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The conventional renormalization-group analysis of the tricritical behavior of a metamagnet is completed by a
description of the first-order transition below the tricritical temperature, and the conditions for the
discontinuity in the magnetization are explicitly verified in an Ising spin model. The singularity structure of
the crossover scaling function is derived from relations between the scaling fields for the critical and tricritical
fixed points. Numerical calculations illustrating various aspects of the theory are given for a square-lattice

Ising model in a four-cell cluster approximation.

I. INTRODUCTION

The application of scaling ideas and renormaliza-
tion-group methods to tricritical phase transitions
has received considerable attention in the past few
years. ' A particularly interesting aspect of this
phenomenon is the occurrence of crossover be-
tween different types of critical behavior in the
neighborhood of the tricritical point ~ Early phe-
nomenological scaling theories for this transition
were developed by Riedel and Wegner and by
Griffiths' extending scaling ideas for ordinary
critical phase transitions. Following Wilson's
development of the renormalization-group a.pproach
to critical phenomena, Riedel and Wegner' in-
troduced a model for tricritical phase transitions
characterized by the occurrence of two related
unstable fixed points of the renormalization trans-
formations. This fixed-point structure has become
the basis of all subsequent discussions of cross-
over phenomena. However, while this model de-
scribes correctly the second-order phase transi-
tion at temperatures T above a tricritical tem-
perature T, , it does not account for the first-or-
der phase transition found at temperatures T be-
low T, . Recently we have given general conditions
for renormalization-group transformations which
lead to first-order phase transition, ~ and we have
verified them in detail in numerical calculations
for an Ising ferromagnet. In this paper we apply
these conditions to extend the model of Riedel and
Wegner' and complete the renormalization-group
description of tricritical behavior. Our theory is
based also on results found in numerical renor-
malization-group calculations of a square-lattice
Ising model for a metamagnet in a four-cell cluster
approximation. The thermodynamic functions
are obtained from the renormalization-group
series expansion for the free energy, " and re-
sults are given for the magnetization, suscepti-
bility, and the crossover scaling function in this
model.

In Sec. II we present the renormalization-group

theory for tricritical transitions in the language
pf sca]ing fjeldss, ii, i2 following the wprk pf Riedel
and Wegner, ' but without specifying equations for
the renormalization-group transformations of the
physical parameters of the system. A new fixed
point in these transformations is introduced which
accounts for the occurrence of the first-order
phase transition for temperatures below the tri-
critical temperature. ' We then derive the singu-
larity structure of the crossover scaling function
associated with the tricritical fixed point from the
known singularities of the free energy at the ad-
jacent critical fixed point and from properties at
the discontinuity fixed point. In particular we ob-
tain the dominant power-law singularity in the
domain of second-order phase transitions deduced
by Pfeuty, Jasnow, and Fisher ' from a scaling
hypothesis, but in addition we find also other less
singular terms. While the theory is expressed in
terms of scaling functions which are regular func-
tions of the physical parameters near the fixed
points, for pratical applications we introduce also
a new scaling field which vanishes on the critical
surface but is singular at the tricritical fixed
point. We discuss briefly the role of an additional
fixed point associated with the critical antifer-
romagnetic phase transitions which we found in our
renormalization-group calculation of the Ising
model of a metamagnet. In particular we give the
appropriate conditions in this case which lead to
smoothness. ' '"

In Sec. III we treat some aspects of the renor-
malization-group transformation for the Ising
model of a metamagnet, ' with nearest-neighbor
antiferromagnetic coupling constant K, and next-
to-nearest-neighbor ferromagnetic coupling con-
stant K2 in an external magnetic field IJ. We ap-
ply the Niemeijer and van Leeuwen method with
basic Kadanoff cells chosen according to a recent
suggestion of van Leeuwen. ' We emphasize in
particular the conditions which lead to the occur-
rence of a first-order phase transition below the
tricritical temperature. ' Finally numerical re-
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suits obtained in a four-cell cluster approximation
are presented to illustrate various aspects of tri-
cri tie al behavior.

11. GENERAL THEORY

and are regular functions of the physical variables
T and H. We drop the subscripts c, t, and d here
and in subsequent discussions whenever the same
equations apply to all three cases. The critical
curve T,(H) for H& H, then corresponds to f;, = 0
while T (H) for H &H, corresponds to 1';,=0.

The complete free energy f of the system can
be expressed either as a function of f;„or of f;,
in the domain of first- or second-order phase
transitions, respectively, or as a function of f, ,
in both domains. In each case f satisfies an in-
homogeneous scaling equation"'

f(&(Kg, &,&2) =L(f(0), 4) -g(lg, I'2)), (2. 2)

where g(l ~, I'2) is the self-energy per spin of the
basic Kadanoff cell and is assumed to be a regular
function of f;. For simplicity we take no more

We consider a thermodynamic system deter-
mined by the temperature T and a second physi-
cal variable H which exhibits a tricritical transi-
tion'~ at T = T, and H =H, . For metamagnets, e.g. ,

FeC12, H corresponds to the magnetic field, while

for He- He mixtures, H is the difference of chemi-
cal potentials of each isotope. Then for H& H„a
second-order phase transition occurs in this sys-
tem on a critical curve T, (H) & T, while for H &H,

the phase transition is first order for T (H) & T„
where T,(H, )= T (H, )= T, It ha. s been shown by
Riedel and Wegner' that the tricritical behavior
for H& H, can be described by a model of renor-
malization-group transformations which contains
a tricritical fixed point & at T„H, with eigen-
values X«&X2, &1 and a second critical fixed point
C located on the critical curve at H„T,= T,(H,),
where H, & H„with eigenvalues X„&1 and Q, & 1,
In order to describe the first-order phase transi-
tion associated with tricritical behavior for H &H„
we will require in addition the existence of a third
fixed point D of these transformations, located at
H„, T, =T (H, ), where H, &H„with a special rel-
evant eigenvalue X,„=L and Q, & 1. Here L is the
change of scale of volume under renormalization
transformations (or the number of spins in a Kada-
noff cell). We have recently shown that these
conditions lead to a discontinuity in the order pa-
rameter at the critical curve for H&H, . Associ-
ated with each of these three fixed point T, C,
and D we introduce the corresponding scaling fields

and f;&, &=1, 2, which transform linear-
ly under the renormalization-group transforma-
tions" according to

(2. 1)

irrelevant variables into account than is neces-
sary, but the derivation can readily be extended
to include additional variables (see also Ref. 26).
To determine f(r~, 12) it is essential to impose
physically relevant boundary conditions of the
solutions of Eq. (2.2). These boundaries are an

important aspect of the model and in fact distin-
guish tricritical from critical behavior near the
fixed point at H, , T, . Suppose, for example, that f
is assumed to be a regular function of f,, at (;,
=0. In that case the curve defined by &„=0,
&0 corresponding to T,(H) is in fact not a curve
of singularities of f, and the fixed point at H„T,
gives rise to ordinary critical phase transitions.
This is indeed what. happens for an Ising model of
a ferromagnet which has the same fixed-point
structure described above with H, =O and T, =~
(vanishing coupling of the Ising spin}. Therefore
in order to obtain tricritical behavior near H„T„
the free energy must be singular at H„T,. If
f„(I't, f2) is the regular part of the free energy
corresponding to the solution of Eq. (2. 2) which is
regular at f, = f, = 0, the singular part f, is de-
fined by f, =f f„and sa—tisfies the homogeneous
scaling equation

f,(Xqgq, X2l2) =Lf,(l q, l2) . (2. 3}

Therefore f, can be written in the scaling form

f,(f~, 4) = g, l
u(x), (2. 4)

where x = fz I f, I is an invariant under renor-
malization transformation, and n = (2 —lnL/Ink, )
and P = Ink /Ink, . The scaling function u(x) can be
determined'6 in terms of g(l ~, f2) and depends in

general on the sign of &,.
The scaling function associated with one fixed

point can be obtained from the corresponding
scaling function of an adjacent fixed point (con-
nected by renormalization transformation) because
the corresponding scaling fields are related. This
leads us to the basic strategy for our approach:
We obtain the singularity structure of the cross-
over scaling function u, (x,) associated with the
tricritical fixed point from the known properties
of the critical scaling functions u, (x,) associated
with the critical fixed point C at H„T, and the
properties at the discontinuity fixed point at T~, H~.
The first step in our procedure is to express the
scaling fields f;, as functions of f;,. According
to Eq. (2. I) these are homogeneous scaling func-
tions. Thus in the domain of second-order phase
transitions we have for g;,

~;.=l „II'";.( x), (2. 6)

where x, = $2, 1(, I

~' and p;, =Ink;, /Ink~„
=Ink&, /In&„. The condition $„=0for the critical
curve T= T, (H) for H& H, implies u~, =0 at x, =x,
&0, which we assume to occur for f«& 0. The
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equation for the critical curve T = T, (H) in terms
of f„and 4~, 0 is then

r„=- l~„/x, l (2. 6}

From Eq. (2. 5) and the relation p.„=P,p„, where

p, = Ink, /Ink„, we obtain the scale-invariant
variable x, =(„lf„l & as a function of x, only,

x, =v2, (x,)l v~, (x,)l (2. 7)

We now take the second step, which is to sub-
stitute Eq. (2. 5) into Eq. (2.4) for f, as a function
of f;, T.his leads to a similar scaling form f, as
a function of g;„

j'. =
I
&„I'"u, (x,), (2. 8)

where

u, (x) =
I v„(x)l' ~u, (x,) (2. 9)

and 2 —n, =(2 —n, )p„. However, we must be
careful not to identify f, as the complete singular
part of the free energy when expressed in the
variable f;„because in general a similar con-
tribution is obtained from the regular part f„of
f at H„T, Howev. er, since this latter contribu-
tion is not singular on the critical curve („=0 it
will not contribute to the corresponding singularity
of the tricritical scaling function u, (x).

Since &„and f„are regular functions of T and
H at x, =x., v„(x) is also regular and vanishes at
x, =x, . We therefore set v~, (x)=(x-x,)&~,(x) for
x near x, . The critical scaling function u, (x) is
regular at x = 0 and we expand u, (x) = g u„,x". Sub-
stituting these expressions in Eq. (2. 9}we obtain

,( ) =
I

—x, I' "P ( ) I
—x

I

-"", (2. 10)
n=P

where

(u„,(x) =u„,v~,(x) I
v„(x)l' (2. 11)

is a regular function of x. Since ~t},& 0, the domi-
nant singularity u, (x} as x -x. is u, —

I x- x, (2

provided v~,(x.) 40. This result was previously
deduced from scaling arguments by Pfeuty, Jas-
now, and Fisher, '3 but the singularity structure
of u, (x}given by Eq. (2. 10) is more complex~8

than that conjecture by these authors.
A similar analysis cannot be carried out in the

domain of first-order phase transitions, because
we do not know the analyticity properties of the
scaling function u„(x). In this case the critical
curve T= T (H) is obtained by setting t'u =0 cor-
responding to x, = x & 0, which gives the condition

(2. 12)

The eigenvalue X„=L at the fixed point D implies
a discontinuous order parameter at (,~ = 0 as was
shown in Ref. 7. We shall assume the existence
of all higher-order derivatives of f„which im-
plies that

u, (x)= Qu„,(x —x )",
n =].

(2. 13)

where the coefficients u„~ generally differ on op-
posite sides of the critical curve.

To complete our analysis of the singularities of
u, (x) we note that in the neighborhood of x, =0 cor-
responding to the limit fz, -0, t'~, 40, f is regular
in f2, and therefore u, (x) is a regular function at
x= 0. Qn the other hand in the limit x, - +~, which
corresponds to fgp 0 fp&~0, f is regular in fgp,
which implies that

u, (x)=lxl"'" ~~ Q b lxl "'~.
n=p

(2. 14)

x =y, l l-(sgn~, )ly, /x, l""I '~. (2. 18)

To first order in T —T,(H) and H —H, we have

g„=A(H) [T—T,(H)],

where

A(II}= a~[1 y (d& —2c~b~) (H —H, )]

(2. 19)

(2. 20)

t~, = a&[T —T,(H)] + (bz —a2b, /a&) (H H, ) . —(2. 21)

From Eqs. (2. 19)-(2.21) we obtain an expansion
for y, ,

y, =P(H Hg)I T T,(H)l '~--
+~l T- T,(H)l' ", (2.22}

While the scaling fields f, are regular functions
of the physical variables T and H this is not the
case for the scale invariant variable x=g2lf, l

~.
To obtain the dependence of x, on T and H in the
neighborhood of the tricritical fixed point, we first
expand g;, to second order in the variables (T —T,)
and (H —H, ),

g« —a&(T —T,}+ b &(H —H, ) + c;(T—T,)

+d;(T —T, ) (H —H, ) + e;(H —H;)2 . (2. 15)

Substituting this expansion in the Eqs. (2.6) and

(2. 12) for the critical curve T= T,(H) we obtain
for H$H&

T,(H) = T, ya(H —H, )+b(H —H, ) +c,(H —H, )~~",

(2. 16)
where a = —b~/a„b = —I/a&(c, a~+ d&a+ e~}, and

c,= —(a2a+b)~ ~'/a~I x, l
~t. Hence 1'~, is tangen-

tial to the critical curve at the tricritical point.
The next step is to introduce scaling fields g,

for (, (&0,

n, =~„+It-„/;I"', (2. 17)

which transform like f„, but vanish on the critical
curve. Then x, is given in terms of y, = P~ I q, l

~'

by
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T,(H)=T, ,-'""'"H2 . .
dH

(2. 26)

(ii) the critical exponent of the specific heat is in-
dependent of the field H; and (iii) the coefficient
of the singular term is a smooth function of H.

We found in the Ising-model calculation that
H, &0, while an additional fixed point at H,, =0,
T,. &0 accounts for the zero-field antiferromag-
netic phase transition. This additional fixed point
has two eigenvalues X„,, Xz,. greater than o 1,
which seems to violate the aforementioned con-
ditions for smoothness. However, smoothness can
be recovered if there is a relation between the
eigenvalues of these two fixed points, as we now
shall proceed to show.

where

p=(a~ha —a~b~)a~'~'~~' and q=a2a~o'. (2. 23)

Note that Eqs. (2. 18) and (2. 22) determine the
scale-invariant variable x, in terms of the physi-
cal parameters T and H, and the directly mea-
surable critical curve T,(H). The constants P and

q depend on the coefficients of the first-order ex-
pansion of C„an dt's„Eq. (2. 15), but in practice
we can choose also x, /P as the scale-invariant
variable, and then only the unknown coefficient
q/P needs to be determined. This can be done,
for example, if we first determine y„Eq. (2. 18),
for T T,(H)-«H —H„so that the second term in

Eq. (2. 18) can be neglected, and then find q/P by
determining values of T and H for which T —T,(H)
= H —H, and y, remains unchanged.

For convenience in practical applications we

can express also the singular part f, of the free
energy directly as a function p, and p„"

f.= ln, l' '~ ~,(y,), (2. 24)

where &u, (y) is given in terms of the tricritical
scaling function &,(x),

~,(y) = ll-(sgnn, )ly/x, l"" ' "«,(,). (2.»)
The singularities of v, (y) as a function of y can
readily be obtained from the corresponding sin-
gularities of +,(x,).

The essential features of renormalization-group
transformations leading to tricritical behavior have
been found in numerical calculations of an Ising
model of a metamagnet which we discuss in Sec.
III. However, in one respect we have found a dif-
ferent result in our calculations (see also Ref. 16).
It is expected for an Ising metamagnet that the

fixed point C should be located at H, =O, T, ~Q,

giving rise to the antiferromagnetic critical transi-
tion at T= T„H= 0, while for small values of H

the condition &&, & 1, i =2, 3. . . , implies smooth-
ness, i. e. , (i) the critical temperature T,(H) is
a regular function of H at H=0,

Introducing scaling fields g;~ associated with
the fixed point C' at H, . = 0, T... we apply Eq. (2. 4)
for the singular part f, of the free energy, where
as before the scaling function u, , (x„)has a power-
law singularity I x,.—xo I

&' at x,, -=f&,. I f„.I
Since H and T are analytic functions of f;,,

at t „,=12;= 0, Eq. (2. 26) is satisfied if P, , = 2,
with d T,(0)/&H =2/xo. If we now introduce the

scaling field n, , =r.„,—(t2„/x, ) which vanishes on

the critical curve T= T,(H) and write

f.=n'; '~(y;), (2. 27)

In this section we discuss some theoretical as-
pects and present numerical calculations of re-
normalization-group transformations for a square-
lattice Ising model of a metamagnet with antifer-
romagnetic nearest-neighbor coupling constant K„
ferromagnetic next-to-nearest-neighbor coupling
constant K2, and a magnetic field H. The basic
Kadanoff cells are chosen according to a recent
recipe introduced by van I,eeuwen, where each
cell consists of a cross of L =5 next-to-nearest-
neighbor spin. The importance of this choice is
that the corresponding renormalization-group
transformations preserve the paramagnetic or
antiferromagnetic symmetry of the ground-state
spin configuration. These configurations become
degenerate on a surface in the coupling-constant
space, signaling the onset of a first-order transi-
tion. ~~ We will show that these properties imply
the existence of a scaling field &,„with eigenvalue
X&&=I- which vanishes on this degenerate surface,
fulfilling the renormalization-group conditions
for the occurrence of a first-order phase transi-
tion.

The ground-state energy or correspondingly the
zero-temperature free energy per spin of the
Ising model is f(K) = max[f'(K)], where

where y, =&2,.lg, . I "we see immediately that
smoothness is recovered provided that &u(0) = e(~)
40, which implies that X,g, =X~,.

It is worthwhile to emphasize there that the de-
gree of instability of a fixed point, i.e. , the num-
ber of relevant eigenvalues, does not by itself
determine the type of critical behavior which oc-
curs. In fact the critical ferromagnetic fixed
point, as well as the critical antiferromagnetic
and tricritical fixed points, has two eigenvalues
greater than 1.' What accounts for the essential
differences in these three cases is the singularity
of the free energy at the adjacent more stable
fixed point which has only a single relevant eigen-
value. For critical ferromagnetic behavior, the
free energy is actually regular at this fixed point,
which leads to the disappearance of the phase
transition at finite values of the magnetic field.

III. ISING METAMAGNET
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FIG. 1. Schematic diagram of fixed-point structure for
tricritical behavior discussed in Sec, III.

f'(K) =Qf'K (3. 1)

which corresponds to a renormalization-group
condition for a discontinuity in the order param-
eter conjugate to Pgp.

Our numerical renorrnalization-group calcula-
tions were carried out for a cluster of four cells
in a square array with the spins and cells satisfying
periodic boundary conditions. In addition to the
coupling constants K, and K~ and the magnetic
field H which are of interest in this problem, we
included also three and four spin coupling constants
K3 and K4 in order to obtain the complete renor-
malization-group transformation for this approxi-
mation.

A diagram of the fixed points found in the anti-
ferromagnetic domain K, & 0 is shown in Fig. 1 in
the subspace of temperature T ~

I K, I

' and mag-
netic field H. The fixed point C' for zero magnet-
ic field which gives rise to the critical antiferro-
magnetic transition has a thermal eigenvalue X„,
= 1.79 and magnetic eigenvalue X2,, = 1.44.
From Onsager's solution we expect X~,, = v 5 and
the smoothness condition discussed in See. II im-
plies X~,, = v'X&,. The fixed point C has only a

The plus and minus superscripts refer to paramag-
netic and antiferromagnetic spin order, respec-
tively, and f; are constants. The condition for
degeneracy is then Z (f' f)K, =0.-It can readi-
ly be shown that if the renormalization-group
transformation preserves the spin order, the
scaling equation for the free energy, Eq. (2. 2),
applies to f'(K) and f (K) separately, with g(K)
=gg K, provided that periodic boundary condi-
tions are satisfied. ' Hence the field f„=Q (f;
f)K, sca-les according to

(3.2)

single relevant eigenvalue X~, = 2.41 which should
be equal to X„, to preserve smoothness. The
critical curve T,(H), which is defined by the
points which map towards the fixed point C, ends
in a tricritical fixedpoint 7 with two relevant eigen-
values, while below the tricritical temperature
the critical curve T (H) corresponds to points
mapping toward the zero-temperature discon-
tinuity fixed point D with an eigenvalue X,„=L= 5.
We found the relevant eigenvalues of the fixed
point T to be X„=4. 44, X, = 1.69 and correspond-
ingly the tricritical exponents are o., =0. 921 and

&, =0. 352. Results for the first-order E expan-
sion obtained by Chang, Tuthill, and Stanley
[see Eq. (14)] give X« = 4. 18 and X, = 2. 28. Points
above the critical curve are mapped toward a
fixed point H at infinite magnetic field while points
below the critical curve are mapped towards a
fixed point A at zero temperature and magnetic
field. Both of these fixed points are stable in all
directions. At infinite temperature and zero mag-
netic field corresponding to vanishing spin cou-
pling there is a fixed point 0 which has a single
relevant magnetic eigenvalue X„=~6which deter-
mines the properties of uncoupled spins in a mag-
netic field. All points above the critical tempera-
ture with zero magnetic field map towards this
fixed point. Finally, there exists also a fixed
point on the K2 axis leading to the unusual prop-
erties of the Baxter model, as discussed recently
by van Leeuwen, ' which is not shown in this dia-
gram.

In Fig. 2 we show the calculated critical surface
in the subspace of the coupling constants Ky and K2
and the magnetic field H by a set of curves on
this surface with constant H. The almost horizon-
tal line is the line of tricritieal points on this sur-
face which separates the domain of first- and sec-
ond-order phase transitions. For K, /Kz -- —0. 5

results of Monte Carlo calculations for the tricrit-
ical temperature have been published~3 which give
for the ratio of the tricritical and the Neel tem-
perature T,/T, &--0. 34 as compared with our cor-
responding result of 0. 22. In the limit K, —0 the
tricritical curve consisting of points mapping into
C' comes together with vertical slopes ending in
the Baxter tricritical fixed point on the K2 axis.

We have calculated the magnetization I/I as a
function of K~& 0 for Kz/K~= —1 from the series
expansion of the free energy, and in Fig. 3 the
results are shown for several fixed values of H.
The Neel point is located at K„,= —Q. 157 and H, ,
=0 and the tricritical point is at K, = —0.465 and

H, = 1.84. For H &H, the magnetization is discon-
tinuous and we obtain the coexistence curve shown
by the two dashed lines, while for H& H, , M is
continuous but the susceptibility y becomes in-
finite along the critical dashed curve. In Fig. 4
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larly difficult to apply in this case of competing
interactions; e.g. , the tricritical point cannot be
located by present series data, ~5 although for the
Blume-Capel model successful calculations have
been carried out. Finally, we remark that the

mean-field theory not only gives incorrect critical
exponents in two dimensions but fails also to yield
the correct dependence of the tricritical point on
the relative strength of the competing spin inter-
actions K, and K2. 2
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