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Renormalization-group equations are exactly solved for the random Ising model with (i) short-range

interaction at d = 4, and (ii) dipolar interactions at d = 3. In both cases, the leading singularities of the

susceptibility g and of the specific heat C are found to be y ~ t 'exp[(D~lnt~)'"] and

C ~ —~lnt)'"expf —2(D~lnt~)" ] as t = (T—T,)/T, ~o. D is a universal constant, equal to 6/53 in

case (i) and to 9/[81ln(4/3) + 53] in case (ii). Relations between amplitudes of C and of the correlation

length, corrections to the leading singularities, crossover eff'ects from the nonrandom region or from the mean-

field region to the asymptotic critical region and possible experiments are also discussed.

I. INTRODUCTION

The critical behavior of magnetic systems with
(quenched) random impurities ha, s recently been
studied by several authors. A general argument,
due to Ha, rris, ' shows that one should expect a new

type of critical behavior for the random system,
distinct from that of the pure one, whenever the
specific heat of the pure system diverges at the
transition temperature. This argument was re-
cently corroborated by renormalization- group
(RG) studies near four dimensions. ' ' For m-com-
ponent spin systems, with isotropic short- range
exchange interactions, these studies reveal an in-
stability of the usual Heisenberg-like ("nonran-
dom") fixed point with respect to the impurities
whenever o, the pure m-component specific-heat
exponent, is positive. For nz&1, at d=3, the
Hamiltonian flows under recursion-relation itera-
tions to a new ("random") fixed point, which has
a negative n of order e =4 —d (d is the dimension-
ality). For m =1 it was recently shown by Khmel'-
nitzkii' that the random fixed point still exists, but
its n is of order E' '.

In a previous paper, ' we studied the critical be-
havior of random magnets with dipolar interac-
tions, for m&1. In that case, we found that the
"pure" dipolar fixed point is unstable for all m's
(even though n &0), and that the RG flow prob-
ably leads to none of the eight fixed points found,
which have coupling constants of order &. The
case m =1 was not treated, since it is expected to
have a different behavior.

Studies of the pure dipolar Ising model" show
that it has mean-field-like critical behavior for
d&3, and logarithmic corrections to this behavior
at d = 3. In fact, the leading logarithmic correc-
tions at d =3 are the same as those of the short-
range Ising model at d =4." More recently,
Brezin and Zinn-Justin" showed that the correc-
tions to the leading behavior are different in these

two cases. Numerically, however, the differences
are very small.

The specific heat of the pure dipolar Ising model
at d = 3 diverges as

~

lnf
~

' ', where I = (T —T,)(
T, -O.' This has recently been confirmed experi-
mentally for LiTbF4 by Ahlers et a.'." Following
the general argument by Harris, ' we would thus
expect a new type of critical behavior to occur for
the random dipolar Ising model at d = 3 (and simi-
larly for the random short-range Ising model at
d=4). This new behavior, for T&T„ is the sub-
ject of the present paper. We shall first concen-
trate on the problem of the random short-range
Ising model at d=4, and then point out the expec-
ted differences for the random dipolar Ising model
at d =3. The case of the random short-range Ising
model at d=4 was previously considered, using a
different approach, by Khmel'nitzkii. ' However,
he only carried out some of the mathematics in-
volved in solving the RG recursion relations, and
did not go on to study the physical consequences of
these solutions as regards the singularities of
thermodynamic measurable quantities.

There are several reasons for which the present
study is of interest. First, the RG recursion re-
lations can be solved exactly for marginal dimen-
sionalities (d =4 for the short-range case, d =3
for the dipolar Ising case, d =3 for tricritical
points, ' etc.). Second, experiments can be per-
formed on three-dimensional dipolar Ising sys-
tems, " so that the exact results can be carefully
checked and verified. Such experiments may
serve as direct checks of the RG theory. Finally,
the nature of the results is quite new and inter-
esting: Until now, all known critical. singularities
were described by powers either of t or of lnt.
For the first time we now find singularities which
also involve exp[(D ~lnt ~)'~']. Such factors were
mentioned as complex possibilities in a classifica-
tion of singularities by Fisher, "but they have
never before been associated with actual experi-
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mentally accessible situations.
The general formalism and the RG recursion re-

lations will be described in Sec. II. These recur-
sion relations will be solved for the random short-
range Ising model at d =4 in Sec. III and for the
random dipolar Ising model at d =3 in Sec. IV.
The experimental consequences will be discussed
in Sec. V.

11. HAMILTONIAN AND RECURSION RELATIONS

(SHORT-RANGE CASE)

An easy way to study the random quenched prob-
lem has been recently suggested by Emery. " He
proved that the free energy per degree of free-
dom of the random m-component spin system is
equal, in the limit n-0, to that of an nm-compo-
nent system with the effective Hamiltonian

iltonian were first studied some time ago." Ex-
panding in powers of u and p, these recursion re-
lations are"
u' =b' '"(u —4I, (b)[(n+8)u'+6uv]+16I, (b)'

x[(n + 6n+ 20)u'+ 9(n+ 4)u'v+ 27uv ]

+ 32I~(b)[(5n+ 22)u + 36u v+ Buv ]+ ' ' '],
(6)

v' = b ' "(v —4 li(b)(128v+ 9v )

+ 16I,(b)'(36u'v+ 54uv'+ 27v'}

+ 32I, (b) [3(n+ 14)u'v+ 72uv'+ 27v']+

and

n

R. = P X.[S;]—Jd' g( ( )*&.

r' =b' "(r+41,(b, r)[(n+2)u+3v]+ .],
where b is the space rescaling factor,

(8)

Here, K,[S] is the Hamiltonian of the pure m-com-
ponent system. For short-range interactions, this
may be represented by the Ginzburg-Landen-Wil-
son Hamiltonian,

b" =1+8I,(b)[(n+ 2)u'+ 6uv+ 3v']+ ' ' ',
and (for short-range interactions, large b and
small &=4 —d)

I, (b) = q
' = Kd Inb, (10a)

(2) I Ib)= 2 J q, 'q, '((+q ) '=lC'1 b(1+1 b),
'4 ~2

where r, is linear in the temperature T. The func-
tion g depends on the nm-component spin vector

(b)= f, tq,*+r)'
(10b)

and has the expansion"

(3)
= I(d[ —,'(1 —b ') —r lnb +O(r')], (10c)

g(y) =(@)y+Q u„.y',
3=2

(4) I,(b) =4b', q, 'q, '(q, + q, + q)
' ~;,

where (il'} is the average of the random local shift
in the pa, rameter —,r (or in the local-mean-field
critical temperature), and

= K'„ lnb, (10d)

(10e)

u„= (- 1)' '(I&j!)(+'}„
(4"), being the jth cumulant of the distribution of
random 4' s.

We can thus apply the standard RG iterations, "
integrating over the Fourier components of the
spins with large momenta and rescaling spin and
space coordinates. The coeff icients iz2 j, for j& 2,
are irrelevant, "and it is sufficient for our pur-
poses to consider the pa, rameters r [including (4'}
from Eq. (4)], v, and u —= u, . In the following dis-
cussion we shall be interested only in the Ising
case, m =1. For this case, the Hamiltonian (1}
is the same as that of a ferromagnet with cubic
symmetry. The recursion relations for this Ham-

The integrals f mean (-2v) dfd q, with b '& q l.
To obtain the random Ising model we must

eventually let n —o." In this limit, the combina-
tions of terms of order ~', sw, and v' appearing
in Eqs. (6) and (7) become proportional to each
other. For & &0 (d &4), this leads to a new "ran-
dom" fixed point with u and v of order E' '.' Note
tha, t the terms of order u', u'z, etc. , given by
Khmel'nitzkii' are different from ours. This dif-
ference seems to result from the absence of the
exponent q in the prefaetors of the equations
equivalent to (6} and (7) in Ref. 6. This leads to
different coefficients in the expansions of the cri-
tical exponents in powers of &' '. Explicitly, at
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the random fixed point, we find"

4K,u* = —(3e/106)' t', 4K,v* =-, (3e/106)' ~',

and hence

(19)

large l„,

II«. I= l.»b =v v(0)'/9lu(0) I'.
From (5), u(0) = —~z(4 },. For an impurity with a
shift 2A in the local value of the mean-field criti-
cal temperature and concentration p, this gives"

2v=1+(3e/106)' '+O(c), q= —e/106+0(e' ') .

(12)
u(0) = —2p(1 —p) tP .

Thus,

(2o)

The nonrandom Ising-like fixed point (u*= 0,
4K4v*=e/9) is unstable with respect to the ran-
domness, and the Hamiltonian alwa, ys flows to
this random fixed point. '

III. RANDOM SHORT-RANGE ISING MODEL AT g = 4

v' = v —36K, Inb v'+ O(v'),

yielding, for large l,

v(l) =[36K~lnb(i+to)] ', lo' =36K~Inb v(0) .

(13)

We now concentrate on the critical behavior of
the random Ising model at d = 4 (e =0). In this
case, all the three nontrivial fixed points found

from Eqs. (6) and (7) at d&4' ' become degenerate
with the Gaussian fixed point, n*= v*= 0. Both u

and v are now marginal operators, since the linear
terms in Eqs. (6) and (7) vanish. In the nonran-
dom case, where u-=0, this fact leads to logarith-
mic corrections to the otherwise mean-field-like
behavior. " Equation (7) becomes

I
ln t, = 8v'v(0)'/9[p(1 —p) dP]' . (21)

For small values of p, this gives a large value of

Ilnt, I, or a very small value of t, . However, the
value of v(0) is unknown, and 6 may be la. rge
enough so that t„may still happen to be in a rea-
sonable range for measurements (this, of course,
refers to the three-dimensional dipolar Ising
case, to be discussed later).

To find the new critical behavior we return to
Eqs. (6) and (7), for n = e =0, and study their solu-
tions. As discussed above, the initial flow will be
described by (14) and (18), until u and v are of the
same order of magnitude. The terms of order gg',

uv, and v' in Eqs. (6) and (7) will be larger than
the next-order terms as long as I4u+3v

I
is not

much smaller than v. In this range, we can ne-
glect the higher-order terms, and write

u' =u —8K, lnb (4u+3v)u,

(22)

Substituting into Eq. (8), this gives

t(l) = r(l) + 6K,(1 —b ')v(l)

= t(0)b"(1+l/l, )
' i' .

(14)

(15)

v' = v —12K, lnb (4u+ 3v)v .

For large l, these equations give

du 2u

dv 3v
(23)

u' = u[1 —2/3(l + l )],
which leads to

(17)

u(l) =u(0)(1+l/lo) 'i'. (18)

Thus, Iu(l) I
decreases with l more slowly than

v(l). Eventually, Iu(l) I
and v(l) will become com-

parable in magnitude. The value of l at which this
happens, l„, corresponds to a temperature t„be-
low which one should expect a new, random, type
of critical behavior. Comparing (18) with (14), we
find that (1+l„/l, )' '=v(0)/Iu(0)I. Thus, for

If we iterate until t(l*) =1, and note that the effec-
tive correlation length $(l*) = $(0)b ' also becomes
equal to 1+0(lo/l), then we finally find

t 'Ilnt I' ' (16)

where }t is the susceptibility and t = t(0) ~ T —T,-0.
We now "switch on" a small amount of random-

ness, i.e. , a small value of u [&0, see Eq. (5)].
To leading order, for

I
u

I
«v, Eq. (6) now reads

or

u(l) =u(0)[v(l)/v(0)]' ', (24)

4u+3v =Au'. (25)

Thus, (6) and (7) become (note that all terms of
order ln'5 exactly cancel)

u' =u —8K4lnb (A+ '—', K~)u',

v' =v+ 16K, lnb (A+ '
—,"K,)u'.

(26)

in agreement with (18). Thus, the flow in the u-v
plane will be on the line gg-v' ', which will even-
tually approach the line 4u+3v =0. (See Fig. 1.)
When this happens, the approximations involved
in Eqs. (22) are no longer valid. In fact, the next
terms in (6) and (7) must be included as soon as
4g. +3v becomes of order n'. Once this happens,
we can try to substitute into (6) and (7)
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Eliminating A, using (25), we finally find

g'-g — " yPl~zg (27)4

As already noted by Wegner and Riedel, " the solu-
tion to (27) is (for large I)

Defining

t(l) =r(l) +2K 4(1 —b ')[2u(l)+3v(I)],

we now find

(29)

u(l)= —(1/8K, )['-,' lnb (I+I,)] ' ', (28)

with lo being again determined by u(0). [This u(0)
must however be in a, region in which (25) holds. ]
A solution of the type (28) for our problem was
also noted by Khmel'nitzkii, ' but no practical con-
clusions were drawn.

A typical flow diagram is thus shown' in Fig. 1:
For ~u ~«v, the flow is described by Eq. (24). As
the line 4u+3v =0 is approached, the flow becomes
slower, and turns towards the origin along this
line. Note that the same will happen even if
~u(0) ~»v(0): The flow first goes away from the
origin, along a line described by (24), and then
turns back along 4u+3v =0. Only for the random
Gaussian model, when p -=0, will the origin never
be reached, and the flow will "run away" along
the negative u axis. This situation was discussed
in Ref. 5, and may be relevant to tricritical points
in random Ising models.

We can now go back to Eq. (8), and draw some
physical consequences from the flow behavior.

t' =b [I—4K4lnb (2u+3v)t+ ' ' ']
= b'{1—[3 lnb/53(l + I,)]' ~')f,

with the solution

(30)

t'~t 'exp[(, Ilnt ~)'~']. (32)

This is to be compared to the nonrandom behavior,
Eq. (16). In both cases we find small corrections
to the mean-field behavior. However, the correc-
tion in the random case increases much faster as
t-0. Note that the coefficient in the exponent in

(32), i.e. , z, is universal. It originates directly
from the coefficients of the terms of order u' in
Eqs. (6) and (7).

There are several ways to calculate the singular
part of the free energy. The most straightforward
one has recently been suggested by Nelson and
Rudnick. " For d=4, their result for the free en-
ergy per spin component (in units of keT) is

F(r, u, v) =e "F(r(I),u(l},v(l))

f(I} f(0)b21-2&3&&+ &o&&»»&9~ 2' 2&3&0&»&»&&~2 (31)

Iterating until t(l*) =1, and using $(l*) = 1 we thus
find for t -0

+ ~ K4 {in[1+r(l'}]——je ' &fl' .
0

(33)

u = —3/4

To write this, one replaces b by e ', and trans-
forms to a continuous sequence of renormalization
iterations. This procedure gives the correct
answer to leading order, even if one used the
large-b limit in deriving r(l). For large I =I*, the
leading singular term in (33) comes from

0

~ t(0)'(I*+ I )'"
x exp{-4[—,', (I*+I,)]' '). (34}

Thus, the singular part of the specific heat per
spin component behaves as

C„„,o- —
~

ln t
~

' ' exp [- 2 ( —'
~

ln t
~
)
' ~'] (35)

FIG. 1. Examples of the RG iteration flow in the u-v
plane for the random case.

The same procedure using the nonrandom result
(15) yields the known result'"

'""~
~

inf (36)

Thus, the specific heat diverges for the nonrandom
case, but does not diverge for the random behav-
ior: Equation (35) gives a specific heat which ap-
proaches a constant (from below), with a cusp.
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Again, this is consistent with the Harris argu-
ment. '

IV. RANDOM DIPOLAR ISING MODEL AT d = 3

As mentioned in the Introduction, the leading
singularities of the pure dipolar Ising model at
d =3 are the same as those of the short-range
Ising model at d =4, but the correction terms are
slightly different. " We thus turn to formulate the
Hamiltonian for the random dipolar Ising case,
and to point out its relations to the one discussed
above.

The pure Hamiltonian (2) must now be replaced
by'

K,[S]=-—,
'

G(q) 'S-S-

vSqSqSqSqqq
q'

where S; is the Fourier transform of S(x),
(2-z)z=-') d'q (lql 1) and

[G(q)] ' = ~.+q'+dq. /q)'

(37)

(38)

[r, is again linear in the temperature T]. Combin-
ing (37) with (1) and (4) we now have to consider
recursion relations for the four parameters r) g)
u) and v. The recursion relation for g is exactly'

It is important to note that the leading powers of

g are always such that we can replace the recur-
sion relations for u, v, and g by new ones, in the
variables

u=ug ' ', v=vg ' '. (47)

The recursion relations for u and v are then exact-
ly similar to (6) and (7), except for the facts that
the factor of b' "on the right-hand side is re-
placed by b' ' " ' (to leading order), and that the
momentum integrals assume new values. Expli-
citly, at d =3 and at n =0, these recursion rela-
tions are

u' = u —4b, K, lnb (8u'+ 6uv)

+ 16b',K', ln'b (20u'+ 36u'v+ 27zzv')

+ 32 Kz(c, lnb + e, in'b)(22zz'+ 36zz'v+ 9uv')

and

—12K', f, lnb (2u'+ 6u'v+ 3uv') (48)

The coefficients c„, e„and f, are quite difficult
to calculate. Fortunately, we can extract them
from the calculations of the corrections to the
pure-system critical behavior, by Brdzin and
Zinn- Justin. " At d = 3, their results yield

(46)

g'=b' "g (39)
v' =v —4b, K, lnb (12uv+ 9v )

where again z) =0(u', uv, v'). The parameter g now
enters into the recursion relations for r, u, and
v through the momentum integrals I, to I4, which
were given for the short-range case in Eq. (10).
Now, the short-range propaga. tor (r+q') ' must be
replaced by G(q) of Eq. (38). Thus, for example,

+ 16b,'EP, ln'b (36u'v+ 54uv' + 27v')

+ 32K', (c, lnb + e, ln'b ) (42u v + 72zz v' + 27 v')

—12K',f, lnb(2u'v+ 6uv'+ 3v'),

while the recursion relation for r becomes'

(49)

z
' = b'{r+ 4b, K,[1—b

' —r lnb + 0(r )](2zz + 3v) + ~ j .

2zz, , (q'+g cos'8)' ' (4o)
(50)

For g»1, this may be approximated by '

f, (b) =bzK„g ' '(1 —b' )/(d —3),
with

1
b2

—
p ) b, = 4p ) b4=1.

(41)

(42)

and

f, (b, z ) = b ~ K~[1 —b ' —r lnb +0(r')],

I,(b) =&~(c~lnb+e~ln'b)g ',
(43)

(44)

Note that this changes only the coefficient I„and
not the combinatorial combinations

(n+ 8)u'+ 6uv or 12uv+ 9v' .

Near d = 3 we can replace (1 —b' ~)/(d —3) by lnb.
Similarly, g

(s1)

The flow in the u-v plane will still be similar to
that shown in Fig. 1. However, the actual coeffi-
cients describing the final flow along the line
4u+3v =0 [z+ and '

—,
"in Eq. (26)] will be different,

depending on the parameters b„c„e„andf, .
Finally, Eq. (28) will be replaced by

u(l) = —(1/8b, K, )[2D 'lnb (l+l, )] ' '

where

(52)

We can now follow the analysis of Sec. III step
by step, and recover exactly the same type of re-
sults: The "pure" behavior will be described by
Eqs. (16) and (36). The crossover from "pure" to
"random" behavior will occur at t„, given by

lnt,
l
=zz[g(0)]'t [v(0)]'/9 u(0) '.

I,(b) = f„Z', lnb g-'. (4s) D= 9/(81 ln-, + 53) . (53)
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Substituting in (50) we therefore find

t(l) = r(l) + 4b, K,[2u(l) + 3v(l) ](I —b ')

t( 0) b2(- 2(D(l+ (o) / 2(nb ~j/2+2(D(0/2(nb'(~/2 (54)

and hence

X~ )'~t 'exp[(D Int()' 'J (55)

xe "'dI,', (56)

where ( ' ) means an average over the angles.
The most singular term now is

r~

E.(„,=-,-', ((K, r(l)'g(l) '"e "dl,
0

which leads to

C„„~— lnt ' 'exp[-2(D lnt )' '].

(57)

(58)

It is most interesting to compare the actual nu-
merical value of the constant D in this case to
that of the previous one. From (53), D =0.11795,
whereas for the short-range case at d =4 we found

D =
53 0.11321. Just as in the case of the correc-

tions to the leading terms in Eqs. (16) and (36),
calculated in Ref. 11, the numerical difference be-
tween the two cases is very small. For practical
purposes, we seem to conclude that calculations
for the short-range Ising model at d =4 are suffi-
cient for obtaining very good estimates of the be-
havior of the dipolar Ising model at d =3.

V. EXPERIMENTAL CONSEQUENCES

The most interesting results of our study are
summarized in Eqs. (55) and (58): In the asymp-
totic random dipolar Ising critical region, experi-
ments should yield critical singularities which in-
volve the factor exp[(D

~

lnt )' '], with D = 0.118.
As in the pure case," it is reasonable to expect
that these singularities will be more easily ob-
servable in the specific heat (and not in the suscep-
tibility), since in that case they are not superim-
posed on powers of t.

Some of the difficulties in the measurement of
the singularities in the correlation length may be
helped by using universal relations between ampli-
tudes. ' " From Eqs. (54) and (57) and from the
conditions t(l") =1 and $ =b" we easily find that

The derivation of the singular part in the free
energy also needs a new modifications. Equation
(33) is now replaced by'

E(r,g, u, v) =e "F(r(l),g(l), u(l), v(l))

t
+ z&, {(In[1+r(l')+g(l') cos'8]) ——,)

0

asymptotically

( ((C/be = —(1/32 (()(
~

In t
~

/'D) (59)

C„„,~ —{2[D( lnt
~

+2l, )]'/'+ I)
x exp{- 2(2Dl, )'"[(1+

~

lnt ~/2lo)'/' —I]).
(61)

It is reasonable to conjecture that similar ex-
pressions apply for T & T, . However, the RG
treatment of random systems below T, has yet to
be formulated.

In conclusion, it would be very interesting to ob-

where $(( =g(0)'/'$' is the "longitudinal" correlation
length. ' Note that the exponential singularities,
as well as all the nonuniversal parameters,
dropped out to leave the universal coefficient
I/32&D' '. Thus, the amplitudes in Eqs. (55) and

(58) are not independent.
In practice, the main difficulty in seeing the

singularities (55) or (58) will have to do with
crossover effects. First of all, we note that the
crossover region from "nonrandom" to "random"
behavior may be very wide, owing to the weak di-
vergence of the nonrandom specific heat.
Expressed in a different way, the "crossover"
temperature t„, given by Eq. (51) [with Eq. (20)],
may practically be quite small. It is difficult to
estimate t„ theoretically, owing to the unknown pa-
rameter v(0). However, it is clear that a large
value of u(0), i.e. , large values of p and of h in
Eq. (20), will help. One should therefore try to
look at random mixtures with a large concentra-
tion of ions which have very different exchange and
dipolar interactions. An explicit integration of our
recursion relations along the trajectories shown
in Fig. 1 (and not only in the asymptotic range,
when u = ——,

'
v) may give a full crossover function,

which will facilitate fitting data in the intermediate
crossover region. This remains to be done in the
future.

Another relevant crossover is the one between
the asymptotic critical region and the mean-field
region. This crossover is described by correction
terms to the leading singularities. Following Lar-
kin and Khmel'nitzkii, ' we estimate these by not
neglecting the terms involving lo in Eqs. (54) and
(56). Thus, Eq. (55) should really res.d a.s

ger. (2

~ t ' exp{(2Dl,)'/'[(1+
~

ln t /2l, )'/' —I]). (60)

This reduces to (55) for t —0, and to the mean-
field result y~ ('~t ' for t =1. Similarly, apart
from analytic terms, Eq. (58) generalizes to be-
come
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tain experimental results on the critical behavior
or random dipolar Ising systems, such as LiTbF,
with impurities of nonmagnetic ions (e.g. , Y) or
ions with a much stronger magnetic interaction.
In the former case ILi(Tb, Y)F4], T, becomes
quite low, and experiments become difficult. " The
latter case may be more promising.
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