of order q, p'. If we remove )li 'X, 'X&'(k)k' from
the expression for Z„simple dimensional analysis
implies that the remainder of the diagram in Fig.
1(d) is dimensionless for d= 4, and behaves as Inb

in the limit I -~, lt. ,/q, - 0. The result is quite
general; the singular part of the diagram of order
g', " is q, "X,"", and when written in the form of Eq.
(2.4d) it is proportional to f", For d. iagrams be-
yond second order in e, there occur terms pro-
portional to u) g, ". It may be shown that these con-
tribute a correction to A.„,which is proportional to
u( f", X, in the limit )l, /A, -~. There are analogous
results for II,'; the most divergent diagrams are of
order lnb a.nd beha. ve as q, 'A. , '.

D. Scaling function

In order to evaluate the scaling function for the
characteristic frequency u&(k, ]) and the exponents
in second order, we shall use Wilson's Feynman-

graph expansion. " In this method momentum in-
tegrals are performed from 0 to A, as in ordinary
perturbation theory (rather than from A/b to A),
and the relevant parameters are fixed at particular
values which ensure the exponentiation of the se-
ries (see the discussion in Appendix D of Ref. 20).

The parameter which must be fixed in the pres-
ent case is the vertex f, defined in Eq. (2.2), and it
may be shown in the usual way that the proper
choice is

f (0~)= m~+o(e'). (A10)

In order to calculate the characteristic frequency
co&, defined in (2.25) and (2.26), we need the re-
sponse function lt&(k, (d). Although the general ex-
pression for X&(k, &u) in terms Z) and Z, is rather
complicated when both u, and g, are nonzero (see
Appendix B of Ref. 20), the equations simplify in
first and second order in z. We have

X~(k, (u) = [A.,k' -X~(k)Z, (k, (u)]

&&[ —i(u+ A.,k'X~ '(k) —Z, (k, (u)] ', (All)

and using Eq. (2.26),

4 k V' k
(A12)

In obtaining Eq. (A12) we have made a subtraction
in the integral, and have exponentiated the order-e
term which is independent of k. Inserting (A12) in-
to (2.25) yields Eq. (2.22), when the expressions
X& '(k) = r + k' = ( '+ k', q(T) = t),()A)'i", Eq. (2.14),
and Eq. (2.2) with go= ksT= 1 are used.

As mentioned in Sec. II, to first order in e the de-
finition of A, in Eq. (2.26) agrees with that obtained
from a Lorentzian fit, since the corrections com-
ing from BZ,/8( —i(d) are of higher order in e or k.
It may be shown quite generally that for k-0 the
definitions (A8) and (2.26) are identical, but for
finite k and in higher order in e this is not the case.

E. Second-order calculation

The computation of xz and x-„ to second order in
c is rather complicated and we will summarize only
the principal steps. (It is very similar to the cor-
responding calculation in Appendix D of Ref. 20.)
Contributions to Z, and II, come from three sources:
the first-order diagrams [Figs. 1(a) and 2(a)] in
4 —c dimensions, the second-order improper dia-

grams in four dimensions [Figs. 1(b), 1(c), and

2(b)], and the second-order proper diagrams also
in four dimensions [Figs. 1(d), 2(c)]. The diagram
in Z, of order g,' does not contribute to the renor-
malization of A. , as was found previously in model
B of Ref. 22. The diagram of order u, f, also gives
no contribution. We assume that a mass renormal-
ization" has been made and the integrals which now

run over all momenta are functions of the inverse
susceptibility x. The improper and first-order
diagrams are of the form A ln r+B lnr+ C, while
the proper contributions do not contain a ln'r term.
For our purposes we need only the lnx terms and
the constants to order c. The ln'~ terms serve a.s
a check that the perturbation series exponentiate.
From its definition we calculate the renormalized
f which must scale as r(' "l)i' "i. Matching against
the perturbative result gives f, to second order.
We then return to Z, and II, and exponentiate to find

x) and x~.
We label the three contributions to the self-ener-

gy in conform ity with Figs. 1 and 2,

Z', = X,k'(r + k' )f, [x (1 —~ e) Inr —+ e In'r],

3 t )'(2 )' t» ~ (*)t» q*ly'(l*t» 0*i »*(»*)~ ((»)*(" ((») )))

(A13)

= Xok'(r+ k') fo(~In'r+ (0.00231) Inr), (A15)
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d'P
E.= (r+ k ) gor7o ~0

(2 )s (2 )c

(k. q', ~ q) (p 7'. k)[(p+q)'-q'][(P+q)'-P']
(r+p') (r+q') [r+ (p+q)'] p'q'(p'(r+p')+q'(r+q')+ (p+q)'[r+ (p+q)']j

= X,k (r+ k') fo(0.0426) lnr,

Il;= r,lk'f, ( ~)[~+ (1 —ze) lnr —ze ln-'r],

d'p d'q (p ~ k)'(p ~ 7' ~ p ) (p ~ v', ~ p )
(»)' (»)' p'(r+p')'(r+q') (p+q)'

= q„k'f,'( ~) (~ ln'r + lnr),

2 ~1 d p d q (k'p) (k'qXp ~
V& q) (q 7 ~ q)

(r+P')'(r+q')'(p. q)'p'q'

= q, k'f,'(~) lnr.

(A16)

(A17)

(A18)

(A19)

(A20)

(A22)

q = q, — lim k '-II, (k, a), (A24)

The two integrals in Z', +Z', and 5, were solved
numerically after reduction to integrals in one
var iabl e.

The above expressions are inserted into the
equations for A and t} analogous to (A8) and (A9),

(A23)

where we have used the static value' t) = ~ e'+ O(e").
With the above value of f, the individual series for
A and g may be compared with 1 ——,

'
x~ lnr and

1 ——,x-„ lnx, respectively, to find the exponents
given in (1.3).

In order to determine the amplitude R [Eq. (2.15)],
we note that to order & the series for q and A. have
the form

4) 0

f(T) o. (Aq) 'ccrc' (A25)

and fo is adjusted order by order in e, in order to
satisfy the scaling relation (2.14),

q=t)o( - 7'ufo)[I —r~-, »(rrA')],

1 =~, [1—~~x, In(r/A')],

so that A may be written, to order & as

& = (&a/f;) (I —+f0),

(A2 7a)

(A2 7b)

(A28)
The appropriate value is

f, = ~e —0.127e'+ O(e'), (A26)
where we have used Eq. (2.14). Inserting Eq. (A26)
into (A28) yields (2.19).
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