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Thermodynamics of an eight-site order-disorder model for ferroelectrics
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Thermodynamical properties of an order-disorder model of ferroelectrics proposed by Comes, Lambert, and
Guinier for the perovskites BaTiO, and KNbO, , are discussed. It is shown that in the absence of crystalline
distortion induced by the motion of the tunneling ion, the only stable ordered phase is that of symmetry C3„.
The ferroelectric-paraelectric transition is a "supersingular" point where the paraelectric phase coexists with
three ferroelectric phases. The lattice distortion breaks this degeneracy; unless the distortion is too drastic the
system then shows three ferroelectric phases of symmetries C3„, C2„, and C4„, appearing in this order for
increasing temperature, in complete agreement with BaTiO, and KNb03. The calculated entropy changes
associated to the phase transformations are consistently larger than the measured values, showing that a
correlation between the configurations of neighboring cells is an essential feature of the model.

I. INTRODUCTION

In this paper we investigate the thermodynamics
of a model of ferroelectrics in which one ion can
occupy eight equivalent sites at the vertices of a
cube. This model has been proposed previously to
at least two classes of compounds: the perovskites
BaTi03 and KNb03 and the isostructural compounds
Na, HfF„Na, ZrF„and Na3UFq.

A disorder model was proposed for BaTi03 by
Mason and Mathias, in which the Ti can occupy
six positions at the vertices of an octahedron.
Their model predicts a symmetry C4„ for BaTi03
at 0 K and was discarded since the compound shows
two phases, of symmetry C2„and C3„, below the C4„
phase. However, the motion of the Ti continues

2to be a challenge. Megaw recognized from x-ray
diffraction observations that the ions Ba+, Ti',
and 0 do not make a well-packed structure, leav-
ing some empty space within which the Ti may
move. The point of dispute is whether the potential
for the Ti motion is a shallow surface with the
minimum at the center of the cell or it has several
minima at equivalent positions displaced from the
center. BaTi03 and KNb03 show a number of
anomalies that can be explained, at least qualita-
tively, by both hypotheses. One of those anomalies
is the occurrence of a markedly anisotropic diffuse
scattering observed for x rays and electrons.
Comes et a/. proposed that the Ti (Nb) ion is lo-
cated at one of the eight positions shifted from the
center along the body diagonals of the cell. The
unit cell proposed by those authors is shown in
Fig. 1. Cochran, Huller, and Harada et al. have
argued that the diffuse scattering can also be ex-
plained by the "soft" overdamped mode existent in
those crystals. This is obviously true as the model
proposed by Comes et, al. predicts, with some de-
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FIG. 1. Unit ce11 of the perovskites BaTi03 and

KNb03 as proposed by Comes et al.

tails, the existence of the overdamped phonons
utilized by Cochran, Huller, and Harada et al. to
explain the diffuse scattering. In fact, in the cubic
phase all the eight sites of Fig. 1 are equally popu-
lated and consequently the Ti "tunnels" in the three
directions with equal probabilities. This results
in an extreme damping for one of the F,„modes,
that in which the Ti moves against all the other
atoms of the cell. In the tetragonal phase the Ti
is preferentially at the faces numbered 1-4 and
then tunnels on the xy plane. Consequently, the
damping is much larger for the E component (mo-
tion on the xy plane) of F,„than for the A, compo-
nent (motion along z); this makes the E mode over-
damped and the A, mode underdamped, although
perhaps highly damped. Approaching the transition
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to the cubic phase the polarization becomes
smaller, which implies that the tunneling along z
increases; this should result in an increase of the
damping of the A, mode. Scalabrim et a/. have
shown that the damping of one of the A, modes of
the tetragonal phase of BaTiO3 increases critically
when the cubic phase is approached. In the ortho-
rhombic phase the Ti is preferentially at the sites
1 and 2, and then the tunneling is along x. This
makes the J3, mode overdamped, and the Bz and A
modes underdamped. Finally, in the rhombohedral
phase the Ti is preferentiaQy at the site 1 and the
modes are underdamped. Summing up, the hypoth-
esis of Comes et al. offers a unified explanation
of the large-amplitude atomic motion which causes
the x-ray anomaly in BaTiO3 and KNbO3, and one
should not discard their model without offering
another explanation.

The compounds Na3HfF7, Na3ZrF7, and Na3UF7
have a disorder mechanism similar to the
model of Comes et, al. The seven atoms of fluorine
have eight positions around the Hf (Zr, U) to oc-
cupy, so that one of the sites is instantaneously

empty. Measurements using x-ray diffraction, dif-
ferential thermal analysis, and y-y angular corre-
lation made by Sette-Ckmara and Oliveira ' on

Na, HfF, show that the compound ha, s one order-dis-
order phase transition at about 430'K. In con-
trast with BaTiO3 and KNbO3, Na3HfF7 did not show

any lattice distortion at the phase transition.
In this paper we show that the ordered phases

corresponding to the three symmetries allowed by
the model by Comes et al. are thermodynamically
possible if the lattice has some distortion, and

that, when the crystal is cooled, they are expected
to appear exactly in the same order observed ex-
perimentally. If the lattice has no distortion the
only ordered stable phase is that of symmetry C3„.
The results of the present calculations are similar
to those obtained phenomenologically by Devon-
shire.

II. THEORY

Define n; as the occupation probability for the
site j. The energy per unit cell of the dipole sys-
tem, expanded to second order in n; is

U= —sA(n, —n, )' —sA(ns —n, )' sA(ns——n, )' —sA(n, —n, )'+~A(n, —n, )[(n, n, )+—(n, —n, )+ {n,—n, )]

+ eA(ns —nv)[(n 4 ns)+{ne —ns)+{ne ns)] + ea(ns -ne) [(ns-ne)+(ns-n4)+(ns —n, )]

+ ex(n4 —ns)[(n s —ny) + (ne —ns) + (ne —ns)]

This formula can be checked with the verification
that —sl7/sn, is proportional to the polarization
component pointing to the site s. Formula (ia.) can
be reduced to

tlon we have

S3 Ã5 87

8

U= —sA Q(ng —ne„g)
i=1

8 3
1g (ib)

and the free energy simplifies to

2~[(ns ne) + {ns n7)] + ~~ni nni

+ kTn8 lnn8+ 3ATna lnna+ 3kTn7 lnn7 .

When writing the expressions (1) we have con-
sidered the potential for the ion's motion to be
cubic for all temperatures. We have also neglected
thermal expansion, treating the parameter A as
temperature independent.

The Helmholtz free energy per cell is

In the Ca„symmetry configuration

S7 S8

n3=n4=n, =n6,

E= U- TS= U+ AT n)lnm] .

Neglecting the changes in the volume of the unit

cell, the Gibbs and Helmholtz functions have equiva-
lent properties, so that Il plays the role of the full
thermodynamic potential.

As discussed by Comes et gl. one can make four
different arrangements with the occupation num-

bers n,-, (corresponding to) the symmetries Cs„,
C3„, C4„, and 0„. In the C3„symmetry configura-

&= —s &(ns —ne) + 2&ms»s
+ 2A Tn8 lnn8+ 4kTn3 1nn3 .

In the C4„symmetry configuration

Pl 5 Ã6 g7 g8

Z = ,'A{n, - n-, )-'+4&rn, in&, + 4&rn, », .



THERMODYNAMICS OF AN EIGHT-SITE ORDER-DISORDFR. . . 209

Finally, in the O„symmetry configuration X3 ny

and

E= —kTln8 .

1/3
Y3=ns

the free energy takes the form

E= —2A(x3 y3) + 3kT(x, lnx, +y, Iny3) (15}

In formulas (3)-(6), we have neglected the contri-
bution to the entropy which comes from the multi-
plicity of possible arrangements with the same
symmetry. If the crystal has N cells, the con-
tributions per unit cell, respectively, for the sym-
metries C,„, C~„, and C4„are (kln8}/N, (kln12)/N,
and (kln6)/N; for large N, this is not significant.

Each different configuration free energy written
above has a minimum in the space of coordinates
n;. This minimum generates a branch for the

ultivalued function F(T). At each temperature
the system selects the configuration which corre-
sponds to the lowest branch. We now proceed to
the calculation of the various branches of F(T).

A. C» symmetry configuration

The minimization of the free energy is subject
to a normalization constraint

n, +ns+3n2+3n7=1 .
In the minimization procedure there are then three
independent variables. Taking n2 as the dependent
variable we obtain the relationships

BE BE Bn2 1 BE
Bn2 Bn y 3 Bn2

8. C2„symmetry configuration

With an analogous method we obtain

2=n 3

and

1/2 1/2 & ~2+ns 2

Defining

(2n, )'"= x, ,

(2n, )' ' =- y, ,

the free energy becomes

E= —3A(xz —y~) + 2kT(x2 lnx2+ y~ lny2) —kT ln2 .

(16)

(18)

C. C2, symmetry configuration

4ns+ 4ne =

Defining

4nq =x4,

4ns =

we have

E= —~A(x4 y4)2+ kT(x4lnx4 ~ y4 lny4) —2kT ln2 .
BE 1 BE

ns 3 Bn2
(9) (20)

and

BE BE

Bn2
(10)

Dividing (9) by (8) we obtain, after some manipula-
tion,

3= 2
n2 ng ns ~

Finally, we can write the general formula for the
free energy as a function of one single-order pa-
rameter, defining

x; = z(1+g;),

v; =z(1 n;), -
—l=g; —1 .

Inserting now the relation (10) in (8) and (9),

BE 1 BE
Bn& 3 Bn7

' (12)

The free energy can now be expressed as

E = —Qo 6A'g + PokT[ (1 + 'g ) ln —,'(1 + t},)

+ —,(1 —q, ) ln —,(1 —q, )]—yokT ln2 . (21)

BE 1 BE
Bns 3

Dividing (12) by (13) we obtain, analogously,

3= 2
n7 n$ ns ~

(13)

(14)

The parameters ao, Po, and yo are pure numbers
that depend on the symmetry. Their values are
given in Table I.

The parameter g adopts the value qo which mini-
mizes F:

Using the relations (11) and (14}, the normalization
condition becomes (22a)

Defining

1s ~ or

qo
——tanh(n('jAqo/3PokT) . (22b)
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TABLE I. Values of the parameters +0, PD, and &0

of formula (21) for the various symmetries.

&4.

0&

This equation allows numerica. l calculation of qo(T)
for each symmetry, and consequently supplies the
numerical values of E(T).

III. NUMERICAL RESULTS
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As discussed by Ma, son, Eq. (22b) has a solu-
tion different from zero only if

&(')A/3PokT& l .
Thus, the disorder temperature for each symmetry
of the system is

T~ = nQ/3pok .
Since o.o=Po for all symmetries, T~ is equal to
A/3k for all of them.

The function I'(T) is shown in Fig. 2. We see
from the figure that the system has the symmetry
C3 at low temperatures . At the disorder tempera-
ture all the branches join at the same point; this

means that the point T„ is a supersingularity where
the ordered phases of symmetry C3„, CB„, and C4„,
and the disordered phase coexist. This degeneracy
ca,n be broken, artificially by external field or uni-
axial pressure, or spontaneously due to distortions
of the potential. For Na3HfF~ the degeneracy of the
disorder temperature is probably maintained, or
poorly resolved, since the data on angular correla-
tion and differential thermal analysis obtained by
Sette Camara and by Oliveira indicate that the com-
pound has only one phase transition.

For BaTiQ3 and KNbO3 the disorder temperatures
are well resolved, and these crystals display all
the three ordered phases in the absence of external
perturbation. This could result from the distor-
tions that those crystals have in their unit cell for
each ordered configuration. The distortion changes
the value of the internal energy; however, the ex-
pression for the entropy mill not be affected. Sup-
posing that after the distortion the internal energy
is still proportional to the square of the polariza-
tion, the effect of the distortion is to change the
value of noA.

We define

Where T~ is the disorder temperature for the phaseC3

C~„, the effect of the distortion is to change the val-
ues of ao for the phases Ca„and C3„. The corrected
values of no (designated by o.) can in principle be
related numerically to the distortions of the lattice.
However, this requires the computation of the po-
tential for the motion of the Ti (Nb) for each shape
of the cell. In this paper we calculate the values
of n from the measured values of the transition
temperatures. The results are shown in Table II.
Although the calculated values of the transition
temperatures depend on the values of e, the order
in which the phases appear is intrinsic of the mod-
el: it was found impossible to choose a set of val-
ues of a which makes the phases to appear in an
order different from C3„-C2„-C4„-Og. The values
of a obtained for BaTiO3 and KNbO3 are almost
equal. This resulted from the fact that their three
transition temperatures, excluding a scale factor
which depends only on the parameter A, are very
similar. The similarities of the parameters n of
BaTiO3 and KNbQ3 should also be expected since the
distortions of the unit cell for the two materials, in

TABLE II. Adjusted values of &o (designated by n) for
the ordered phases of BaTiO3 and KNb03.

FIG. 2. Densities of internal energy and free energy
calculated for an undistorted crystal.

BaTiO&

KNb03

1.So
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the ordered phases, are analogous. ' Qn the
other hand, the x-x'ay experiments' ' did not show

any distox tion in the lattice of NasHfF7 around the
phase tx'ansitioQ.

The adjusted function F(T) for BaT10~ is plotted
in Fig. 2. The function Ii(T) for KNbG~ is very
similar to Fig. 3. From the figure one px'edicts
that these compounds have a first-order transition
from the rhombohedral to the orthox'hombic phase,
another first-order transition fx'OIQ the orthorhom-
bic to the tetragonal phase, and a second-order
transition from the tetragonal to the cubic phase.
This is in agreement with the experimental evi-
dence about the two lowest txansitions. However,
the experiments show that the upper transition, in
both crystals, is R first-order, or else„a very
critical second-order transition.

%ith the calculated energies we can obtain the
entropy changes Rssociated to each transition, from
the definition

S, =r q, /T, . (25)

The calculated and measured entropiesa' 36 are given
in Table III. The calculated values are consistently
larger than the measured ones. This, in fact, could
be predicted by considering one aspect of the model
by Comes et al. , the occurrence of chains of cells
with the same configuration. Those authox's in-
cluded in their model a strong correlation of the

TABLE III. Entropy changes resulting froIn the phase
'trRnsitlons of BRT103 Rnd KNb03, AS( 18 relRted to the
lowest transition and AS2 is related to the middle one.
g is the ratio between the calculated Rnd the measured
values.

BaTi03

Calculated Measured

0. 04
0.85 0.07

0, 06

0.076
0.054
0.058

0. 70
5.6 21
5, 8 22
5.8 24

0. 70 2. 5
3. 7

In this formula &„ is the component of the dielectric
constant along the polarization direction, for fre-
quencies above the typical relaxation frequency of
the dipoles; in other words, the component of the
dielectric constant creRted by the electxons Rnd

phonons. From &26) we have

U =- —(o/oo) (P'/«, )

instantaneous cell's configurRtion, along one of the
[100]directions. The number n of correlated cells
is between 10 and 25. As I ambert and Comes
pointed out, this correlation makes the entropy
changes n times smaller than the values calculated
from the model using independent cells. Following
their reasoning, since the x-xay observations indi-
cate that the number n is sample dependent, the
measurements of latent heat made on different sam-
ples should be in poor mutual agreement. Table III
shows large dispersion of the measurements. By
comparison between the calculated and measured
values of &S; we deduce that 6&m&21 for BaTiG3
and 3&n&8 for KNbQ3. This is in reasonable
Rgx'cement with the vRlues 3.0 &+ &25 obtained from
x-ray measurements.

Since the displacement of the tunneling ion is
small compared with the size of the unit cell, we
write the field at the ion as

e =E+ (a/o, ,)(P/2e„) = (n/o. o)(P/2e„) (26)

- I.60

-l.80
TC)=I83

I
TC2 =27/ TC3.g03

Comparing (27) with formula (21) and Table I we
conclude that the component of the polarization
along one of the cubic axes of the crystal, for all
phases, is given by

FIG. 3. Densities of internal energy and free energy
calculated for BRT10~.

p =&„~g

This is the polarization in molar units; to convert
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this to units of cm 3 we have to take the correlation
of the cells into account, for this makes the volume
of one mole n times larger than the conventional
one. The r esult is

p =4. 8()t„/n)'~'q p, C/cm'

for BRTi03 Rnd

(29a)

TEMPERATURE {K)

FIG. 4. Spontaneous polarization calculated for BatiO&,
The curve for Knb03 has a very similar shape.

P =6.4{y„/n)"'q p, c/cm'

for KNbO3. In the formula Rbove X)) is the relRtive
susceptibility e„/&0.

The experimental information about }{„is incom-
plete. For BaTiQS in the tetragonal phase Burns
found that y, varies from 32 to 45. Scalabrin et gE.
used a more accurate method to determine X„and
found that it is equal to 30 for all temperatures in
the tetragonal phase. We calculate p supposing y),
=30 and n=10 for all phases. The result is shown
in Fig. 4. The shape of the curve has a reasonable
resemblance with t e results of measurements and
the saturation polarization is about half the mea-
sured values.
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