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Applicability of the cubic model to the critical behavior of real systems*
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We have previously developed a model Hamiltonian called the cubic model to explain the salient features of
the critical behavior of a group of cubic rare-earth compounds. There are interaction terms present in real

systems that were neglected in this model. Here we consider how they modify the tricritical-like phase

transition of the cubic model that was predicted by using the mean-field approximation. We find that for rare-

earth compounds with large angular momentum J, the neglect of the overlap between the sixfold degenerate

states is justified. Crystal fields which make a nonmagnetic state lowest in energy tend to drive the transition first

order. These results which are readily obtained only within the mean-field approximation are expected to hold

in better statistical approximations. Within both the mean-field and Bethe-Peierls-Weiss approximation

quadrupolar pair interactions that favor parallel ordering of the moments drive the transition first order, while

those favoring perpendicular ordering of the moments drive the transition second order. As the cubic model

has a first-order phase transition in the Bethe-Peierls-Weiss approximation in zero fields, the transition is not

tricritical. Therefore we have determined by using this approximation the size of the single-ion anisotropy, or
quadrupolar pair interaction, needed to drive the system tricritical. The magnitudes required to achieve this

are within the limits estimated from experimental data.

I. INTRODUCTION

The cubic model' was recently introduced to
explain the tricritical-like behavior of cubic rare-
earth compounds, in particular holmium anti-
monide, HoSb. The Hamiltonian for this model is
given as

where v takes on the values +1 and n the values
x, y, and z. To arrive at this model we made
several approximations; we neglected the overlap
between the eigenstates that point along different
cube axes, we assumed the crystal field was such
as to cause the lowest six levels to be degenerate,
and we neglected the quadrupolar pair interactions
that are present in real systems. In this paper we
determine the effects of including these terms on

the thermodynamic behavior of the cubic model.
When we include the crystal field and nonorthogo-

nality of the basis states we have a matrix repre-
sentation of the Hamiltonian which is nondiagonal.
In the mean-field approximation (MFA} we can
readily deal with the nondiagonal matrices and
determine the effects of these terms by analytic
solutions. Although we know that certain features
of the cubic model as determined by the mean-
field approximation are incorrect, ' we have not
undertaken the lengthy Bethe-Peierls-Weiss (BPW}
calculation, which provides only numerical solu-
tions, because the crystal field parameters are not
known for the system of particular interest to us
HoSb. Including quadrupolar interactions does

not lead to nondiagonal matrices and for this rea-
son we are readily able to determine the effects of
this additional term on the behavior of the cubic
model in the BPW approximation. However, the
MFA calculation is also presented because the
analytic solutions obtained give us a clearer in-
sight into the effect these interactions have on the
critical behavior of the cubic model.

In Secs. II, III, and IV we determine within the
mean-field approximation how these additional
terms affect the nature of the phase transition,
i.e., whether it is first order, second order, or
tricritical-like. If we include the overlap of the
eigenstates we find that the phase transition for
the cubic model asymptotically approaches second-
order behavior. However, for HoSb one must be
extremely close to T, to see this behavior, i.e. ,
I =(T,—T)/T, (10 '. The effect of crystal fields
which do not produce sixfold degenerate ground
states is to drive the tricritical-like phase transi-
tion of the cubic model discontinuous, i.e., first
order. Depending on their sign the quadrupolar
pair interactions can drive the transition either
first order or second order. In Sec. V we have
studied the thermodynamic behavior of our cubic
model with quadrupolar pair interaction by using
the Bethe-Peierls-Weiss approximation. As the
phase transition of the cubic model is first order
in this approximation we determine the magni-
tudes of the single-ion anisotropy and quadrupolar
pair interaction that are needed to drive the cubic
model tricritical. These magnitudes are quite
reasonable in comparison to the estimates of
bounds on these terms from experimental data.
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II. NONORTHOGONALITY

In deriving the cubic model, we neglected the
overlap between states quantized along different
cube axes

(+ql sq'& =2 ~ —=a (2)

where I+q) —=
I
J+J)„q,q' =x, y, z, and qeq'. Let

us now include this overlap and determine the
thermodynamic properties of the model. Wherever
we must be specific, we consider the case of
Ho" (J =8) in HoSb. Written in the basis of the
states

I aq&, the angular momentum operator 8„
see Eq. (7) of I, is

0 0 -i~

From these studies we have obtained a better
understanding of how the neglected terms and
various approximations affect the predicted ther-
modynamic behavior of the cubic model. These
results are needed to interpret and extract infor-
mation from the existing experimental data on the
rare-earth pnictides; particularly on HoSb. How-
ever, the lack of sufficient data on the crystal
field parameters and the size of the quadrupolar
pair interactions in HoSb precludes us from making
a definitive analysis of the thermodynamic be-
havior of the compound at the present time.

1 0

0 1

za1 0

aa0 1

1 0

(4)

0 1

We note that the overlap 6 causes the angular mo-
mentum and identity matrices to be nondiagonal.
Also the eigenvalue problem for the mean-field
Hamiltonian is in a nonorthogonal basis &- ~I =0.

To simplify these calculations we construct a
set of orthonormal states from the basis

I +q& that
transform according to the irreducible represen-
tation of the cubic group. For Ho" (J=8}these
functions are given by Trammell as'

I
F,&

= (1/~8p &(Iz & + I
-z

& + I
x & +

I
-x

& +
I y & +

I
-y &&,

I&„&=(l/~8}l:I&+I- &-l(l &+I-x&+ly&+l-y&)],

IF..& =(i/~4)(lx&+I- &
—ly& —l-y&),

IF.,& =(i/~2)(lz& —I-.&),
(5)

IF.,& =(i/~2)(lx& —l-x&),

IF.,& =(i/~2)(ly& -l-y&),

where n = 1 —2b, and P =—1 + 4b .
The Hamiltonian which represents the pair inter-

actions in our model is

0 0 iA -i6 E -6,
(8)

0

0

0

0
In the mean-field approximation this reduces to

1 0

0 -1

The matrices for S„andS, are the appropriate
permutations of S,. In this same representation
the identity matrix is

MFA Ij.o MJz

where M—= (J,). As we are interested in only the
low-temperature behavior of HoSb, we project
this Hamiltonian on the ground-state manifold de-
scribed by the states II;& in Eq. (5). Then, in the
MFA our problem reduces to finding the eigen-
values of the matrix

0 0

0 0 -2iby

0 2ihy 0

0

(l/"T)+MF~=
0 0

0 0

0 0

0 (2n/3)'~'y

(2~/2)1/2 O

(0/8)" 'y

(P/2) "y O

(8}
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where

y =8I„M/kT =m/T,
m= —', (-J,),

and

T —= kT/64I, O .

To arrive at this matrix we rearranged the order-
ing of the states given in Eq. (5). The eigenvalues
of this matrix are 0, +y, and +26y, and the parti-
tion function is

Inm

Z MI'A
= 2 + 2 coshy + 2 cosh26y (10)

—I4 -12 - IO -8 -6 -4

= [-,' (1 + 4~')]y ——,
' ~'y'

—+, (1 —306.' —1206' +646') y' + (12)

In the presence of a magnetic field H along the g
axis, the variable y becomes

y =(m+H)/T, (13)

where

H= gps H/8I«.

Upon placing this into Eq. (12) we find the equation
of state is

H/T =[3/(1+42') —1/T]m

+ [36m'/(1 +4s, ')] m'+ ~ ~ ~ . (14)

This implies that in zero external field, H=O, the
transition is of the second order at

With this partition function the self consistent
equation for the magnetization is given as

m = (2b, sinh2hy +sinhy)/(1+cosh2&y+coshy) (11)

FIG. 1. A log-log pl.ot of the magnetization versus the
reduced temperature t = (T~ —T)/T, of the cubic model.
Curve 1: When the overlap between the degenerate states
is taken into account and the slope P is asymptotically 2.
We choose 6 = 2 8 the overlap appropriate for Ho~+,

J =8. Curve 2: When overlap is neglected, and the
slope P =4.

We conclude that for holmium compounds (J =8)
the neglect of the overlap in the basis states does
not produce any o&sezvable differences in the
thermodynamic behavior of these compounds.
However, for rare earths with smaller angular
momentum the overlap increases because 4 =2 ~.

Then the coefficient of m', 36X 2 ' = 2' '~, may
be sufficiently large to produce discernable dif-
ferences in the thermodynamic behavior of these
compounds. Although these results were obtained
on the basis of the MFA we do not expect them to
differ in better approximations.

T, = —', (1 +42 ') . (15) III, CRYSTAL FIELD

lf we set L =0 in Eqs. (14) and (15), i.e., neglect
overlap or nonorthogonality of the basis states,
we recover the results obtained for the cubic mod-
el, i.e. , a phase transition at T, = —, with tricriti-
cal-like critical exponents. At first sight, it
seems that overlap, i.e. , finite 6, produces a
qualitative difference in the phase transition. How-

ever, the coefficient of the m' term, 36k' -5.5
x10 ', is very small for Ho'" (4=8), and the be-
havior of the system, e.g. , the magnetization Eq.
(11), will be tricritical-like except for tempera-
tures T very close to T,. This is illustrated in
Fig. 1 by the log-log plot of the spontaneous mag-
netization for the two cases. From this plot we
see that for reduced temperatures I = (T, —T)/T,
greater than 10 4, which is the region accessible
to experimental study, the two cases (b. =0 and
a w0) are indistinguishable with an effective criti-
cal exponent P of 4. The truly asymptotic behavior
with P = —,

' sets in only for t ( 10 s

The cubic model Eq. (1) was derived by project-
ing an isotropic pair interaction on the sixfold
degenerate ground-state manifolds of rare-earth
ions. ' For these manifolds to be sixfold degen-
erate the cubic crystal field parameters as de-
fined by Lea, Leask, and Wolf4

V, =B404+B606,

must assume a specific ratio B,/B„that is to say,
the parameter X which is related to B4jB, must
take on a. value X, such that the cubic crystal field
leaves the ground-state manifold sixfold degen-
erate. In real systems one does not expect the
crystal fields to be exactly at this propitious value
of X; however, they may have ratios X close to
X, . For example, for HoSb we estimate X =0.67
while X, = —', =0.85. Therefore in this section we

study how the nature of the phase transition of the
cubic model changes when the crystal field has
ratios X not equal to, but close to, X, .
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-4/V

Vc =60B4a,8+ W
2/n

(17)

The effects of a crystal field with XIX, are
twofold. First it splits the sixfold degenerate
ground state manifold into a singlet, doublet, and
triplet. Secondly, the field admixes the upper
excited states into the ground states given by Eqs.
(5). Trammell' has found that for ratios of the
crystal field parameters close to X, one can ob-
tain good estimates of the splittings of the ground-
state energy levels without taking into account the
admixtures from the excited states. Therefore we
first determine the effect of a crystal field on the
phase transitions of our model by neglecting ad-
mixtures from excited states. Then we include
admixtures in the basis states caused by a crystal
field with XcX, and find how this affects the criti-
cal behavior of our model. In our calculations we
explicitly consider Ho", however our results will
be applicable to other rare earths.

In the sixfold manifold of states given by Eq. (5}
the cubic crystal field given by Eq. (16) is diagonal

where n and P are defined in Eqs. (5),

a, = 364(1 +66B,/B, ),
W =— (6825/16) B4(1386B,/B4 —1)

= (6825/16) B,(6/X —7),

X = (231B6/B, + 1) ',

and 8 represents the unit matrix. Here the param-
eter X is that used by Lea, Leask, and Wolf';
however, our W is not the one used by them. When
the ratio of the crystal field parameters is such
that X =X, =—', , W =0, and the second term in Eq.
(17}is zero. For XXX, the crystal field splits the
ground manifold into a singlet I„adoublet I

„

and a triplet I',. As B4 is negative for HoSb, the
coefficient W is negative when X &X, and the I 3

doublet state lies lowest; for X&X„Wis positive
and the I', singlet is lowest in energy.

The Ham iltonian for our system now cons ists of
the crystal field Eq. (17) and the pair interaction
Eq. (6). As the first term in the crystal field Eq.
(17}only shifts the energy scale we will neglect
this constant term from here on in. In the mean-
field approximation, the determination of the par-
tition function reduces to finding the eigenvalues of
the Hamiltonian consisting of the second term of
Eq. (17) and the mean-field approximation to the
pair interaction Eq. (7). After rearranging the
rows and columns of this matrix we find

Mt:A

-2a/n 0

0 -2i ~y

2 iDy

2a/n (2 n/3)-'I'y

(2 n/3 )I/2y 0

0

(il/3)"y

(16)

(P/&)"X 4a/0

where a= W/kT=— W/T, -W=-W/64I«, and y and T
are defined by Eq. (9}. The eigenvalues of this
matrix are -2a/n, +26y, and the three roots
E, (i =1, 2, 3} of the following cubic equation:

g„,, =e " +2cosh2ay+ge ~'""'
j=l

and the free energy is given as

F/kT = F/T =-InZ„,:~ —m'/-2T,

(20)

(21)

aE' — a'+y' E+ ay' =0,2y 8 , , 2y

~p ep ep
where F—= F/64I„. From this we find the equation
of state is

where y =—1 —86. The partition function in the
MFA is

(19) 3

~ =Z„,':A 4A sinh26y+ E,'. e &

i=1

where

(22)
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2y[E, —(2y/o p)a]
3E'; —(4y/otP)aE; —(8a'/aP +y~)

'

This equation must be solved self consistently for
m as a function of T and H.

We have solved Eqs. (20), (21), and (22) and we
find the phase diagram in T —W space shown in

Fig. 2. For W near zero there is a small line
of second-order phase transitions. This line is
parametrically described by the equations

86' + y/2a —(2 ot'/3a) e ""+ (p /6a) e"
C 3+2e "' +e""

and

W =aT, (23)

for -0.00746 ~ a ~ 0.113, or -0.00249 ~W & 0.0372.
For this range of W, the critical temperatures are
explicitly given as

7', = —,'(1 +4~') + (4a/ot p)W

—2[(1 —4& + 6»'+ 9«')/o' p'(1 + 4&')']W '+

(24)

The first-order portion of the phase diagram has
been determined numerically. As the lowest states
for all values of W are nonmagnetic, either I', or
I'„there are no phase transitions for W& W, =0.176
and for W& W, = —', (-2 o') —= ——',. In Fig. 2 we have
also shown the line representing the stability limit
of the high-temperature phase. This line is the
continuation of Etl. (23) for W where the transition
is first order.

We have also determined as a function of the

crystal field parameter W the discontinuity in the
order parameter at T, , Am, and the saturation
moment at T =O'K, m, . These variations are
shown in Fig. 3. For W+ W, the m, =0; but at
W = W, the saturation moment suddenly jumps to
m, 0=0.509. Near W=0 the saturation moment is
given as

m, = 1 —(4/o. P)W ' —(16y/cP P')W '+ ~ ~ (26)

As W approaches W„m,vanishes quadratically.
In Fig. 2, it is particularly interesting to note that
for -0.25 & W & 0.16 the coexistence and stability
curves nearly overlap, i.e., (T, —T,)/T, = 10 ' —for
W--0.2 where T~ is the stability limit. From
Fig. 3 we see that in this region discontinuity of
the order parameter is quite sizeable. Therefore
for real systems with W in this region one should
observe a discontinuity of the order parameter and
an apparent divergence of the susceptibility. '

The crystal field parameters for real systems
as HoSb are not known. When we use the values
of B4 and B, obtained from the linear interpolation
between those of PrSb and TmSb, ' we find X =0.67
and W/T, -=,'. Qn the basis of our results in Figs.
2 and 3, HoSb should experience a discontinuous
transition but with a susceptibility that appears to
diverge.

Now we will take into account the admixtures of
excited states in the wave functions of the ground
state caused by crystal fields with Wc 0. We takeX
=0.67, the estimated value for HoSb, and we obtain
the correct wave functions by interpolating between
those given by Lea, Leask, and Wolf. 4 The mean
field Hamiltonian Etl. (18) evaluated in these states
is

—2"'0RPE R
Isr PRPER
STABILITY LIMIT 0.4 I.O

/~g Attt0

0.3

"0.2
't

/

l

- 0.7! -0.6 -0.5 -0.4 /'-0. 3
W,= —(2/3)~' -'oc/3

. 0. 1

-0.00249 D /6
~:I

-0.2 -0. t 0 t o. t )0.2
0,0372 /=0. 176

/
w/
/

/
/

/'
/

/

FIG. 2. Phase diagram in T —W space which depicts
the effect of cubic crystal fields on the critical behavior
of the cubic model. The sol. id line, about R'=0, repre-
sents the region for which one has second-order phase
transitions. First-order phase transitions are denoted
by the dashed lines. The stability limit of the high-tem-
perature phase is denoted by the dotted lines.

W.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0. 1 0/ 0. 1 0.2
/

W,=-(2/3) ac' 0.0372 W, = 0.176
W

FIG. 3. Jump in the spontaneous magnetization at the
transition temperature Am and the saturation magneti-
zation at T=0 K, m~ as a function of the crystal field
parameter W. At the threshold S', = 0.176, m, =6m
= 0.509.
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-2a' 0 0 0 -0.214 (W'(0.018 .

0 -iDy 0 0 0

0 iDy1

yT Ml A 0

0 0 0 0

-2a' Ey 0

0 0 0 0 Fy 4qa'

where

0 0 0 EX 0 Fy

(26)

For HoSb, with W'= -2.25'K and T, = 5.4 K, we
have a'=-0.42, or by using I„=0.275' we have
W'=-0.13 and 7;=0.306. For this value of W', the
transition is second order. Therefore there are
discernible differences in the phase transitions
when we take account of the admixtures of excited
states into the ground manifold states due to the
crystal field. We conclude that in order to obtain
an accurate description of the critical behavior
of these cubic rare-earth compounds it is neces-
sary to include these admixtures.

D = 0.057, E = 0.82, F =0.54, q =1.17,
and a'=—W'/kT =W'/T. The parameter W' is de-
termined by evaluating the crystal field Hamil-
tonian Eq. (16) in the set of six states appropriate
to HoSb, i.e. , X =0.67. By using the interpolated
values of the parameters B4 and B, we find W'

=-2.25 K for HoSb. However, we will treat W'

as a parameter, so as to ascertain the effect of
varying B4 and B, on the nature of the phase tran-
sition.

We proceed as before to find the eigenvalues of
Eq. (26) and then the partition function and free
energy. We find that the phase diagram in T —W'

space is qualitatively similar to the one shown in

Fig. 2 but with W,'=0.125, W,'=-0.676, and

T,(W'=0) =0.324. The major difference is that the
critical line extends over a larger range of W';

IV. QUADRUPOLE PAIR INTERACTIONS

In our previous paper (I) we have determined
how quadrupolar pair interactions project onto the
sixfold degenerate manifolds of the cubic model.
Although in our previous work we separately con-
sidered bilinear and quadrupolar pair interactions,
now we will consider them simultaneously.

In this section we use the MFA to obtain analytic
solutions for the thermodynamic behavior of the
cubic model with quadrupolar pair interactions.
Better quantitative results are obtained in the
following section by using the BPW approximation.

The Hamiltonian which represents the cubic
model with isotropic quadrupolar pair interactions
is given as

&=-g+E;'4; —qJE (
'

(
'

)
~ (s. —s„)($,. —5,, ) —H'EK; DE( '

, )

.'D, Q (6„' —6',—), (27)

where the i and j go over the &zN nearest-neigh-
bor pairs and we have written the quadrupolar
coupling as X=qg. The spin matrices S, are given
by Eq. (3) with the overlap set to zero, b. =0. The
absence of the terms like S„S,in the quadrupolar
pair interactions can be seen from their matrix
representations

0

=0.

The symmetry properties of the free energy in
the complete field space (H, D, T) as discussed in
I Sec. III, all remain valid in the presence of
quadrupolar pair interactions, i.e., for the sys-
tem described by Eq. (27).

We now proceed to determine the effects of
quadrupolar pair interactions on the critical be-
havior of the cubic model. As this model is de-
fined with q =0, we will be interested in this be-
havior of the model Hamiltonian Eq. (27) for small
values of q. Also, we v ill be interested in nega-
tive as well as positive values of g. If q becomes
sufficiently negative for P) 0, one finds that the
system does not order in a ferromagnetic, ferro-
quadrupolar array; the negative q prefers a per-
pendicular or antiferroquadrupolar ordering of
the quadrupolar moments. In our work we will
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always consider g sufficiently small so that one
maintains fer r omagnetic ordering.

In applying the MFA to our model Eq. (27) we
proceed as in I (Sec. IV) and we find the reduced
free energy is

gy for high temperatures.
To find the nontrivial solutions to Eqs. (31) and

(32) we consider T and Q, as functions of M, . As

these equations are even in M, we expand T and y

as follows:

f =T g p„lnp„—zM ' M
r =r, +r, M', + o(M', ),
y =y, +y, M', + O(M', ) .

(33}

—2q(Q,'+ Q', ) —H M —D ~ Q, (28)

where the energies are in units of I =zg, T means
kr/I, and all other quantities are defined in I.
The only difference between the free energy of the
cubic model Eq. (32} of I and Eq. (28) is the extra
term ——,qQ ~ Q = --,q(Q', + Q', ). Consequently, the
equations of state that result from the self con-
sistency conditions are

where

o '=2e "' i' i'k cosh[(M, +H, )/T]

2 +oe'~ 2+ 2corsh[(M, +H, )/T]

+2e '"c2' 2' ' cosh[(M, +H, )/T]. (30)

These equations parallel those given in I with
the modification that D„goes into D +qQ when
we consider quadrupolar interactions.

From now on we consider only the zero field
H =D =0 case, and we approach this limit as
D, -O', II, -O', for II, =H, =0 and D, =0. In this
case we may assume that the ordering whenever
present is along the z-direction, i.e. , M3~0,
Q, ~0, M, =M, = Q, =0, and Eqs. (29) reduce to

M, = sinhx/(coshx+2e ')

(2/v3)Q, =coshx/(coshx+2e ') ——,',
where

x—:M~/T

and

y
-=(l v3)nQ, /T

(31)

(32)

The trivial case x =y =0 satisfies the above equa-
tions and is the solution with the lowest free ener-

—', + Q, /v3 s —,M,

= o exp([+M, +H3+ (—,'v3 )(qQ, +D, )]/T),
—'. —(I/2V3)Q, +2 Q2+2M1

(29)
= nexp([+M, sH, +-, (7)Q, +D,)]/T},

(I/2v3)Q, ——,'Q, +-,'M,

= n exp([+M, +H, ——,'(q Q, +D, )]/T) .

We substitute these expansions into Eqs. (31) and

(32) and equate the coefficients of equal powers of

M, . From the first of the Eqs. (31) we find

T, =(2e '&&+I} ",

y, (1 —T,) =T, /T, +1/2T, —(1 —T,)/12T', ,

(34a)

(34b)

and from the second equation we find

T, =(—', q)r, y, +-', , (34c)

( —,q)(y, r, + T, y, ) = T, (1 —T,)(y, +1/2T', ) . (34d)

(2/q)y, =1 —e 'o. (35)

For q& 2 there are two solutions to this equa-
tion; the one with yoc 0 corresponds to that with
lowest free energy and represents a quadrupolar
phase with no dipolar moment M, =0. As we are
interested in small values of q we now confine our
attention to q& 2. Then the only physical solution
of Eq. (35} is y, =0, and we find from Eqs. (34)
that T, = —,'. In addition from Eqs. (34b) and (34d)
we find

T, =(2/9)y, =ri/(2 —6) (35)

Consequently for 0& g& 2, it follows that T, & 0 and
from Eqs. (33) that the curvature of the M, vs T--
plot is positive at To. Therefore, the transition
is discontinuous, i.e., first order, and takes
place at some T, & To. For g & 0, T, &0 the curva-
ture of M, versus T is negative and the transition
is continuous, i.e., second order, at T, =T, 3.

We conclude that the effect of a small quadrupo-
lar pair interaction on the cubic model is to drive
the phase transition first order when the inter-
action favors parallel alignment of the moments
g & 0. If the quadrupolar pair interaction favors
a perpendicular ordering of the moments q & 0,
then it drives the phase transition second order.
Although these results have been derived in this
section by using the MFA, they are consistent
with those we obtain in Sec. V by using the BPW
appr oximation.

By combining the first and third of these equations
we find that yo is the solution of the following
equation:
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V. BETHE-PEIERLS-WEISS APPROXIMATION ia p 2

We have previously determined that in the BPW
approximation the cubic model has a first-order
phase transition in zero field. ' Now we use this
approximation to determine the magnitudes of the
single-ion anisotropies D, and the quadrupole
pair interaction x to drive the phase transition
tricritical. The Hamiltonian for the cubic model
in the presence of external fields and an isotropic
quadrupolar pair interaction is given by Eq. (27).
In I we noted that for the spin matrices 8, the
quadrupolar pair interaction can be rewritten as

9 P,

(37)

where, as before, q=—X/$, the ratio of quadrupo-
lar to dipolar coupling. Thus, the Hamiltonian we
use to calculate the partition function is

X=K;', +q
&ij&

+H' ', + D'„8„,, (38)

where K=—g/kT, q'=—2q, H'=H/kT, D,' =D, /2kT,
D,' = D,', D,' = v3-D, /2kT and n takes on the values
1, 2, 3 or x, y, z. We have dropped the constant
terms that enter in the quadrupole pair interac-
tion, see Eq. (37), and the single ion anisotropy
term D„seeEq. (27). The Hamiltonian Eq. (38)
now resembles Eq. (3) of II when n =3 with the
exception that we have a quadrupolar pair inter-
action. The determination of the values of the
quadrupolar pair coupling g and the single-ion
anisotropy D'„needed to drive the cubic model
tricritical in the BPW approximation is similar,
albeit more complicated, to the calculation of
Paper II. The details of this calculation are given
in Appendix A.

In Fig. 4 we have plotted the solutions D, to Eq.
(A12) for several values of q'. In particular we
find the anisotropy fields D, necessary to drive
the phase transition tricritical for a system, Eq.
(27) or (38), with no quadrupolar pair interactions,
q'=0. We have also found q,

' =-0.046 when D =0.
In Fig. 5 we show the phase diagram for the cubic
model with @ =0, see Eq. (27), in D —T space, as
determined by using the BPW approximation. The
parameters in Fig. 5 refer to the Hamiltonian Eq.
(27). This phase diagram differs from that found
in the MFA (see Fig. 3 of I) in two respects. There
is a region about the origin D =0 in which the phase
transition is first order. This region is bounded

by the tricritical lines determined from Eq. (A12).
The second difference is that the transition tem-
peratures determined in the BPW approximation
are lower than those determined by the MFA. In

FIG. 4. Single-ion anisotropy fields D& necessary to
drive the phase transition tricritical in the BPW approxi-
mation for a system described by Eq. (38). The various
curves correspond to different values of the quadrupolar
pair interaction constant g'. The points inside a curve
represent first-order phase transitions; those outside a
curve represent second-order phase transitions. In this
figure the anisotropy fields D are measured in units of
the coupling constant g.

FIG. 5. Phase diagram for the cubic model Eq. (27)
with g = 0 in D —T space, as determined by using the BPW
approximation. The region about the origin 5= 0 corres-
ponds to first-order phase transitions. Outside the line
of tricritical points D=5&, the transitions are second-
order.
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VI. DISCUSSION OF RESULTS

We introduced the cubic model to explain the
unusual phase transition of HoSb. As real sys-

" kTC

3.90--

'3.67

DR 0
=0 -.

I 0

-1.0 -0.82 38 D,

FIG. 6. Cross section of Fig. 5 with the single-ion
anisotropy D&= 0 ~ This shows the variation of the tran-
sition temperature with single-ion anisotropy D& for the
cubic model with q = 0 in the BPW approximation. In
this figure the temperature and anisotropy are measured
in terms of the coupling constant g. Solid lines repre-
sent second-order phase transitions, dashed lines re-
present first-order phase transitions.

I.O

Fig. 6 we show a cross section of Fig. 5 with

D, =0, i.e., the variation of the transition tem-
perature with single-ion anisotropy D, for the
cubic model with g =0 in the BPW approximation.
The phase diagram for the cubic model with g =q,
= -0.1 resembles Fig. 3 of I; only the transition
temperatures are different.

The single-ion anisotropy fields needed to drive
the system tricritical are small. In Appendix B
we show that these fields can be produced by very
small strains that may exist in cubic crystals.
Similarly, the size of the quadrupolar pair inter-
action required to drive the system tricritical
is not excessive. It is much smaller than the
quadrupolar coupling found for HoSb by Mullen
et al. ' from their analysis of the data on the soften-
ing of the elastic constant C» —C„.However, the
sign of their coupling is such as to drive the model
defined by Eq. (38) more first order. Therefore,
either the effects due to a crystal field with X&X,
which we neglected in Eq. (38) drive the transition
tricritical, or a reanalysis of the data on the
softening of the elastic constant (C» —C») of
HoSb based on better crystal field parameters and
a better statistical mechanical approximation may
yield a quadrupolar coupling which is negative
q'& 0.

tems do not satisfy all the conditions made in de-
riving this model we have studied how the neglected
terms and approximations affect the nature of the
phase transition of this model. From our results
we conclude that it is reasonable to neglect the
nonorthogonality of the six states that point along
the cube axes. On the contrary, crystal fields
which produce a splitting of the sixfold degenerate
manifold of the cubic model and quadrupolar pair
interaction do appreciably change the characteris-
tics of the phase transition and should be included
in calculations for real systems as HoSb. Also
the BPW approximation rather than the MFA
should be used to calculate the critical properties
of the class of cubic rare-earth compounds de-
scribed by the cubic model; although it provides
analytic solutions the MFA does not give good
quantitative results. Therefore, a realistic cal-
culation of the thermodynamic behavior of the
cubic rare-earth compounds requires that one use
at least the BPW approximation and take into ac-
count the crystal fields and quadrupolar pair inter-
actions.

The inclusion of the crystal field term in the
Hamiltonian Eq. (27) or (38) leads to off diagonal
terms in the cubic representation Eq. (2). The
application of the BPW approximation to such a
Hamiltonian is more complicated than the case en-
countered in Sec. V. As the crystal field param-
eters and quadrupolar pair interaction strengths
(and sign) are not well known for HoSb, such a
calculation cannot be undertaken at this time.
However, by piecing together the results in Secs.
III and V we conclude that when crystal fields are
taken into account in a BPW calculation the size
of the quadrupolar interaction needed to drive the
system tricritical will be somewhat smaller. We
can also consider how the results of a previous
calculation, ' in which account was taken of the
crystal field and quadrupolar interactions in the
MFA, are modified when we use the BPW approxi-
mation. From the results in Sec. V we expect that
the size of the quadrupolar pair interaction neces-
sary to drive the system tricritical would be
smaller than that found in the MFA. It might pos-
sibly be opposite in sign to that previously found. '

In conclusion, it will be necessary to obtain
crystal field data (not interpolated parameters)
and better estimates of the sign and size of the
quadrupolar pair interaction for HoSb to more
definitively ascertain whether our model explains
the tricritical-like behavior of this system.

APPENDIX A: BETHE-PEIERLS-WEISS APPROXIMATION

The partition function for a cluster of spins
which consists of a central ion and its q nearest
neighbors is
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g 2a ~ eHofa+Dcfcl
The tricritical point is defined as

S,(D'„»i,'}= 0. (A4)-a
g e"U'" » cosh(Ko6„,+h„),(Al)

where 0 =+1, +, v=1, 2, 3 or x, y, z, and the fields
6, 3 which act on the peripheral spins consist of the
external field H' and D' plus the internal fields.
As in II, the fields 5 and d are determined self-
consistently in terms of H', D', and T. We are
interested in the limit of zero magnetic fields and
consider H'=(0, 0, H') let H'-0' at the end of our
calculations. For these fields the magnetic order-
ing, whenever present, is along the o. =3 or z
direction and we can let K = (0, 0, h). From the
definition of the anisotropy field D', see Eq. (38),
and for H'= (0, 0, H') the quadrupolar ordering is
such that we can let d = (d„—d„d,). Thus, from
the equations for self consistency we find the fol-
lowing conditions:

and

F, =—a, e "~& —a e"~& =0,

E,-=~, —S H(D~-'~& ~ =0

E,=—b, b —a+a e2'D& 3'~& =0

(A5a}

(A5b)

In the mean-field approximation D,' =qt' =0. As we
can vary two fields D,' and D3 for a fixed value of
»)' the points satisfying Eq. (A4} form a line.
When, in addition, we vary q', we form surfaces
in D', q' space on which the phase transition of the
model described by Eq. (38) is tricritical.

The determination of S,(D', »i') for finite D' fields
and for q'& 0 leads to equations which are more
complicated than those encountered in II. Thus,
we proceed in the following way. We rewrite the
conditions Eqs. (A2) as

and

(g /g }» e»»

(b, /b )» =~"'-' ',

where

(b+b /a+a }» = e 3 3

(A2a)

(A2b)

Then we expand these functions E„v=a, b, c about
the critical point, K„d„,d„,h, =0,

B'EF„=F„l,+ g ' ~ 6p„+-,'g ' ~ bp„bp,
BP„"„BP„BP

B3F
bp, bp. bp, '", (A6)

rst B rB s t c

and

a, =—2 coshd, + e '»'" «cosh(K ah},

b, =—e'"& + e'"& '" coshK + e 3 coshh,

y =-q -1.
The order parameter m = (8,) for H'=0' is found

by solving Eqs. (A2) for the internal fields h and
d. As in Sec. IV we restrict out attention to small
values of the quadrupolar pair interaction q', so
that we are sure to have a parallel ordering of
the moments and a simultaneous dipolar and quad-
rupolar phase transition. We determine whether
the phase transition is first or second order by
finding the sign of the curvature of the order pa-
rameter versus temperature plot. When the curva-
ture changes sign the transition is tricritical. To
determine the curvature S, we expand the tempera-
ture K and the fields d in Eqs. (A2) about the criti-
cal point E.„d„h.,= 0.

K(D', »i') =K,(D', »)') + —,'S (D', »i')h» + O(h4),

ct(D', »i') =d, (D', »i')+-,'S, (D', »i')h'+ O(h'),

where 8 is wow a two-dimensional vector d—=(d„d,).

and (A7)

Q =-'5 h'+ O(h').

From the definition of the coefficients in Eqs. (A2)
we find that the function F, is an odd function of h

while Fb and F, are even. Therefore when we ex-
pand Eq. (A5a) about the critical point the leading
terms are linear and cubic in h, while for Eqs.
(A5b) and (A5c) the leading terms are a constant
and a term quadratic in h. As the functions E„are
zero, the coefficients of the different powers of
the field h must vanish. By placing Eqs. (A7} in
the expansions Eq. (A6) of the functions Eqs. (A5)
and by equating to zero the coefficients of the
different powers of h we find the following condi-
tions:

where p„represents the variables K, d„d„and
h, &P„the deviation of the variable from its criti-
cal value, and the function and all its derivatives
are evaluated at the critical point. Next we use
Eqs. (A3} to write the expansion as a power series
in the field h,

6K = »S» h' + O(h )

BE, + 'E I=0=28'~'" sinhK ——(2coshd, +d'&'" coshK),
h c y

(A8a)



2064 D. KIM, P. M. LEVY, AND J. J. SUDANO I3

E,(K„d„h,=0) =0 =e'3(1 —e" & '&' ~),

E,PC, , d„h,=0) =0 = (d'&+e &'~ coshK+e &)

x(e '&+e'&'" «coshK+d'&) —2(2coshd, +e'~'" coshK}'e" 3 '&' ~,

(A8b)

aF, ~, 82F„
(A9b)

where v' = b, c, the prime on the sum denotes that
P„=his omitted, and P,'—= S„g~,the coefficients
of —,'h' in Eqs. (Av). The three Eqs. (A8) are used
to determine the critical temperature K,(D', q')
and fields d, (D', q'}. By placing these solutions in

Eqs. (A9) the set of three inhomogeneous equa-
tions can be solved for the unknowns &p„', i.e.,
S„,Sd and Sd . In particular we find

1 3

h Fb d, Fb
3

~a F.

~&a F. ~d aF ~d3aF

9~ Fb d Fb
1

1

3

F
3

(—'}a'„F,a~ „F,a~ „F,

(A10)

where

a' E, = 2e'3" [coshK —(1/y} sinhK],

a~~ „F,= -(4/y) sinhd, ,

a' E = —2d'&'" «[(1/y) coshK —sinhK],

a„'E,=-(4/y') coshd, +28"'" «[(1+3/y') sinhK —(3/y+1/y')coshK],

a F= ihK "«( ' — " '&" '~")b=

a~ F, =e"& —e &'~ «coshK+[e ~ —e i'" coshK+(2/y)(e '&+e'&'" «coshK+d'3)]e"n& '&'~~,
I

a E, =e'~(1 —e" & '&' ~}
d3 b

a'E =e (1 —e" & "&' &)=a F,d3 b~

a„F,=e &'" «(sinhK)(e '&+e"~'" «coshK+e ~)+e "' (sinhK}

x(e &+e '&''& «coshK+d'&) —2e 3' «(sinhK)(2coshd, +e~" & «coshK)e"ni '~' &,

a~ F, =(e ' —e &'" coshK)(e &+e & ~ coshK+e ~}—(e '& —e &'" «coshK)

x (e"&+e '&'" «coshK+e'~} —4(sinhd, )(2coshd, +e'~" «cosh) K"eD~~'~»

a, E2 e&[( csohd, )(1 e+" «coshK)+e"&] —2[e'3'" «(coshK)(2coshd, +d"'" «coshK)

—(2/y)(2coshd, +e &'" «coshK)'] e" t

a'„E,=2e &[(coshd, )(1 + e" «coshK)+ e &] —2e'&''&'«

x [(coshK)(2coshd, + d'&'" «coshK) —(sinh'K)d'&" "]e'& i '&' &'

(Al 1 )

and

a, F„=aE, /ap I, . -
We have solved Eqs. (A8} for K, and d, by using

the Newton-Raphson technique. ' The results are

placed in Eqs. (A10) and (All) to determine the
curvature S, at the critical point. As the denomi-
nator of Eq. (A10) is nonzero, when the numerator
is zero the curvature S, vanishes. Therefore Eq.
(A4) which determines the tricritical values for the
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anisotropy fields D', and quadrupolar coupling qt'

is
constants and the magnetoelastic coupling have
been determined by Mullen et al. ';

g,'=0.11&10 ''K/ion

Bh Fb Be F

1

B„Fb

B„F,"3

=0 (A12) and

C„—C,, =13.8X10" ergs/cm'. (B3)

APPENDIX B: TETRAGONAL STRAINS IN HOSb

30..= -g, (nCo, /A)'ke, Z'(38'. —1),
where

c', -=—,'(c„',—c'„)

(Bl)

e e
-=(1/&3)(2egg —e,„—e,y).

By comparing &me with the single-ion anisotropy
term in our Hamiltonian Eq. (27) we find that the
strain needed to produce an anisotropy field D, is

Co go c/2

ee —(D, /2&3) g, '( / )' (B2)

For HoSb, 4=8, and the number of ions per unit
volume N/0 is 1.73&&1022 ions/cm'. The elastic

By using the BPW approximation to calculate the
critical behavior of the cubic model we found that
a small anisotropy field is sufficient to drive the
system tricritical. For q'=0, we found D3, -=0.08.
As D, =2D,'kT/v3, see Eq. (38) and T, = 5.4'K for
HoSb, we find that the field D« —-0.5'K/ion drives
the cubic model tricritical. Here we calculate the
strain required to produce this anisotropy.

The single-ion magnetoelastic Hamiltonian is
given as"'

By placing these numbers in Eq. (B2), we find the
strain required to drive the system tricritical,
i.e., to produce D, =D, , is

t

ER =4.0X10
t

This strain is related to the lattice constants a
and c as follows"

(B4)

ee = (2/v3)[(a —c)/a]. (BS)

From the x-ray data of Levy on HoSb" we find
the lattice constant a =6.12 A. Therefore the dif-
ference between the lattice constants a and c
necessary to produce the anisotropy field D, is

t

(a —c), =2&&10 ' A. (B8)

This difference is within the scatter of experi-
mental values for the lattice constant above the
phase transition. " Therefore it is possible that
tetragonal domains with (a —c) of the order of
2&&10 ' A exist above T„i.e., in the "cubic"
phase, undetected. It is also worth pointing out
that the tetragonality (a —c) required for tricri-
ticality is about 10% of the spontaneous tetragonal
distortion of the crystal observed at T =2.5'K,
a —c =18&&10 ' A. We conclude that it is entirely
possible that a nominally cubic crystal as HoSb
may be sufficiently strained at low temperature
T ~ 5.4'K for the internal anisotropy fields to
drive the first-order phase transition tricritical.
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