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Variational calculations of two-dimensional liquid and solid states of *He interacting by a Lennard-Jones
potential are presented. The lowest-energy state of this system at T = O is shown to be the liquid phase. At
higher densities, the system does crystallize. The melting and solidification densities are computed; the melting
behavior is compared with the observed melting of solids in two dimensions. The errors of previous

approximate calculations are discussed.

I. INTRODUCTION

It is well known'® that at 7 =0 the lowest-energy
state of *He is a liquid state, and it only crystal-
lizes at higher densities under external pressure.
This fact is attributed to the large zero-point mo-
tion of *He atoms. Since the degree of importance
of zero-point motion may depend on the dimension-
ality of the system, it is interesting to investigate
whether a two-dimensional Bose system with sim-
ilar interaction would behave in the corresponding
way. In this paper, results of such an investiga-
tion are reported.

In previous calculations on the two-dimensional
liquid phase of a Bose system in which particles
interact with a Lennard-Jones potential, both a
Monte Carlo method® and the molecular-dynamics?®
method were employed to compute the variational
energy in the low-density region (po%<0.33). Sev-
eral approximate integral equations [ Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY), Percus-
Yevick, and hypernetted chain] were used to ex-
tend the liquid-phase calculations to a higher den-
sity range®* (po® <0.46). However, it is well known
from the classical theory of liquids® that these ap-
proximations are not accurate in the high-density
region, especially near melting. It is also clear
from Ref. 4 that the BBGKY integral equation leads
to errors at quite low densities (no® ~0.06) for the
system we are studying. For the two-dimensional
crystal phase, a semiclassical approximate cal-
culation® and a simple Hartree approximation® have
been reported. For a monolayer of *He on a sub-
strate, a cluster-expansion technique has recently
been used by Novaco.” A direct comparison with
our results is not feasible because of the presence
of the substrate potential. It should however be
borne in mind that in three dimensions cluster ex-
pansions generally give inferior estimates for
variational energies® as compared with Monte

Carlo calculations. For three-dimensional *He
crystals, both approximations are known to be in-
adequate for quantitative purposes. Since the sta-
ble phase is determined on energetic grounds, it
is important that energies be calculated accurate-
ly in both liquid and crystal phases. As mentioned
above, accurate calculations have been reported
only for a small low-density region of the liquid
phase. Our calculations will not only enable us to
determine whether melting or solidification is pos-
sible, but will also serve to check the validity of
the approximations that have been used.

The model we investigate will be explained in
Sec. II. It is a model well tested in three dimen-
sions. Our results will be given in Sec. III, and
Sec. IV will be devoted to the discussion and im-
plications to our results.

We remind readers that the proof by Mermin® to
rule out the existence of two-dimensional crystals
at finite temperatures is not applicable when T =0,
and thus has nothing to say about our problem. It
should also be noted that the absence of crystalline
order in two dimensions only occurs when the ther-
modynamic limit is taken. For two-dimensional
systems the limit required in the proof is obtained
so slowly that it does not apply to laboratory sys-
tems, much less to those modeled in our calcula-
tions.

II. MODEL

The Hamiltonian of the system can be written as

__ B 1 = =
H__mzizvf+§§1/(|r,—r,l), (2.1)

where V% and T, are the two-dimensional Laplacian
and the position vector, respectively, and

V(r)=4e0[<%>m—<%>s}, 2.2)
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with €,=10.22°K and 0 =2.556 A.
The trial wave function for the liquid phase is
assumed to have the following form

¥y, =exp (‘% Z“U) ’

i<j

(2.3)

with u;; =u(r,;) =(b/7,,)°, b being the variational
parameter.

For the crystal phase, a standard localization
factor is used so that the wave function takes the
form

N

by =exp<—% E uu> Hhi

i<j i=1

=exp<—% Zm;) fI exp(—?(?, ‘§1)2> ’
A (2.4)

where {—ﬁ,} is the set of points in the appropriate
triangular lattice. In the crystal phase, both A
and b are variational parameters.

The variational wave functions assumed here
are of the form used very successfully in the
three-dimensional *He calculations.® The Monte
Carlo method with periodic boundary conditions
are used; systems with 36 and 100 particles are
treated. Where some number dependence for the
result is suspected, results obtained for the larger
system are always presented. In a typical sum
where 5Xx10° configurations are involved, the en-
ergy is statistically accurate to within 3%.

III. RESULTS

For a given density, one varies the parameters
to obtain the lowest energy. Fortunately, one does
not have to repeat the Monte Carlo calculations for
all densities. Instead, a scaling technique® is
available to relate the energy at one set of param-
eters to that at another set. Let s=(p'/p)'/2, b’
=b/s, and A’ =As®. Then

E(p’,b') _ /(g \? o\ 2572b°s% / 1
Bopena 5 ((2) )= ((5)) ] Fa ()
(3.1)
for the liquid phase, and
E l,bl,AI 12 6
e aa e ((2))-((3))
25 215 1 2 o2
e Sz<ﬁ>+”;lf‘ (3.2)

for the crystal phase. In terms of the radial dis-
tribution function g (») computed with b, A at den-

sity p,
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<%>=p fg(r);lgdzr.

Since the range of densities of interest is very
large, the energy estimates using Egs. (3.1)=(3.3)
may have different variances for different values
of s. It is clear that to study possible melting of
a two-dimensional crystal, one would like to carry
out the variational calculations near the melting
density. Since we have no a priori knowledge of
this density, we pick a reference point in the low-
density (po® =0.234) liquid phase. Calculations at
this density provide a check against other pub-
lished work and when carried out over a sufficient-
ly wide range of variational parameters can be
used to obtain reasonably accurate values of the
energy in the crystallization region. A reference
density (po? =0.8) in the crystal regime is chosen
and used in the same way. In the present calcula-
tions, b is varied between 0.9 and 1.8, and A be-
tween 2.0 and 18. After we found the rough shape
of energy-vs-density curves in this way we further
refined the estimate by carrying out additional
variational calculations near the melting density.
We find the ranges of parameters for the optimal
energy in the density range 0.2 < po® <0.8 are 1.15
<b<1.25 and 3.0< A< 12.0.

Curves of the variational energy vs density for
both phases are shown in Fig. 1. Also shown in
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FIG. 1. Energy vs density. I, variational energy for
the liquid phase; II, the variational energy for the crys-
tal phase. Also in the figure, open circles, BBGKY
results; +, semiclassical calculations; £, the Hartree-
approximation results. The insert shows the usual Max-
well double-tangent construction, which establishes the
existence of the solid phase.
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Fig. 1 are illustrative results of (i) the BBGKY
equation with the superposition approximation in
the liquid phase,* (ii) semiclassical estimates in
the crystal phase,® and (iii) the Hartree approxima-
tion® in the liquid phase. The results of previous
calculations in the low-density region (po®<0.33)
are not shown here; they agree with our results

to within 0.07°K. Tables I and II give the averages
of 7%, ™7, »~!2 which may be used with the scal-
ing equations (3.1) and (3.2) to calculate the energy
at various densities.

Several points of interest can be made from
Fig. 1:

(i) The lowest-energy state is in the liquid phase.

(ii) The double-tangent construction shown in the
insert of Fig. 1 shows that crystallization takes
place at higher densities.

(iii) po® =0.46 melting; po?=0.4 at solidification.
(iv) As speculated in the introduction, several
approximate calculations in the high-density range
are not accurate enough to determine the crystal-

lization and melting densities.

(v) In the three-dimensional system, exact vari-
ational calculations exist to support the Hartree
approximation at very high densities and it was
therefore believed that the Hartree approximation
would apply in the two-dimensional system® near
po? =0.75, which is the experimentally observed
“He monolayer completion density. However, as
shown in the figure, between the melting density
(po? =0.46) and po® =0.75, the Hartree approxima-
tion gives poor results. This indicates that though
the particles are well localized, the correlations
are still strongly dominated by the repulsive poten-
tial as manifested by significant lowering of the
energy by the Jastrow factor.

Radial distribution functions g (r) at two densi-
ties in the liquid phase are shown in Fig. 2; the
lower density is near that of the energy minimum,
the higher density near the solidification density.

TABLE 1. Average values of (0%/7%), 7/r"), and
@12/71%) at po?=0.4 in the liquid phase.

paz b <a-6/76> (0-7 /,,-7) @.12/712)

0.4 1.10 0.427 0.369 0.306
1.12 0.410 0.350 0.274
1.14 0.392 0.331 0.236
1.16 0.376 0.312 0.208
1.18 0.360 0.296 0.183
1.20 0.349 0.284 0.165
1.22 0.336 0.270 0.147
1.24 0.323 0.256 0.130
1.26 0.312 0.245 0.118
1.28 0.301 0.233 0.104
1.30 0.295 0.227 0.097
1.32 0.286 0.218 0.088

TABLE II. Average values of (8/7%), 7/7"), and
©12/712) at pa?=0.45 in the solid phase.

po? b A @SaY @y et
0.45 1.0667 2.0 0.467 0.404 0.338
3.0 0.420 0.353 0.258

4.0 0.393 0.324 0.212

5.0 0.368 0.298 0.179

6.0 0.347 0.276 0.153

1.1 2.0 0.442 0.376 0.286

3.0 0.391 0.321 0.204

4.0 0.372 0.300 0.173

5.0 0.360 0.288 0.162

6.0 0.333 0.261 0.126

8.0 0.312 0.238 0.103

10.0 0.292 0.218 0.079

1.1741 2.0 0.390 0.318 0.185

3.0 0.364 0.290 0.150

4.0 0.340 0.266 0.125

5.0 0.324 0.250 0.108

6.0 0.313 0.239 0.097

Note that the positions of the first peak of g(r) for
the two densities differ by approximately 0.20. By
contrast, the corresponding difference!® for three-
dimensional *He at two equivalent densities (po
=0.328 at the energy minimum and po? =0.373 at
solidification) is at most 0.02¢0. The larger differ-
ence in the peaks of g (r) for the two-dimensional
system is undoubtedly due to the larger difference
in the two densities. Thus given that the range of
liquid densities in two dimensions is larger than
that in three, the former is a very useful system
to test the validity of theories on strongly interac-
ting Bose liquids.
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FIG. 2. g(r) for po?=0.4, I; and for po®=0.234, II.
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In the liquid phase, one can easily verify that
Reatto’s proof'! of Bose condensation for the class
of wave functions given by Eq. (2.3) is still valid
in two dimensions. Indeed, we find the condensate
fraction at po® =0.234 is 0.38, and 0.12 at the solid-
ification density (po® =0.40). These condensate
fractions are much larger than those found in
three dimensions. The differences are sufficient-
ly large (about a factor of 3) that we feel there is
a problem here to be investigated.

IV. DISCUSSION

From the set of variational calculations we have
presented, we are able to show that the lowest-
energy state of the two-dimensional Bose system
is a liquid phase, and that it crystallizes only at
higher density—as in three dimensions. However,
important quantitative differences exist, and we
suggest that the present two-dimensional system
can be used to test theories on strongly interacting
liquids because it covers a much larger range of
densities. This fact is already reflected in a dem-
onstration that the inadequacies of certain approx-
imate integral equations used to treat such a sys-
tem become evident when they are checked for the
whole range of liquid densities.

Recent experiments’? on monolayers of *He ad-
sorbed on Grafoil showed that melting of a two-
dimensional solid occurs at po®=0.53. It is very
interesting to observe that the melting density of
our crystal (po? =0.46) at T =0 is close to the ob-
served value. Since the model we used has been
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well tested in the three-dimensional Bose system,
it is unlikely that the close agreement is purely
fortuitous. It is of course true that in the experi-
ment on Grafoil it is not known whether a crystal
or disordered solid forms. The experiments were
of course carried out at a finite temperature—we
do not think that this will have a significant effect
on the crystallization density. Our model contains
no substrate and this may influence the results.
The presence of the substrate potential is believed
to be responsible for the observation of a regis-
tered phase at a density po® =0.42. It also causes
the experimentally observed phase diagram to be
different from the one reported here. However the
experiments by Elgin and Goodstein'! suggest that
only in the low-density region are the properties
of the monolayer strongly influenced by the sub-
strate potential. In the high-density region they
report that the solid phase and the transitions
“seem little affected by the substrate potential
once the semiempirical model has been used to
remove the effects of substrate inhomogeneity and
of second-layer formation.” Thus in the high-den-
sity region, our modeling of a two-dimensional
film without introducing the underlying substrate
is likely to be sound. However, we recognize the
possibility that the experimental melting density
may be somewhat affected by substrate. It is
therefore important to carry out similar calcula-
tions with a model substrate. Nevertheless the
agreement with the measured melting density gives
some support to the conjecture that a crystal state
is formed in the experiment.
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