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The previous derivation by two of the authors of coupled Bloch equations appropriate to conduction-electron
spin resonance is extended to the case where the conduction electrons and localized spins have different g
values. As before, this derivation is carried out to second order in J, the exchange interaction between the two

species. The derivation is also carried out in the presence of the hyperfine interaction between the nuclear

spins and the electon spins of the localized impurities. Finally the form of the coupled equations when there

exists "direct relaxation" is discussed and some rather unexpected features are found.

I. INTRODUCTION

This paper continues the discussion of the theory
of local-moment resonance which two of us and
Cowan' began a number of years ago and which was
amplified by two of us more recently. (This latter
reference is henceforth referred to as I. ) At the
outset the results of I will be reviewed and con-
trasted with the work in this paper. In I we de-
rived the Bloch equations for the conduction-elec-
tron magnetization density M, and for a dilute con-
centration of localized magnetic impurities of mag-
netic-moment density M~. The spins of these two

systems were characterized by the same gyromag-
netic ratio y and were coupled by an exchange in-
teraction J. The resulting Hasegawa-like equa-
tions were derived to second order in J in the limit
kT» yH.

A. Results of I

5M~ = M~ —go [H+ (n, + 2n~)M, ]. (l. 2)

Here the susceptibilities are those for noninteract-
ing species. Specifically the conduction-electron
Pauli susceptibility is

X.'o = —.
' p(ky)', (l. 3)

where p is the density of states (for a single spin)
at the Fermi surface, while the N local spins pos-

There were two essential features of the results
of I. First, the disturbed magnetizations were
shown to relax to the local instantaneous equilib-
rium magnetization. This led naturally to intro-
duction of deviation magnetizations for the con-
duction electrons

&M, = M, —)Po(H + n, M~),

and the local spins

sess a Curie susceptibility

0 X—,'S(S+ 1),
Xgo=

k T (&y) . (1 4)

The remaining quantities in (l. 1) and (l. 2) result
from claculating the effective magnetization to
second order in J, namely,

n', = Z/y'n (l. 5)

and

n2= (J/n) (p/y ) ln(ks T/D).

Here n is the density of electrons. A surprising
result is the logarithmic dependence on the ratio
of the thermal energy (ksT) to the bandwidth (D) of
the electrons. This manifestation of the Kondo ef-
fect was one of the principal objectives of I. An-
other surprising feature was the asymmetric form
of (1.1) and (l. 2)—in particular, the absence of
second-order, or indeed any high-order, term in
(1.1). By setting 5M, and 5M„equal to zero, the
correct susceptibility to second order in J does
result. Our notation differs here from that of I in
that we have used a suPerscript zero to refer to
the case of equal gyromagnetic ratios. Later on
in the paper quantities not bearing that superscript
can be assumed to have been calculated using the
appropriate gyromagnetic ratio.

The second principal feature of I is that magne-
tizations are driven by different effective magnetic
fields than appear as the coefficients of X'„and
y, o in (1.1) and (1.2), respectively. This surpris-
ing effect only shows up in second order in J, and
its occurrence has discouraged us from attempting
higher-order calculations in J. The easiest way to
illustrate this is simply to write down our equa-
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tions [(l.24)-(l. 26) in I]. We choose to do so in a
way which will allow ready comparison with the

results of this paper.
Qur Hasegawa-like equations a,re

y 8t Sl Sd ~ fthm +nfl

0 01 SMu - ~ o o - ~ - 1+ o'2)f.o 1 5Mu 1 5M,
+ [H+ (o., + o, M, j x M, = — ' + '+-

@ 8l N ds y Sd
(l. 8)

The most important terms on the right-hand sides
of (l. 7) and (1.8) from the standpoint of the actual
calculation in I are rates characterizing the loss of
magnetization from the conduction electrons to the
local sp1ns

1 2m J
PNo S(S+ 1)T g A fl

and the reverse rate, from local spins to the con-
duction electrons,

where each rate has been claculated to second or-
der in O'. The other terms on the right-hand side
involve the relaxation of the conduction-electron
magnetization 'to the lattice via 1/T~( and that of
the local spine to lattice via. 1/T~, . Our treatment
of the latter process was heuristic in I, with the
result that our Bloch equations weakly violated a
symmetry relation. This flaw is discussed in de-
tai. l at the outset of Sec. III, where the resolution
of the difficulty also occurs. Turning now to the
left-hand sides of (l. 7) and (l. 8), observe, first,
the presence of a diffusion term in (l. 7) associated
with the itinerant cha, I aeter of the conduction elec-
trons. More relevant to this paper are the effective
driving fields causing precession of the magnetiza-
tion.

l

down by inspection. Qf course, the results to first
order in J are already well known, the results to
second order being not so intuitive. At the time of
I the bulk of the experimental works'6 was on 8-
state ions for which y, is very close to y~. Since
then a number of non-8-state rare-earth ions
have been studied in several host meta, ls. For
these (y, —y, ) H may exceed 1/T„and hence new

phenomena not previously considered in I may be
observed. Such a clearcut experimental situation
does not motivate the remaining two aspects. (ii)
%e develop a more careful treatment of the man-
ner in which a mechanism for directly relaxing the
local spins to the lattice is included in the Bloch
equations. Two classes of mechanisms are con-
sidered. (iii) The effect of the hyperfine interac-
tion is included. A preliminary version of this
wolk appeal'ed 1n Ref, 1.

Let us first write down the derived Bloch equa-
tions in a general form for y, w y„and then discuss
several special cases. In this remember that
(1.1) becomes

(l. 11)

8. Improvements in I

There are several aspects —frequently arising
in physical systems —that have been left out of
{l.1) and (l. 8). The three taken up in this paper
are as follows: (i) Differing gyromagnetic ratios
y, and y~ for the conduction and local spins, re-
spectively, are included. To even the casual
reader of I this might appear to involve a calcula-
tion of equal (and hence appalling) magnitude. By
a trick and a little good luck we are able to use the
voluminous appendixes of I to write the results

Qn the other hand we will not specify 5M„since it
depends so much on the case being considered.
Further we note that in

(l. 14)

no factor of y„appears as it does in m, . Finally
we note that

(l. 15)

The derivation to second order in J of the Bloch
equations for y, w~ yields

' —D,V (5M, /y, )+[K+(o,, +v~, no)M~]xM, +no ~v„—v~, M~x5M, = — ~+ '+ ' ~ (1 18)18M, 2
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+[H+(@~+v«o.'2)M, ]&&M, + n2 ~v, ,—v«5M, xM, =— (1.17)

The reader is urged to compare these against (1.7)
and (1.8) to see the many differences that occur.
No alarm should be taken by the asymmetric oc-
currence of v's as opposed to the p, 's. This occurs
because we have taken advantage of our knowledge
of 5M, to organize the left-hand sides in a patently
asymmetric fashion. Furthex' T&, does not ex-
pl tly pp bt. hdd d t ' dp. '

depending on the ca.se, several of which we now
consider.

j. 4'o hypergne and I/Tdj= 0 (See. II)

In this cRse there ls R consldelRble 81mpllflcR-
tion:

all v's=ali p's=(1 —o.~X„) ',
whereas &M, is given by (l. 11) and 5M, by (2.40):

M~ —X~o{H+ &gM, +2&2(y,/y~)(M,

—X [(H+u, M,) -(y, /y, )(H+o.,M, )]]) . (1.19)

One can calculate the susceptibilities to linear or-
der in e, or e~ by setting 5M~ = 0 and 5M, = 0:

X s = X go[I+ (o'i+ 2&a)X ~0]

Xs X@0(I+u1Xco)t

which, allowing for changes in the definitions of

X „0, go, n j, and e~, are the same as in I, While
those results hold only for this case, the procedure
works for every case.

2 No hyperfine; local spin relaxes by fhuctuution
meehanisrn (See. III)

In this case we imagine some fluctuation mech-
anism —such as spin orbit coupling to the phonons
in the case of the conduction electrons —which re-
laxes the local spins to the lattice. Those objects
off which the local spin flip (whatever they may be)
Rx'6 Rssumed to be ln thel mal equilibrium. While
not defending this mechanism (since we do not know

what the right one, if any, is), we believe that
implications of this possibility should be worked
out if only for the restraining influence they may
have on the experimentalists.

In any case, we find that [see (3.13)]

&s~ = ~a~ = ~a~ = ~~s ~

Vfe have only exhibited the dd term since all the
other tel 7118 deviation fx'om unity ls 1'educed by Rn

additional factor of e X, . It is easy to show, for
example by using the approach in Ref. 1, that v«
gives rise to an additional torque on the total mag-
netization so that even for y, =@~ there is a loga, -
rithmic g shift of order

&y/1 -
oaX,OT«/T«

This rathex surprising result would seem to be a
way of uniquely identifying this mechanism for di-
rect relaxation of the local spins. The ratio T„/
T„, also is seen in the formula for 5M, (3.15)
which we do not reproduce here.

3. Hyperfine field (or frozen-in inhotnogenueity)
($ec. IV)

The final case we consider is one where the
local spin sees a hyperfine field, or alternately,
a static inhomogeneous field, which can give xise
to both a shift and width for the resonance. Here
we find that

all v's = v = (1 —a2X,o)-',

but all the p, 's are different, The most significant
P s RgRln, ls

i"«= ~(I+ ~«/Tui) ~

where now T„, ls a complicated function of fre-
quency and temperature.

There are two interesting extreme cases asso-
cia,ted with complex structure of 7.'„,. Qn the one
hand, if y, = y„, we find both a nonlogarithmic g
shift and an additional broadening. On the other
hand, if the conduction electrons a,nd local spin
resonances are widely separated, then we find no
additional g shift, but an additional broadening for
the local spin which is proportional to T„(i.e. ,
not I/T„!), so a quite anomalous temperature de-
pendence might be observed under certa, in circum-
StRnC6S.

C. Connection to Other vyork since I

The forms (l. 1) and (l. 2) for 5M, and 5M„, re-
spectively, were also arrived at about the same
time as Ref. 1 by Cottet et gE. 0 and have since
been verified by other microscopic calculations"'
at least to first order in the exchange coupling J.
However, there appea, red a woxk by Sasada and
Hasegawa, '3 based on the Anderson model'4 rathex
tha. n on the s-d exchange model which we used,
which came to the opposite conclusion, that is,
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M, - (y/v, )M„M,- (v/v, )M, ,

G, -(v, /~)H, H, -(y, /v)H.

(2. la)

(2. lb)

We will eventually also redefine what we mean by
the various symbols for the susceptibilities, but
for clarity, the discussion of this is deferred until
later. The replacement of the physical problem
by the ficticious one has two advantages. The
first is the vast majority of the term in the gen-
eralized Kadanoff-Baym equations '~ (6KB) re-
main unchanged from their values in I, and so a
minimum of extra ealeulation is involved. The
second is that one can automatically include the
effects of the Hartree-like or mean-field self-en-
ergies [the diagrams of Figs. 1(a) and l(c) in I] in
the definitions of H, and Hz. Therefore we hence-
forth neglect these diagrams and at the end of the
calculation, instead of making the replacement
(2. la) followed by (2. 1b), we make the replace-
ment (2. la) followed by

H. -(v. /~) [H (~/.~.~.)M.],
II, -(~./~) [H (~/.~.V.)M.]

(2. 1c)

that the magnetization relaxed, respectively, to a
full s or (f susceptibility times the magnetic field
H. This apparent contradiction was resolved in a
note added in proof to I, and arose simply from a
difference in the definition of the magnetization M,
and 1Vl„ in the two different models; indeed by ap-
plying the Schrieffer-Wolff transformation' we
showed that the two apparently incompatible sets
of equations could be transformed into each other.
Schultz et nl. and Fredkin' have extended our
results to the case y, 4y~," they find the same cor-
respondence, although now the transformation in-
troduces temperature dependence into the effective
y values. They also have applied symmetry re-
lationships to find the most general form that such
a set of coupled Bloeh equation ean take.

IL NONEQUAL 6 VALUES

A. Method of calculation

In this section we extend the derivation of I to
nonequal g or y values. As in I we prove that the
exchange-coupled conduction electrons and lo-
calized spins are describable by a set of coupled
Bloch equations in order J lnT, and we rigorously
produce the coefficients to this order on either
side of the equations. As a ealculational device,
instead of solving immediately the non-equal-y
problem, we first consider a fictitious problem in
which the conduction electrons and localized spins
have the same gyromagnetie ratio y, but which in-
teract with separately distinguishable magnetic
fields H, and H~, respectively. Then at the end of
the calculation the solution to the physical problem
is recovered by making the replacements:

~((, ) I&('o ~()'')
2' PQ PQ

(2.4)

where the Cauchy principal value is implied. This
means, among other things, that Z(f)0) has the
same functional relationship with Zo(po) as im-
plied by (2. 3) for I'(po) and Fo(po). Finally, one
may also show that (see Appendix)

&'(f 0) = &o(f 0)+ &s,(&0)

az'(), ) - - M, —x'.,(H. -H, ))
sp, ~ ' S(S+1)q,',

Again, the only difference between (2. 5) and the
equivalent expression in I [Zs~ is given by Eq.
(C20) of I] is that H is replaced by H~ and then M,
is replaced by M, —y,o(H, -Hq).

The quantity Z/ny, y~ is of course the non-equal-g
version of what was called n& in I.

8. Expansion of the self-energies

To proceed further we note that the various self-
energy functions can be expanded into pieces pro-
portional to M„M„, etc. For example, consider
the imaginary part of the self-energy r(f),) for the
local spina (as in I we use the unner case letters
to denote local spin quantities while lower case
letters refer to the conduction electrons-the one
prominent exception being that to follow convention
we denote the conduction-electron magnetizations
by M„as before M~ refers to the local spin mag-
netization, whether it be (f like, f like, or what

ever). This function I' may be written

I'(P,)= F,(P,)+ I'„,(P,)+ I'„, (P,)+ r„ „ (P ), (2.2)

where as in I, pQ is the energy variable. The new
term made possible by the distinctness of H, and

H„ is the final one, I'0, „„,which is defined to be
that piece of I' proportional to (H, —H~). All the
other pieces must be the same functions as cal-
culated in I, although I'„was called I'0 there. It
is shown in the Appendix that

0

F(f ) F (f )
(f 0) S H s 40( s

0 0 0 +
sf y )( g(g+1)~()

(2. 3)
where I'0(PO) is the equilibrium zero field value
[see Eq. (C4) of I]. The only new term is the

y, o(H, —H~) term, which when multiplied out as in-
dicated in (2. 3) gives I'„, s„. We note that the I'„
implied above is the same as given in I [Eq. (Cll)]
although it was not written in this simple form.
In writing (2. 3) we have omitted the possibility of
any direct relaxation of the local spins, and the
discussion of this is deferred to See. III. The real
and imaginary parts of the self-energy satisfy the
usual dispersion relation
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(
sro(Po) - &a-H,

rK If Po-)
sP

ys s(s I) (2.7)

Although this is identical ig form to the analogous
term for the local spins [Eq. (2.3)], in this case
y„cannot be written in such a simple form as im-

d
plied by (2. 5) for I'~ so that the whole y function
is no longer a simple function of yp. From the
analog of the dispersion relation (2. 5) for the con-
duction electrons, one can see that the functional
relation (2.7) holds for the real part of the conduc-
tion self-energy o as well. Finally, as shown in
the Appendix, we can write

We treat the various self-energy functions for
the conduction electrons in a similar manner. For
example, defining (the proof that ys, = 0 given in I
goes through unchanged)

r(Po) =ro(Po)+rs, (Po)+ys, (Po)+rH H(P-O) (2'6)

one can show (see Appendix) that

cedure we make use of decomposition of the func-
tions G and g . Just as in I, we write

G'(P, P,) =A(P, P,) F(P,)+5G'(P, P,), (2.1la)

g (P, Po)=a(P, Po)f(Po)+5g (P, Po), (2. 11b)

where A and a are the nonequilibrium spectral
weight functions for the local spins and conduction
electrons, respectively, and F and f are appro-
priate Fermi functions. The decompositions (2. 11)
have the advantage that when 5G and ~g are ne-
glected, the right-hand sides of the two GKB's
vanish. As always

g +g = a = 2 Im[Po —s&+ y s ~ H, —o (Po) ——,
' i y(Po) ] ',

(2. 12a)

G'+ G'=A = 2Im[Po+y S ~ H, —Z(Po) ——,
' iF(Po)] ' .

(2. 12b)
In deriving the Bloch equation one repeatedly has
to evaluate

a (Po) ao(PO) + aH (Po) + aM (Po)

+ &~,(Po)+ aH;s, (Po) i

where

(2.8)
and

Tr yS+5G (P, Po)
PiPp

(
S&'(Po) - He-Hs

as, s,(Po) =,-p r s,(, ,)' (2.8)

C. Decompositions

The generalized Kadanoff-Baym equation (GKB)
for the local spins is

-i[Go +yS ~ H~ —Z), G ]i+[Z, G]

= ——,
' (r, G'}+-', (Z', A}, (2. 10)

where the square brackets represent commutation
and the curly brackets anticommutation. The GKB
for the conduction electrons is obtained by replac-
ing capital letters by small letters as appropriate
and H„by H, . The symbols have the same mean-
ing as in I. The general procedure is exactly as
before: first we substitute the various self-energy
functions given above into the GKB; and the GKB
is Fourier transformed with respect to difference
variables with the aid of the gradient expansion as
described in Appendix A of I; finally to obtain the
Bloch equation for the local spins, (2.10) is mul-
tiplied by y S and summed over p and pp and traced
over S; an analogous procedure is followed for the
conduction electrons.

To simplify the process of carrying out this pro-

In Eqs. (2. 6) and (2. 8), the functions with sub-
scripts other than H„—H, are the same as those in

I, except that 0H, y„,, and o„denote the functions
called o„, y„, and o„ in I, with H replaced by H, .
The various self- energy relations given above neglect
the direct relaxationof either the s or d spins; dis-
cussion of this is deferred to Sec. III.

».rs +5g'(P, P,),
P~ PQ

where 6G and 5g are the quantities defined by the
decompositions (2. 11). By referring to the analo-
gous evaluations in I, the derivation can be ac-
complished with a minimum of effort. First, for
the conduction electrons the result [Eq. (4.8) of I]
still holds

Tr, ys P 5g (p, Po) = M, —)goH,
P~ Pp

(2. ia)

Tro y S g 5 G (p, Po)
Po Pp

= Mg —)(go(Hg+ 2(xo [M& —gzo(H& —H~)]}, (2.14)

where

oo ——(J/n) (p/y) In(ks T/D) (2. 15)

in our model where the exchange coupling /and the
density of states p are assumed constant; this is
because the result (see Appendix D of I) depended
only on the independence of cr and y on the mo-
mentum and not their specific form, so that the
sum in (2. 13) is not changed by the presence of the
extra piece (2. 7) in the self-energy. On the other
hand, for the local spins the functional form I'(Po)
[Eq. (2. 2)] and hence A [Eq. (2. 12b)] is the same
as in I, except for the presence of the extra term
r„„whose effect may be incorporated, accord-
ing to Eq. (2. 3) by replacing M, by M, —y,p(H, —H~).
Therefore, the appropriate sum, obtained by set-
ting a, =0, H H~, and then M, M, —y, o(H, —H~) in
(4. 15) of I is
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Xso = 2 P(iy)

~o - -,' S(S+ 1)N(ky) /ko T .
(2. 16a)

(a. Isb)

M =y'H,
~~=Xu&~ ~

(a. Isa)

(2. 17b)

In equilibrium the sides of (2.14) and (2. 15) vanish
so that they may be solved to yield

XS=XgG ~

Xf = Xoo{I+ a no 4o ) ~

(2.18a)

(2. 18b)

Note that g,
' and g~ are not equal to the s and d sus-

ceptibilities X, and X„because H, and H„each con-
tain the first-order exchange field from the other
species. The actual susceptibilities are obtained
as indicated following Eq. (l. 1,9).

Ne now turn to the decompositions to be used in
evaluating the left-hand sides of the QKB. As in
I [Eqs. (3.1), (3.2), and (3.11)]we let

Z'(P, Po) = 2«(uo -e,+ys H, )f{Po+ys. H,)+4r'(P, Po),

g'V, po)=2«(Po-e, +ys ~ H.)[l-f(to+ye Ii.)]-~Z'(P, Po),
(2.19)

G'(P, Po)=a«(Po-Z, +yS H, )S'(Po+ys H, )+~G'(P, Po) (2. 20)

and similarly for G~. Note that the spectral weight
function implied by (2.19) and (2.20) is a 5 func-
tion which is correct to only zeroth order in J. It
follows rather trivally from the definition of G

and g that

Tro yS ~G'(P~Po) ™a~
&0

(a. 21)
».ysg&Z'(P, Po)=M, .

PIG

The adva. ntage of the decomposition (2. 19) is that
and ~g are set equal to zero, a large class

of terms on the left of the QKB identically vanish.

D. Derivation of the Bloch equations

%'e are now in a position to derive the Bloch
equation with little further effort. Consider first
the right-hand side of the conduction-electron
equation. It is expanded using the decomposition
(2. 11) in terms 5G and 5g, just as in Eq. (5.9)
of I. The only difference is that when one multi-
plies by ys and takes the trace, while summing
over p and po, one must use (2.13) and {2.14) of
this paper instead of (4.8) and (4.15) of I. The
right-hand side of the conduction-electron Bloch
equation is therefore

—(1/T„) (M, —X'„H,)

+ {1/T„)(M, -X'„fH, + ao,'[M, -X,',{H,-a,)]f)
(2. 22)

and are in the ratio of the bare susceptibilities
0 0

Xso/Tso Xoo/Tot (a. 24)

„'+y(H, + ~,'M, )x M, -~v'(M, —X'.,H, )

Similarly, the right-hand side of the local spin
equation becomes

—(1/T„)(M, —X'„o(H „+an,' [M, —X'„{lI,—II,)]]}
+(1/T,.)(M, —X!,H.) (a. 25)

instead of (5.25) of I.
The argument for the left-hand side of the con-

duction-electron equation is slightly more corn-
plicated, but equally straightforward. The only
difference from I is (aside from setting n, = 0 and
replacing H by H, ) that now we have to evaluate the
additional term [see Eqs. (2. 6)-(2.9)]

f[&s~ s,~& ]st +-f [os„H, ~ glrt- (a. as)

and a,dd them to the 0KB of I [the reader should re-
fer to Eqs. (6.3) and (6.10)- 6.13)]. It is shown
in the Appendix however that the terms are small,
and actually vanish within our approximation of a
constant density of states and momentum-inde-
pendent J. In other words there are no additional
terms on the left-hand side of the conduction-elec-
tron Bloch equation. Therefore the left-hand side
of the Bloch-like equation arising from the QKB
for the conduction electrons is

instead of the last two lines of {5.18) in I. The
quantities T'„, and T,~ are the same as before:

0 0 +QHSX M (2.27)

I/ T,~
=- av(Z/n) pX ', S(S+1), —

1/T„= v(ypZ/n)'k, T,

(2. 23a)

(a. 23b)

which also equals

8t
'+yi'-i, && M, +y~,o M, &&[(M, -X,', H, )+X,',H, ]



8 WE E R, LANGRE TH, AND WIL KINS 13

+ y H o x M q
—DV (I,-Xap H~) .BMq 2 0

(2.28)

Equation (2. 27) is taken directly from (7.10) of I,
with no1 = 0 and H= H„Eq. (2. 28) is the result of
rearranging the terms for a purpose mhich will be
obvious late r.

The left-hand side of the Bloch equation for the
local spins is trivial to mrite down, because ac-
cording to (2. 3)-(2.5) the only difference between
the various self-energy functionals for the local-
ized spins and those of I is the replacement of
M, by M, —X,o(H, -Ho). Therefore, since M, ap-
pears in the localized spin equations only through
the self-energy functionals, one can simply make
the above replacement directly in the left-hand
side of the Bloch equation for the local spins [i.e. ,
(6. 51) in I], obtaining

(
BM~ 0 0+yHox Mo (1 —np X,p)

+ y'Gp (Mq Xqo Hq) +Xqp Ho]x Mo (2. 28)

(2. 29) = (2. 25)

which may be manipulated into the standard form
for Bloch equations. This is done by using the
second quality above to eliminate the last term in
(2. 28). We find that

In fact the right-hand side of the local spin equa-
tloll [see (2.25)] could also llave been derived by
replacing M, by M, -X,p(H, —Ro). We now have
tmo equations

(2.28) = (2. 22)

et
' y y H, x M, —DVp(M —

X p H, ) +yap v „Mo
x (M ~

—
X~o H ~) +y(yp v o~ M q

x (X~p H q) =

eM, +'" eM, —
Sd CS Sf

(2.30)

0 0 ~
y 0 ~ 0 ~ + ~ ~Id g~ ~ad+yr1oxM, +ynpvoo(X, oHo)xM, +yopv, ~(M, -X,pH, )xM, = — &Mo+ ' 6M, ,Bt Sd

(2. 31)

6M =M -X 0H (2.32)

5Mo = M„—Xoo(Ho+ 2~p [M, —X,p(H, —Hg)]]' (2.33)

and

v=v, g=vgo=vus=voo=(l -o'pXso), (2 34)

and I/T„=O. We have included the I/T„ term and
the possibility of distinct v's in anticipation of the
requirements of Sec. III so that these long equa-
tions will not have to be reproduced again there.

%e finally go from the ficticious problem of
equal y's and tmo different H's by making the re-
placements (2. 1a) and (2.1c). These replace-
ments mould be sufficient to give the correct solu-
tion to the real problem if one remembered that
Xoo and Xoop woul. d still be given by (2.16) and thus

l

mould not be the bare susceptibilities for the real
problem. Homever it will be eventually less con-
fusing if me also redefine the susceptibilities,

X.o = ~o P(&~.)',
Xop

=
o S(S+1) iV(I yo)

(2. 35a.)

(2. 35b)

Similarly me redefine ~2 so that the dimensionless
parameter no X,p (and hence the various v's) are
not affected:

o p
= (&ln)'(p/o. )'»(&s &/D) (2.36a)

and we define the first-order exchange constant
n, (cf. the definition in I) as

+1 ~/111 8 Yg

The Bloch equations for the real problem are then

8M '+Hx M, ——v [M, —X,p(H+ o1Mo)]+ n1Mox M, +v„—' opM~x[M, —X,p(0+ o1M~)]+vo, np M~
y, et ~S Yff

v„6M, v&, 6M„1 5M,
~Sd ~S ~OS +lf 7 Sg ~S

(2. 37)

1 eMq +Hx M&+voo apX~o(H+ ~1M,)x Mo+a1M, ™o+v~o o'p[M3 —Xio(H+ &1M')]x Mo
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where

Vdd 5Md V,d 6M,
+ '

Tds yd Tsd ys
(2. 38)

6M, = M, —y,o(H+ a~ M~), (2. 38)

5M~= M~ X-qo H+(A( M, +2~2 ~ M, -}t~p(H+ ngM~) ——(H+~gM~)
yd g 8

(2.40)

Note again that for the purposes of this paragraph
(2. 39), (2.40), (2. 35), and (2.36) supercede (2. 32),
(2. 33), (2.16) and (2.15), respectively. Equations
(2. 3V) and (2.38) have been written in a form which
is easily seen to be equivalent to that derived in I
when y, = yd, the only differences being terms that
are of order z& z2 or ~~ and hence negligible by
assumption both here and in I. For practical use,
however, it is usually more convenient to rede-
fine the lifetimes and destination vectors so that
the right-hand sides of (2.37) and (2.38) may be,
respectively, written as

[M, —y, (H+ a,M~}]
ds

s

+ — [ M„—y, (H+ a,M,)] (2. 41)
+d ds

V j
[Mq —1~ (H+(A(M, )]

Tds

+
' ' + [M. —q,'(H+o, M,)]. (2. 42)

~d X s ~ds

This is the form espoused by Schultz et a/. , whose
definitions are such that for example our quantity
~o(1+2ozy, o) is called y~o by them, with other cor-
respondences fairly obvious. If the left-hand
sides of (2. 37) and (2. 38) are for the transverse
components of M, and Md are linearized, then they
can also be ca,st into the form of Ref. 7. We leave
the demonstration of this as an exercise for any
interested reader, along with the warning that the
quantities which Schultz et al. denote by y, a,nd yd

are not the respective gyromagnetic ratios (s and
d spins are unambiguously defined by the exchange
Hamiltonian in I), but are rather the coefficients
of the Hx M terms in their form for writing the
equations.

III. FORM OF EQUATIONS KITH DIRECT RELAXATION
OF THE LOCAL SPINS

In real systems, there may exist mechanisms by
which both the conduction and local spins relax
directly and hence give up angular momentum
to the solid as a whole, although their size is not

+ gM~+ V -+ &Md

V—v T +T 5Md+T 5M~
ds dt ad

(3.2)

with 5M, and 6M~ given by (2. 32). To order J,
(3. 1) and (3.2) are identical to the right-hand sides
of (7. 16) and (7. 17) of I, except for the redefinition
of gM~ and Q Md.

We are now in a somewhat embarrassing posi-
tion, because according to the Onsager reciprocal
relations the coefficient of H~ in Eq. (3. 1) for
SM,/St must be the same as the coefficient of H,
in Eq. (3. 2) for SM~/&t. These coefficients are
readily written down, noting that both pM, and &Md
contain 5,. The former coefficient is

well documented, not to speak of concentration
or temperature dependence. This state of af-
fairs led us in I to discuss the direct relaxation
only generally with the aid of two assumptions:
(a) that the direct relaxation was sufficiently weak
that only the scattering functions of o~, y, Z, I' on
the right-hand side of the 0KB need to be modified,
and that the spectral weight functions and the
self-energy functions on the left-hand side of the
GKB go through unchanged and (b) that the decompo-
sitions (2. 11) with 5G~ and 5g~ equal to zero still
cause the right-hand side of the 6KB to vanish, im-
plying that the only effect of the direct relaxation
was to add terms —5g~/T„and —5G~/T~, to the
right-hand sides of the respective 6KB. The sec-
ond assumpti, on was checked by reference to a spe-
cific model for 1/T„. The only difference between
equal and nonequal y values with respect to these
terms is that now we must use (2, 13) and (2. 14)
(we adopt the ficticious model of equal y's but non-
equal H's for the two species as a calculationa1. de-
vice in this section as well). Therefore, if the as-
sumptions (a) and (b) are again adopted, we must
add terms —5MJT„and —6M~/T~, to (2.22) and

(2. 25), respectively. Then if one combines (2. 22}
and (2. 25} as before to yield Bloch equations, we
find that the right-hand sides of (2. 30) and (2. 31)
are tobe replaced, respectively, by
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+2Xao
-('Xao T + T (I+»X~)

ur

while the latter is

(3.3)

1 2&2Xa0
&Xao (1+2&oX()o) "Xao

44t 4l
(3. 4)

Even if terms of order (xoogre neglected, (3.3) and

(3.4) differ'o by the amount

('Xao c(oXao/T ai ~ (3.5)

Thus we are faced with having to explain an obvious
error.

On one level the explanation is simple. It is that
(3. 5) is very small and indeed is of the same order
as the self-energy corrections which by assumption
(a) were neglected. Therefore the term (3. 5) is
not significant in that there must be other terms of
the same order which cancel it. As pointed out be-
low Eq. (V. 16) in I, a term this size is "hardly
worth considering,

On the other hand one can ask what are the other
terms not included. It would be comforting to pro-
duce them since one must be very suspicious of
approximation schemes which fail to reproduce
exact symmetries (in this case time-reversal in-
variance) exactly. In what follows we briefly con-
sider the additional terms.

We would like to choose a model for 1/Ta, in
which we have to do as little additional calculation
as possible, since the real mechanism is not
known, at least to us. To this end, we suppose
that the local spins are coupled to a ficticious ex-
tra set of conduction electrons of spin s with an
exchange interaction —(j/n)Ss, and assume that:
these are forced to be in thermal equilibrium of a
temperature T. Since we assume a structureless
J and density of states, we can eliminate all extra
parameters in terms of 1/Ta» so that the artifi-
ciality of this model is of no particular consequence,

+y~o[(M, -X,'oH, )+Xoo Ha]~ Ma

+yao[(M; —X,oH;)+X-,oHa]&M, . (3.6)

We note that in this model 1/Ta, (): (JX-,o)o, 1/Ta,
~ (~X o) &oX o(x: QX-o) and (roX oo (~)/so) so that

o'oXso = &oXso(Taa/Ta)) ) (3.7)

a relation which will be used repeatedly to elim-
inate the coupling parameters of the T~, field
wherever they occur. The expression (3.6) there-
fore becomes

as it is typical of any spin flip coupling to any sort
of density fluctuation excitation. It seems as if
the mechanism recently considered by Yafet~e

would fit into this category, although there would
be extra terms produced by the tranformation be-
tween the Anderson and the s-d exchange models.
On the other hand, if 1/Ta, is due to some sort of
static or frozen inhomogeneity, then it can be
treated by the methods of Sec. IV.

Ne assign the ficticious coupling J, a bare sus-
ceptibility @0, and a second-order exchange cou-
pling ~2, we assume that e~ =0 and take them to be
acted on by a zero effective field (H; = 0) because
we wish to introduce relaxation but not polariza-
tion effects.

First it is clear that the left-hand side of the
conduction-electron equation is still given by
(2. 2V) or (2. 28) because there is no direct cou-
pling between the conduction electrons and the
fake conduction-electron field. (We defer dis-
cussion of 1/T„ for the time being. ) On the other
hand, the left-hand side of the equation for the d
spins is modified because these couple not only to
the conduction electrons but to the extra field.
Therefore (2. 29) becomes

SMg 0 0+yHa~Ma (1 —&oX.o —&oX-.o)

+yH, &&M, 1 —noXo 1.+—a +ya (M, —X, H,)+X, 1+a H, &M, , (3.8)

where we have set M;=H;=0, as mentioned earlier. The right-hand side o'f the conduction electron (2. 22)
is modified only because the local spin spectral weight function, and hence the moment of 5G, is changed
by the extra field. Hence (2. 22) becomes

0——(M~ —X~oHa) + —(Ma —Xao/Ha+ 2n)p[M, —X,o(H, -Ha)]+ 2ao[M; —X-,o(Hr —Ha)]})
s& d8

0 0 ~d= ——(M, —)(,qH, )+ —)7( —)( H + 2 [M, —)(, (H, —H )(+ 2a lag H
I)

. (3 9)

Finally, the right-hand side of the equation for the local spins differs from (2. 25) both in the modification
of the destination vector and in the additional rate:

1 1 0—+ —Ma-Xao Ha+ 2ao[Ma -X,o(H, —Ha)]+2o(o —'X,oHa + —(M, —X,oH, ) .
ds N sd
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For static fields the left-hand sides vanish; equat-
ing (3.9) and (3.10) to zero shows that (2.18b)
must be replaced by

x = x.0[1+2o.~x,o(1+ T«/T«)) ~ (s. 11)

which expresses the fact that the direct relaxation
mechanism affects the static susceptibility as well
as the dynamic.

We thus have the required equations, (2.28)
=(3.9) and (3.8)=(3.10). As before we combine
these equations, using the second one to eliminate
BM„/Sf in the left-hand side of the first. When
this is done, we find with no further approximation,
that (2. 30) and (2.31) are still valid, except now

(2. 33) is replaced by

0 0
&Mg = Mg —Hg()(Hg+ 2am[M, —X,o(H~ —Hg) j

ticular difficulties or inconsistencies associated
with it, and indeed with a wave-vector-indepen-
dent interaction and constant density of states the
self-energy effects neglected in I make no con-
tribution. Therefore it i.s treated px'operly simply
by adding a 1/T„just as we did in Eq. (2.30).

Finally, as before, there is no difficulty in
going from our ficticious problem of different H's
and identical y's to the real problem of different
y's and identical H's. Equations (2. 37) and (2. 38)
remain valid, except that now the y's are given by
(S.13) instead of (2. 34) and 5~ is given by

~S&Me= Ma - Xgo IH+ ngM, + 2a, —' M, —X.o(H+ ~~M, )

-~' 1+ " (a+a,M, ) ( (S. iS)
ys ~dl

+»2X.o(Tu./T«)Hu)

and (2. 34) is replaced by

(s. 12) and 5M, given by (2. 39).
IV. HYPERFINE INTERACTION AND FROZEN-IN

INHOMOGENIETIES
p = (1 —cp+pTg / gT()/+

&su=&F3=1/+ ~

~gg = (1+T&./T«)/~,
with

~ = 1 —&24o(1+ Tun/T«)

(s. is)

One notes that the largest effect of the direct re-
laxation, as expected, is the extra relaxation
caused by the T«/T~, term in v„~ on the right-
hand side of the local spin equation. Less obvious,
but also important is the extra g shift arising from
this same term in v on the left-hand side of the
local spin equation. This g shift ls 1ogal ithmic,
and does not go away when the s and d equations
are added with y, =y~ as does the g shift predicted
long ago by Spencer and Doniach. ~0 The magni-
tude of the shift is approximately

+'Y/ y —+2XsOTls/ Td t (3.14)

and since it depends on a, second-order interac-
tion (it is not a mean-field effect) it would seem
to be a signature of a direct d-relaxation mech-
anism mediated by a coupling to density fluctuation
interactions.

It is simple to show that the coefficient of 0„in
the s equation is now exactly identical to the co-
efficient of H, is the d equation, so that with due
care, we note that our approximation scheme sat-
isfies the reciprocal relation exactly. Note that
this symmetry occurs as it must both in the eross-
product terms on the left-hand side of the equa-
tion and in the relaxation terms on the right-hand
sides of the equations.

%'e have not yet mentioned the x elaxation of the
s spins to the lattice. This is because at least in
this the model presented in I, there are no par-

The l3loch equations which we presented in Ref.
1 a long while ago included the effect of the hyper-
fine interaction between the nuclear spin and the
localized or d electron spins. Here we give the
derivation of a slightly generalized form of these
equations.

Vfe assume, as an aid to starting the discussion,
that the hyperfine interaction is of the form A S ~ I,
where I is the nuclear spin. %e take the dc ap-
plied magnetic field 80 to be in the z direction and
write the hyperfine Hamiltonian above as 3C„,
=AS, I, +53chf. The essential approxlmatlon is to
assume that A/y~H~ «1 in which case the spin-
flip term 5X& can be neglected. The quantity A/y~
is typically of order of 10's of gauss, while H0 is
of the order of 10 kG. Moreover, since the ex-
pectation value of 6Xhz in any eigenstate of the
Hamiltonian obtained by neglecting 5Xh, is zero,
we may expect any shift or broadening of the res-
onant frequency produced by it to be second order
in this neglected quantity, that is, 5m+/&oe- (A/
y&0), and is thus quite small indeed. Therefore,
the effects of the hyperfine interaction are to pro-
duce an effective field 8„=-Anz, where n is the
azimuthal quantum number for the nuclear spin;
a certain fraction f„of the local spine feel the
field B„corresponding to each n; because of the
lax'ge difference in nuclear and electronic gyro-
magnetic ratios it is a good approximation to take
all the f„'s equal: f„=(2I+ 1) . Note that in gen-
eral $„H„=O; g„f„=l.

It is evident now that as long as we are willing
to approximate the hyperfine interaction by an
effective field in the z direction, we are not forced
to assume a hyperfine Hamiltonian A 5 ~ I, and it
ean be genex"abzed to include an anisotropie hyper-
fine interaction without affecting our scheme.
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Before proceeding, we mention something that
should become quite clear shortly, that the method
we use can be applied not only to the hyperfine
interaction, but also to problem of direct relax-
ation of the local spins (the 1/T~, problem) pro-
vided that such relaxation arises from some sort
of frozen-in or static inhomogeneities or impur-
ities whose effect is to produce ra,ndom effective
fields which a.ct on the local spins. In this case
the subscript n above would probably be a, contin-
uous variable, and f„would be the probability dis-
tribution function for the effective field If„(or
more precisely its projection in the direction of
Ho). The discussion which follows can therefore
be regarded as a complement to that of Sec. III

where the direct relaxation was assumed to arise
from a dynamic spin flip mechanism.

Actually it requires no additional calculation to
write down the appropriate Bloch-like equations.
This is because we have already derived in Sec.
II a set of coupled equations in which the local
spins feel a different field from the conduction
electrons, and we need only to generalize these to
include a number of classes of local spins with
magnetizations M„with M, =g„M„) each of which
feel their own distinct hyperfine (or other) field
H„. This generalization is accomplished simply
by inspection of Eqs. (2. 22), (2. 25}, (2.27}, and
(2. 29) as well as (2.32) and (2. 33), and we find
that

—M, +yH, XM, —D& (M, —)PoH, )+ye.oMo& [M, —)t,oH, )+XooHo]

+» '2))l, +M. H. ~ l))!, g('„"~ »(R, +H„) M„= '))M, + —'5M,
Stf d'S

(4. 1)

{1/Too}(Mn—fn &oC~o+ Hn+ 2o'o [lVf, —X,o (H, —Ho —H „)]])+(1/T„)f„5M, (4 2)

No« that (4. 1) is identical to (2. 7) as it must be because the conduction electrons do not directly feel the
hyperfine field, the counter-term involving M „x H„has been added {and subtracted) in (4. 1.) in order to
facilitate the manipulation below, which is the use of (4. 2) to eliminate the term in large parentheses in
{4.1). We find that (4. 1) and (4. 2) can be written exactly as

f Ms+yHa "M.-DV 5M.+ vy&oMox[(M. —X,'oH. )+)t'oH, ]+ vyu,'y,'op M„xH„=-
8t n ~gg

(4„3)

ett M.+ y{Ho+ Hn)&&Mn+ vy&o[(M. —X,'oH, )+ X,'oH, ] &&M„+ vyo. ,'X,'oH„x M„

fo&oo[Ho+Hn+2&4[M, —X,o(H, —Ho — H)]})+( v/T„)f„(M —
)) o, H ) (4 4)

~here 5M, , 5M, , and v are given by (2. 32), (2, 33),
and (2. 34) respectively.

The above equations, (4. 3) and (4. 4), are n+ 1 in
number and represent the most general description
of the effect of the hyperfine interaction that we
shall present. In what follows we consider special
cases. Before doing so we mention that for the
case I= ~ these equations can be solved by the meth-
ods of Ref. 1, and for a general spin by the methods
developed and applied by pifer and Longo to a
similar set of equations.

A reminder: to go to the physical problem one
must make replacements and redefinitions analogous

to (2. 1) and (2. 35) for each hyperfine component,
that is, in addition to (2. 1) and (2. 35). we let

M „(y/yo) M„

H. —(y. /y) H . .
(4. 5a)

(4. 5b)

The reader should have no trouble writing down the
resulting equations by inspection, because except
for the slight added complication of separate hy-
perfine components, those equations are virtually
identical with Eqs. (2. 3V)-(2. 40).

For y, = y~ we will write the equations for com-
parison with Ref. 1:
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8M, 3 1'
+y[H+ (ng+ na)Ma]xM, —DV 5Ma+ynaX, a Q M„x H„= — 5M, + 5Ma — —,(4. 6)8t a e a n a T g T

where we have put the T„ term back in, and

8M„ ~Wg1 1"+ y[H, +(n, + na)M, ] xM„+y naX, aH„xM„= — {M„f„X-«[H+(n,+2na)M, ]}+ f„6M,8t Tgg Tg(f
(4 7)

In writing (4. 6) and (4. 7), which are valid for the
transverse components of M„and M, , we have set
v = 1, because it only appears multiplying terms
already of order J2, and have noted that the field
H „ is in the z direction. Equations (4. 6) and (4. 7)
differ from (la) and (lb) of Ref. 1 in three respects:
(i) the equations in Ref. 1 were for simplicity writ-
ten for the case I= —,

' and for the same reason the
diffusion term was omitted there; (ii) the numerical
coefficients of a~ in the relaxation terms differ;
this represents the same error in Ref, 1 which was
pointed out in I; and (iii) the last term in the left-
hand side of (4. 6) and (4. 7) involving H„x M„was
not present in the equations of Ref. 1. These last
terms represent the interference between the hy-

perfine interaction and the second-order exchange
interaction, an effect not included in the derivation
leading to the equations of Ref. l. Since these terms
are second order in both the hyperf ine splitting and
4, they are in some sense fourth order in small quan-
tities, and should be negligible in most applications.

We now show how Eqs. (4. 3) and (4. 4) can be
reduced to a, pair of equations [rather than (n+ 1)
equations] when the hyperfine interaction is weak.
In the process we derive the results for the g shift
and broadening presented in Ref. 1,

For simplicity we consider the equations for one
circular polarization of the transverse components,
letting M„~ (M~x+M„,y)e ' ' and similarly for
M, , H, , and H„. Equation (4. 2) then becomes

'™-.+'(~a+ ".)(M. f.Xa -Ha)- v na Xa f.i("a+ u'. )(M. —X,'oH. )+ vna X.'ai(~a+ ~.)(M. f.XaHa)-
= —(v/Ta, )(M„-f„Xaa{Ha+2na[M, —X,a(H, —Ha)] })+(v/T, a)f„5M, (4. 8)

where 5&ma= yH& and Ku„= yH„. The quantity XaI is still given by (2. 18b) as the solution of (4. 1) and (4. 2) in
the static limit would show, although (2. 171) must now be replaced by M„=f„XaI (H„+H„). When summed
over n, this yields

—i~Ma+ i~a(Ma XaHa)+ ivy-~nMn- »na Xa~a(MI XaoHs)+iv na X ~a~a(Ma —
X aHa)

= —(v/T ) 5M, + (v/T, „)6M, (4. 9)

Ttus contains the unknown quantity g„&d„M„; to
find it we multiply (4. 8) by &u„and then sum over
n The r.esulting equation for g„+„M„ofcourse
then contains the higher-order average g „~„M„;
since g „~„=0, there is only one nonvanishing con-
traction of this average. Accordingly, to order
of the hyperfine interaction squared, we may write

&g ~n= n~n~a ~ (4. 10)
fl n

With this approximation, then we may write

—i(~ —v&a, ) g ~„M„+iv (~'„)(M,—XaH, )

-i&& aXH~'. &(M, -X,'H, )=-(v/Ta. )Q ~.M. ,

(4. 11)

1 (&o„)
0 0

Tar —a~(I —na Xgo)+ a~a+ I/Ta,

then solving (4. 9) for g„~„M„gives

(4. 12)

~„M„=—- (Ma —XaHa)+ - (M, —X,'H, ) .1 sn3y~
Tdl Td&

(4. 13)
Note that T„, is not just a lifetime, but has real
and imaginary parts and is frequency and field
dependent. Now (4. 11) is used to eliminate the
unknown quantity g„(o„M„which occurs both in
(4. 9) and also in (4. 3) for the conduction electrons.
When this is done our equations may be cast into
the forms

l

where (~a)=—g„f„~„. If we now make the definition

8M, 3 o o o - Pa~ P~a+ yHaxM~ —DV 5MS+ v&naMax (M~- X~a He)+ vynaX~aM&xH&= —5M~ + 5M&8t Tgg
(4 14)
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&M~ 0 0 0 0+yHzxMz+vynzX, oHzxMz+vynz(M, —X,oH, )xMz= —OMz + 5M,8t T
fthm Tsfr

(4. 15)

where 5M„5M, , and v are given by (2. 32)—(2. 34)
and mhere

} -= v(1+ T~ /T«),
P~z = & [1 nz X &o(1 —2nz X ~o) Ta /Tzr ]

~ zg
= "[1- ( o z Xg o) (1- 2oz X go) Tz. /Tz i ],o z o o

- (4 16)

curacy of our basic diagrammatic perturbation ex-
pansion.

By far the most important tern: in (4. 16) is p.„,
which produces the additional lifetime (and possi-
bly ag shift) implied by 1/Tz, , which after the
variable replacement (2. 1) becomes

) ~= ~[1+~zX.'o(T../T, ~)] . pz(~z )
Tzq —z(8+ t~ z( 1+ & X o)+ v/Tz

(4. 1V)

For familiarity, we have used a mixed notation in
writing (4. 14) and (4. 15): that is to say the right-
hand sides cannot simply be Fourier transformed
back to the space-time vector notation me use on
the left-hand side because 1/Tz, and hence the p, 's

have a frequency and field dependence which at
least in many cases of interest is as important as
the linear frequency and field dependence on the
left-hand side of say (4. 9). Said another way, Eqs.
(4. 14) and (4. 15) are not a, set of coupled Bloch
equations, and if regarded as differential equations
they would be of infinite order. In practice this
means that their solution for the transverse sus-
ceptibility (which is as trivially effected as if they
were Bloch equations) will have a different field
and frequency dependence from the usual solution
of a set of coupled Bloch or Hasegama equations.
This difference mould show up when the actual line-
width of the local spin resonance is larger than or
comparable to 1/Tz, , as is normally the case when

theg values for the tmo species are quite different.
Equations (4. 14) and (4. 15) have been written in

a way which the variable replacements (2. 1) may
be made by inspection, on comparison of (2. 30) and

(2. 31) with (2. 3V) and (2. 38). We will not write
the resulting equation, but merely say that their
left-hand sides are identical with the left-hand
sides of (2. 3V} and (2. 38), [with all the v's equal to
(1 —nzX, o) ], while their right-hand sides may be
obtained from (2. 3V) and (2. 38) by replacing vz„,
v&, v~, and v by p, zz, p, z, p.&, Rnd p, , re-
spectively. No change in the definition of the p, 's

accompanies the variable replacements, except
that &uz in the definition of 1/T„, now becomes yz(1
+ &i X.o)IIo.

ln writing (4, 16) we have made no further ap-
proximation; using the values given plus the defini-
tions of 5M, and 5Mz [Eqs. (2. 32) and (2. 33)] it is
a straightforward matter to show that the coeffi-
cient of H„ in (4. 14) is exactly the same as the
coefficient of H, in (4. 15); that is to say the re-
clprocR1 relations Rre satisfied exactly. After
this it is certainly permissible to drop all terms
of order n or higher, because n&(x: J and n~o= J,
so that such terms are beyond the limits of ac-

mhere ~0= @~II and a= 0.&+ az, in writing the term
in parentheses of (4. 1V) we have neglected terms
of order n or higher; except for the factors of v,
this is identical to the result quoted in Ref. 1; the
difference between v and unity in the denominator
arises from the interference between the (&u„) fluc-
tuation and the second-order exchange term, and
are included here for the first time, although as
pointed out earlier, this is expected to be a small
effect in most cases, and mill for simplicity be
neglected in the following discussion. For the case
of hyperfine interactions 8' (w„) is given by

8'(~„')= ,' A'I(I + 1)— (4. 18)

and for the case of inhomogeneities it equals y„
times the mean-square fluctuation of the ~ compo-
nent of the frozen-in effective field. "

In the case y, = y~ one generally has bottlenecked
conditions, and the joint conduction-electron reso-
nance occurs at ~= ~0, in which case

1/T. ~
= (~'. &/(I ~o~ X,o+ 1/T..), (4. 19)

1/Tz~ = ("')Tz. , (4. 20)

so that in this case there is no additional shift, but
only additional broadening, mhich of course repre-
sents just an intrinsic width [- ((u„)) ] motionally
narromed by the s-d exchange interaction; as the
temperature is lowered the s-d flips are inhibited
by the Fermi statistics, and 1/Tz, becomes larger.
At sufficiently low temperature the approximation
(4. 10) breaks down, and one must solve Eqs. (4. 3)
and (4. 4) exactly. A word of warning however:
even at temperatures high enough that (4. 20) is

which predicts an additional line broadening as mell
as ay shift, in exact agreement with Eq. (10) in
Ref. 1. [To find the actual contribution of (4. 19)
to the bottlenecked linemidth one must multiply this
by a susceptibility ratio, as a complete solution to
(4. 14) and (4. 15) would show. ]

on the other hand, mhen y, and y~ are widely dif-
ferent, then the local spin resonance occurs at
co = coo [1+(n~+ az) X,o] and we have (when exactly
on resonance)
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valid on resonance, the (d and ~„ dependence of
(4. 17) are important, because the actual linewidth
of the local spin resonance is greater than I/T~;
this point was discussed above.

In concluding, we emphasize that the two general
types of relaxation methods for the d spins which
we have considered in this section and the last gj.ve
quite different predictions. For example the mech-
anism of Sec. III gives a logarithmicg shift, while
the present one does not. On the other hand Eq.
(4. 20) predicts a I/T~, that decreases as the tem-
perature is raised. Facts such as these should
serve as a waxning not to take too seriously numer-
ical fits of the s-d exchange model to experimental
data, at least until the actual T„, mechanism is
better understood.
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APPENDIX

Our first task is to prove Eq. (2. 3). This
amounts to proving that

sr(P, ) - H, —H,
8 Bg(po) sp y S(S l )

because the other pieces of (2. 3) are unchanged
from those given in I, although the particular form
(which is true to order J lnT)

—si'(p, ) - M,
spo S(S I)X.

was not written down there, Equation (A2) follows
immediately upon making the variable change qo

——qo, e~- —e„ in the first term in the curly brack-
ets of Eq. (C11) in I and noting that m(q, qo) ~ sf(qo)/
sqz (an even function of q~); then the two terms in
the curly brackets are identical, and the proof of
(A2) is completed by differentiating (C4) of I with
respect to po and then integrating by parts and
comparing,

Equation (Al) is most easily proved by inspec-
tion of Eq. (C7) of I for the field-dependent part of
I', which we rewrite as [using (C4) of I]

—[(2s+ 1)—,'s(s+ 1)S(8+1)] '
~PO

x Tr, (s ~ SyS ~ Hs S+s ~ S[ys ~ H, s S]) .
(A3)

%'hat one must note is that the H in the first term
of the spin trace arose from the expansion of a
localized spin Qreen's function and hence becomes
H~, while the H in the last commutator in the spin
trace arose from an expansion of conduction-elec-
tron Qreen's functions and hence becomes H, .
Therefore, upon performing the spin traces, the
analog of (A3) for H, NH~ is equal to

&I'(Po) -.
H

(H. —H~)
sp, y " S(S+I) (A4)

which when combined with (A2) constitutes a proof
of Eq. (2. 3). The proof of Eq. (2. 5) proceeds in
exactly the same way.

For the conduction electx'ons, there is no analog
of (A2), but we still must prove (2.7) and (2. 9).
This is done in a manner identical to that used
above for the local spins, so we omit the details
and simply refer the reader to Eq. (B9) of I and

those equations immediately preceding it.
Note added in proof. We thank D. L. Huber and

H. K. Sy for calling our attention to their respec-
tive works [D. L. Huber) Phys. Hev. B (to be
published) and H. K. Sy, J. Phys. F 5, 575 (1975)]
which relate to some aspects of this paper.
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