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In order to explain some recent experiments on a variety of rare-earth compounds such as SmB¢ and the high-
pressure phase of SmS, we propose a model consisting of conducting d and f electrons, the latter assumed to
be infinitely heavy. They interact with each other by both non-spin-flip (¥;,) and spin-flip (V,) electron-
electron interactions. We find that as far as the first-order renormalization-group method is concerned this
system is equivalent to a one-dimensional (1-D) system that has become quite popular recently (the Menyhard-
Solyom model). The correspondence has V, = g,—g,/2 and V; = —2g, in the usual notation. Owing to this
interaction the system may or may not go through an “excitonic” phase transition. From the 1-D work of
Solyom on the density-density response function, we conclude that V, will never cause a phase transition at
any finite temperature, that only V; may cause a phase transition, and that the temperature at which this
occurs is unaffected by V,. We argue that because ¥, is much smaller than V,, it is not important for the
system and the range of temperature that is of interest. Neglecting V;, we find that the conductivity is given
by a formula o = Ne?r/m, where 7 is given approximately by the equation 7' = 75 '[(T + 87~ ')/ EJ] "¢, B
here is a constant of the order of unity. We also discuss the resistivities of SmB,, “metallic’ SmS, TmS, and TmSe

and find good agreement with the experimental results.

I. INTRODUCTION

In this paper we propose an explanation for a
series of physical phenomena observed in a wide
variety of materials such as SmB,,' the high-
pressure phases of SmS, SmTe, and SmSe.*™
In these substances, the Sm ion exists partly
in a 3* state with an angular momentum j = %,
while no Curie type of behavior is seen at low
temperatures. The valences of Sm in these com-
pounds are 2.8, 2.66, and 2.76,% respectively.
Except for a coincidence in the band structure
these compounds should be metal because there
are more than two electrons per site coming from
the samarium and yet the resistivity rises sharply
by one or two decades as the temperature is low-
ered. There is another strange feature; these
compounds all have an extremely large coefficient
for the linearly temperature-dependent part of the
specific heat—about 100 times that of copper. In
this paper, we shall try to bring together a few
physical effects in the literature, point out their
relevance to the present problem and try to give
a physically consistent microscopic picture of
what is taking place.

The physical picture that we envision consists
of the following. We assume that there are both
d and f states at the Fermi surface. Because of
the Coulomb attractive force between the d elec-
tron and the f hole in these compounds they can
form an exciton and thus the system may actually
be an excitonic insolator. However, if the attrac-
tive force is of too short a range, a bound elec-
tron-hole state may not form (according to
Mott). We found here that for a contact non-spin-
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flip potential there is indeed no excitonic phase
transition at any temperature T#0. However, such
excitonic effects can still show up in the resistivity.
Because of the attractive Coulomb force the elec-
tron-hole pair stays together a long time in be-
tween hoppings from site to site. This enhances
the probability amplitude of a d electron being
scattered into an f state by an impurity and hence
enhances the resistivity. The time that the d-f
electron-hole pair stays together as one goes to
lower and lower temperature towards excitonic
instability (which occurs at T'=0) diverges in a
power-law manner. Thus the resistivity increases
as T is lowered. The large linear specific heat
is probably owing just to the presence of the
heavy f electrons at the Fermi surface and will
not be very much discussed in the present paper.
This paper is organized as follows: In Sec. II
the model Hamiltonian will be set up. The d-f
density autocorrelation function is then calculated
using the first-order renormalization-group tech-
nique. In Sec. III we discuss the effect of electron-
electron interaction on the resistivity data and
show how one can understand the apparently resis-
tive behavior of the electrical conductivity. Com-
parison with experiment is made and the agree-
ment is good.

II. PROBLEM

These rare-earth compounds normally are
metallic (as is indicated by their large conduct-
ivity and metallic luster) with both f and d elec-
trons near the Fermi surface, normally the f
electrons are much heavier (see Sec. IV) than the
d electrons. The f and the d electrons interact
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13 HEAVY-HOLE EXCITONIC
with each other by both non-spin-flip (V,) and
spin-flip V, Coulomb forces. We can write the
Hamiltonian as

H=H+H,, (1)

H, =de:odko’ ()
_ £ T +

I{J.“ fzfl(qoldk:;ogszazdklcl

&
-TZZ f:lozdf:solszczdklol’ (3)

where we have assumed that both the d and the f
electrons have a twofold spin degeneracy. This
is certainly the case in SmBy and is an approxi-
mation in SmS. This is not essential and will not
affect our final conclusions. Note that we have
used an exchange interaction g, in H, rather than
a V,g+S term. Kasuya® has shown that

Vo = =28, 4
Vo= =581+ &, (5)

We have not explicitly included a term Vd,(d:fk
+f1d,) in our Hamiltonian. It turned out that V,
is very small. This point will be discussed further
in Sec. IV. Lastly, we have not included any
phonon effects in Egs. (1)-(3). They are important
in certain aspects of the problem but are not rele-
vant here. This point will also be taken up in
Sec. IV.

One of the important features of the problem is
that the f holes are extremely heavy, so that
they have a very large probability amplitude of
exciting a lot of low lying d-electron-hole pairs.
This is the result of a finite scattering matrix
element and an extremely small energy denom-
inator and has come to be known under the name
of infrared catastrophe.®” Infrared divergence
also exists in other problems. For example, the
renormalization-group method has been applied
to the Kondo problem by Abrikosov and Migdal,®
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FIG. 1. All the second-order diagrams that contribute
to the density autocorrelation function at momentum
transfer g =2k in the 1-D Menyhard-Solyom model.
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FIG. 2. All the second-order diagrams that contri-
bute to the d-f density response function at zero momen-
tum transfer, showing the equivalence to the 1-D Meny-
hard-Solyom model.

Fowler and Zawadowski,® and more recently by
Solyom and Zawadowski.'® This method has also
been applied by Menyhard and Solyom** and
Solyom*® to the one-dimensional (1-D) interacting
electron-gas problem. By writing H, in terms of
£, and g, rather than V; and V, the equivalence
between the 1-D problem and our present one is
apparent. (In the 1-D case, g, and g, correspond
to electron-electron interaction with momentum
transfer 0 and 2k, respectively.) The lowest-
order diagrams for the d-f T matrix are illustrated
in Fig. 1. There is a one-to-one correspondence
between these diagrams and their counterparts in
the 1-D problem as is illustrated in Fig. 2.** For
example, the contribution from Fig. 2(e) is

(1/2m0)[In(w/wp) — 547) 2g300,055 -

The factor of 2 multiplying g2 is due to the spin
degeneracy of the bubble. Similarly, the diagram
from Fig. 1(e) is

(1/mv)In(w/wp) — %in]ngéaybﬁg.

The exchange interaction only requires the spins
of the incoming (outgoing) d and the outgoing
(incoming) f electrons to be the same, leaving a
spin degeneracy in the particle-hole intermediate
state in Fig. 1(e), thus giving again an extra factor
of 2. The factor of 1/7v instead of 1/27v in front
comes from the difference in the energy denomin-
ator in the two problems. One ends up with ex-
pressions like

Li_di g 1(

m w = 2vgq T J) w-vgqg
in the 1-D and the present problem, respectively.
Since only these first-order diagrams come into
the first-order renormalization calculation, thus
up to first-order renormalization, the T matrices
T" in the two problems are the same.

The equivalence of the two problems, as far

as the “parquet” method is concerned, is also
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obvious if one realizes that the corresponding
diagrams in Figs. 1 and 2 are topologically the
same. This can be seen by contracting all inter-
action lines into points and realizing that the
corresponding vertices represent equivalent matrix
elements. Writing the T matrix as

raﬂ,yﬁ:gléyéﬁﬁ “gzéaﬁéﬂ)w (6)

we have, according to Refs. 11 and 12,

- &
£i0)= 1-(2g,/m)lnx’ )
= &, 1 &
) =+g, - 5t 3 < 1—(2g1/1rv)1nx)’ (8)
x =1n(T/Eg), )
and
T Ny _ & -3/2 N
G'ML‘O—MmQ x, (10)
a= (g, -2g,)/mv= - 2,N(0). 11)

Equations (7) and (8) are the same as that derived
by Fowler and Zawadowski.” By using the equi-
valance to the 1-D problem, we have been able

to obtain the d-f density autocorrelation function.
The latter has not been derived by the authors of
Ref. 9. Physically the present problem is different
from the Kondo problem in the sense that we have
both f electrons and holes. However, it only shows
up in the fluctuation corrections and in higher-
order renormalization calculations. From Egs.
(4), (5), (10), and (11) we conclude that (a) any
kind of power-law dependence in the density auto-
correlation function is produced by V;, the spin-
independent electron-electron interaction, alone.
(b) Only V, can cause a divergence in N at finite
temperature; furthermore, this temperature is
unaffected by Vj at all.

The divergence of this correlation function indi-
cates a possible phase transition. However, since
V, is much smaller than V,, its effect will be
overwhelmed by that of Vj in the temperature
range of interest. We shall therefore ignore it
in what follows.

d k+q,€+w

d k,e

FIG. 3. Schematic d-d current autocorrelation func-
tion.

FIG. 4. Coulomb correction to the d-f impurity ver-
tex in the d—d current autocorrelation function. It is
diagrams of this type that contribute to the peculiar
resistivity behavior observed in the rare-earth chal-
cogenides.

III. RESISTIVITY

In this section, we shall try to calculate the
resistivity in the model that has been expounded in
Sec. II. First of all, the conductivity is given by

o= (Ne?/m)T,,. (12)

The subscript { indicates a transport relaxation
time. Because the current is carried mainly in
the d electrons, one is mainly interested in the
d electron current autocorrelation function as is
illustrated in Fig. 3. The lifetime is dominated
by the Coulomb-enhanced d-f impurity scattering
as is illustrated in Fig. 4.

In order to evaluate the vertex corrections as
in Fig. 4, we shall use a memory function tech-
nique developed by GStze and Wolfle.'* Assuming
a frequency dependence of the form a/(w+77%)
for the conductivity, they were able to obtain an
approximate expression (to first order in the
impurity concentration C) for the relaxation time:

9
T'lzy]V,.|ZE(vk—vk-)ZQImek-, (13)

where y is a constant, V; is the electron impurity
potential, and N is the density autocorrelation
function. Generalizing their formula to the present
case, we obtain

-1 0 \~-1 1 3/
™ (g )

X[(T+BT™Y/Ep]~°. (14)

¥’ andp are constants. Note thatwe have (T+ 877"/
E rather that T/E, as one expects from the
above consideration. The introduction of the
additional term 77! with a numerical coefficient
B should be regarded as phenomenological and is
based on the following physical consideration.
The quantity x = T/E, is a measure of the sharp-
ness of the Fermi surface. Obviously, impurity
also smears the Fermi surface and one should
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FIG. 5. Model calculation of the resistivity. y axis
is essentially 7~! which is obtained by solving the sim-
plified equation T71=7 5T +771/ER|Y, Ty=a +bT, Ep
=1000 °K. Hered is set equal to zero but a remains
finite, a =0.9. Rounding off of the resistivity at low
temperature is illustrated.

expect that 77! should come in as the lower limit
cutoff when T is much less than it. A simpler
version of this (with g, =0 and without calculating
7 self-consistently) has been given by the author.!®
When 7,! is large enough, ¢ does not follow a
simple power law. We have performed model
calculations of 77! assuming that 7, is of the form
a+bT, the temperature-dependent term being due
to phonons. The results are plotted in Figs. 5=17
for different values of a and b. The general con-
clusion is that ¢ becomes less and less power-
law-like for small T as a gets larger and larger.
Similarly, the slope bends over for large T as b
becomes bigger and bigger. This seems to be also
the case experimentally. In Figs. 8—11 we have
plotted the resistivity of SmBg,* and “metallic”
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FIG. 6. Model calculation of the resistivity with a
=0 butb finite. Showing the upward slope of the resis-
tivity at higher temperatures.

10 F <

o AN

- . a=0.0l

- o °

I LN b =0.0000!
— r Ne,

» N

E o -

ES E N

E r \\\.

- .
gl AN
E -1 \\
< °F
Q F

|°'2 Lol 1ol Lol Lol
| 10 100 1000
T(°K)

FIG. 7. Model calculation of the resistivity with both
a and b finite.

SmS,* TmS, and TmSe,' on a logarithmic scale.
They all fall on a straight line at intermediate
values of T. As can be noted, metallic SmS and
TmSe has a smaller resistivity and is much more
“power-law-like,” whereas SmB; and TmS has a
larger resistivity and hence is much less “power-
law-like,” looking very much like the curves in
Fig. 7.'" The exponents « that we deduce from
these curves are 0.98, 0.58, 0.33, and 0.45, for
SmB,, metallic SmS, TmSe, and TmS, respec-
tively. Note that a is not an integer. It is difficult
to imagine that any other kind of ordinary theory
will be able to explain this.

IV. CONCLUSION

A summary of what we have reported in this
paper is already given in the abstract. More
points should be noted. First of all, the discussion
of the impurity effect here should be also applic-
able to the one-dimensional problem. The second
point is about phonons. In a previous publication,
Anderson and Chiu'® have argued about the im-
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FIG. 8. Experimental data of the resistivity of Nick-
erson ef al . on SmBg on a logarithmic scale. Note the
three portions of the curve corresponding to high, low,
and intermediate temperatures and compare this to
Fig. 7.



2070 S. T. CHUI 13

SmS FROM BADER et al.
a=058
IO'#
€
Q
e
QU ®
107 s
| 10 100
T(K)

FIG. 9. Log-log plot of the resistivity data of Bader
et al . for SmS at 10 kbar.

portance of anharmonic phonons in stabilizing

a mixed valence state. Sherrington and von Mol-
ner'® have also pointed out that, in trying to relate
the Kondo-Ruderman-Kittel-Yosida exchange
term J to the Anderson-Friedel hybridization
energies, phonon overlap greatly reduced J rela-
tive to V. We have examined what further effects
these will have and find that once we fix J (or

g1, &), phonons affect ¢ only in that they affect
7o' and m*. (V, is reduced.)

Thirdly, our model Hamiltonian should contain
a term Vdf(d,ff+f7dk). In a sense, our calculating
77! self-consistently is a phenomenological treat-
ment of this effect. The Vj; term also contributes
to 7.

This will be adequate so long as Vi, is not very
large. The effect of Vi can be estimated as
follows. Because of V, the f band now has a
finite mass as is illustrated in the self-energy
correction in Fig. 12. Note that this self-energy
correction is not modified by the Coulomb inter-
actions; owing to the instantaneous nature of the
Coulomb force, such diagrams as in Fig. 13 are
not possible.

This finite f mass is manifested in a large y
for the specific heat. In SmS, this is about 100
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FIG. 10. Log-log plot of the resistivity data of
Bucher et al . for TmS.
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FIG. 11. Log-log plot of the resistivity data of Bucher
et al . for TmSe.

times that of copper. Taking a d bandwidth of the
order of 1 eV, we have

N 1 100 1

N T () Tr(d) °
where N/N, is the number of electrons per atom.
This is about 0.17 for “metallic” SmS. Here
T (f) and T (d) stand for the Fermi temperature
of the d and the f electrons, respectively. We
thus have

T-(f) ~ 17°K,

a very small number indeed. [ Compare this with
the Fermi temperature of the d electrons— it is
(T+77%)/E that appears in our formulas.]

Mott® has recently proposed that perhaps a gap
may exist in “metallic” SmS and SmB;. We find
it difficult to reconcile his idea with the low-tem-
perature specific-heat"* data which show a lin-
ear temperature-dependent part. Furthermore,
we have plotted the Inp-vs-1/T curve for the
data of both Refs. 1 and 4. We find that they do
not lie on a straight line. In any case, if we
blindly calculate the slope of the lowest T portion
of these curves, we find a gap of the value 1.6 °K
and 1.34°K for SmB,; and SmS at 10 kbar, respec-
tively. For a small value of the gap, the d-f
scattering effect that we discussed in this paper
will still come in. In that case, the relevant pa-
rameter will not be (T+B77Y)/E, but (T+B77*+bA)/
E, where b is a coefficient on the order of unity.

q,w

00— Pp—CO—p—
f d f

FIG. 12. First-order diagram showing the self-energy
correction to the f electrons owing to a d-f mixing
term Vg
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FIG. 13. Diagram illustrating that it is not possible
to have Coulomb vertex corrections to Fig. 12 because
of its instantaneous nature.

As we see, this effect has rather serious conse-
quences and has been totally neglected in Mott’s
discussion.

EFFECTS IN RARE-EARTH...
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