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Dynamics of classical spins with dipolar coupling in a rigid lattice at high temperatures
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Molecular-dynamics calculations have been performed on the auto- and pair time-correlation functions in a
rigid lattice of magnetic dipoles coupled by a truncated dipolar interaction. The first six terms of the exact
time expansion of the correlation functions calculated from first principles are also presented. The analytical
forms of the autocorrelation functions are examined and compared to the predictions from a stochastic local-
field model due to Kubo and Toyabe. The correlation functions are also used to probe the applicability of a
theory of Blume and Hubbard to dipolar coupled spins. Generally, this theory describes the longitudinal
dynamics rather well, whereas the transverse dynamics is less satisfactorily described.

I ~ INTRODUCTION II. COMPUTATIONAL METHODS

The free-induction decay (FID) has been used
previously' ' to elucidate the dynamical properties
of systems of magnetic dipoles. In this paper we
report new information about the dynamical pro-
cesses in a rigid lattice of dipolar coupled spins to
supplement the FID. The results, which are ob-
tained from molecular-dynamics experiments, are
given in the form of auto- andpair time correlation
functions between microscopic quantities, i.e. ,
components of magnetic moments, whereas the
FID represents the correlation function of the
macroscopic magnetization.

The correlation functions derived from the mo-
lecular-dynamics experiments contain an error
due to the limited number of systems in the Gibb-
sian ensemble. In order to estimate this experi-
mental error, we have calculated the first six
coefficients of the Taylor series expansion of the
correlation functions (Sec. II). These coefficients
are also useful in examining the character of the
correlation functions for all values of the spin
quantum number I (Sec. III), as well as in other
connections. ~ '

The correlation functions reported here may be
used as a testing range for various models for the
spin-relaxation processes, taken in the classical
limit characteristic of the molecular-dynamics
experiment. In Sec. IV we adapt Kubo and Toyabe's
theory' for resonance line shapes to dipolar cou-
pled spin systems and we compare the autocorre-
lation functions derived from this theory with those
obtained from the molecular-dynamics experi-
ments. Finally, in Sec. V we apply Blume and
Hubbard's general theory for spin correlation
functions, originally developed for the Heisenberg
model at high temperatures, to the spin system
considered here and compare the obtained corre-
lation functions with our results.

2@2 N N

H = Bj» 3I&z I»z Iy I» (2.1)

where

B» = —,'(I —3 c os'0»)/r'„j e k

Bs = 0.
(2.2)

y is the magnetogyric ratio for the spins and 8» is
the angle between r» and B„where r» is the dis-
tance between spin j and k.

It proves convenient to write H as
N

H = ——,
'

yh QI, Bq"' (2.3)

where B.'" has the components

N

l
3yk ~ B,.»I»~, P =x,y

»(&J)

Bioc-
iP N

2——,yh ~ B~»I»p, P =z.
»(~g)

(2.4)

It is well known that the FID may be written as'

F„(t)=(M, M, (t)) /(M„'), (2.5)

where ( ) indicates an equilibrium ensemble
average. ivy„ is the macroscopic magnetic moment

We consider a system of N identical spins placed
in a rigid simple-cubic lattice and subject to an
external magnetic field B, along the z axis. We
assume that the high-temperature and high-field
approximations' are valid for the spin system.
The high-field approximation implies that only the
terms of the truncated dipolar interaction H influ-
ence the line shapes considered here. H is given
by
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operator in the x direction:
N N

M, =y@ QI,.„=Q p,„. (2.6)

calculation of the local fields includes only the
contribution from the 26 nearest neighbors. In the
integration it is useful to express the time in the
reduced unit

The FID may also be expressed as

(u~.uf. (f)&, P ~(u uh. (&))

(),'„&,=u.,) () ',„&

=- fxx(f)+ P f„"(I),
(2.'I)

where j is an arbitrary spin. f,"(t) is the trans-
verse autocorrelation function for a single spin
and f„'h(t) is the transverse pair correlation func-
tion involving the spins j and k.

The form of the Hamiltonian, Eq. (2.1), implies
that (M, &, the macroscopic magnetic moment along

Bo is a constant of motion so that

F', (I) =(M, M, (t)&/(M,')= 1. (2.8)

In discussing the theories in Secs. IV and V it
proves useful to write F,(t) in a way similar to Eq.
(2.7)

(2.9)

&&' =r u,.(t) x B,'"'(t), (2.10)

where JU, . is now considered a three-dimensional
spatial vector, and B."" may be thought of as the
local field at the position of the jth spin produced
by the surrounding spins.

In the molecular-dynamics experiment the equa-
tions of motion, Eq. (2.10), are integrated nu-

merically for an ensemble consisting of K sys-
tems, each containing N= 12' spins. The initial
states of the systems must be selected so that
they represent a Gibbsian ensemble at a pre-
scribed temperature. Generally, the initial states
may be found from a Monte Carlo procedure, which
selects the systems so that the ensemble has cer-
tain thermodynamic properties, like the energy
and the sublattice magnetization, corresponding
to the given temperature. However, in the high-
temperature limit, which we are discussing here,
the initial states are completely disordered and
the systems may be constructed simply by assign-
ing random orientations to each of the spins in all
systems The inte.gration of Eq. (2.10) was per-
formed as described previously, ' in particular the

In order to obtain the various correlation func-
tions in Eqs. (2.7) and (2.9) by a molecular-dynam-
ics experiment, we must confine the calculation to
classical spins. In this limit, the time evolution of
the spins is given by

X=2+/8yl) I, (2.11)

where r, is the lattice spacing.
From the integration we obtain p,

' (t,), .wh. ere the
superscript indicates the particular system. The
value of the correlation functions at time t„may
then be obtained by averaging p&p)hhp(t„) over the
ensemble, i.e. , sum over v However, we shall
assume that the system is ergodic so that we may
also average over different time origins, t„, i.e. ,
we shall sum ih", (th))h».(th+f„) over t„. In the actual
time averaging we have not taken the contribution
for each time increament At but rather for every
96t only, since this reduces the computing time
substantially without altering the values of the nor-
malized correlation function appreciably. This is
due to the fact that the pair )h»(th) and )h»(th+ t„)
contains essentially the same information as the
pair )h,

'p(th„) .and p,,"p(th„+t„).
In the calculation of the pair correlation func-

tions between the spins j and k we may also use
the symmetry of the system to average )hup(th)Ih»

(th+f„) over all pairs of spins v and m which are
equivalent to the pair j and k. For the autocorre-
lation functions we average over all N spins.
Moreover, for transverse correlation functions
we may also average over the x and Y components.
Accordingly, the normalized transverse correla-
tion functions f I"(t) and f~h(t) may be calculated
as

jj( )
Zu=1X/h=1+h=1+5=x x0(f )h)hhnh(fh'+ fn)

Zu =1Zh"-1Zh =1' =x X[ hP(th)]

(2.12)

h(t )
XXv=1+x=1Z(u. rnl+n=x x Pun(fh)V'mn(fh t'n)

%=1Zh=iZ(. , )Zp=. ,,[)",( h)]'

(2.18)
The longitudinal correlation functions, f»(t) and

f~"(t) are calculated in a similar way except that
the sum over x,y is missing, i.e. , p =z. The cal-
culations were performed for B, along the three
"canonical" directions [001], [110], and [111].

In the actual calculation W was taken to be 50
in the transverse ease whereas it was only 16 in
the longitudinal case owing to the relatively slow
decay of the longitudinal correlation functions. In
order to reduce computing time K was chosen ra-
ther small, 8 for Bo along [001] and 4 in the rest
of the cases except for the longitudinal case for
B, along [111],where K was 25.

In addition to the correlation functions derived
from the molecular-dynamics experiments it is
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( ) = Tr(po ~ ~ )/Tr(po), (2.14)

where po is the high-temperature density matrix
for the spin system. f~~~(t) and f~~(t)(p =x, z) are
then given by

f~ (t) = Tr(I,.~e'" 'I"I,.~)/Tr(I,'. )

00 mjj pn
ly g( 1)n 2n tl

(2n)!
(2.15)

also desirable to know the exact first few terms
of the Taylor series expansion of the correlation
functions. We calculate the equilibrium ensemble
averages according to

values in Table I. The difference between the two
sets of valuesis on the average 0.4%, 1%, and 3%%u&

for mj'„, m4'„, andmj6'„, respectively.
The autocorrelation functions in Fig. 1 are posi-

tive for all three directions of B, without the large
oscillations characteristic of the FID. This im-
plies that the oscillations of the FID may be as-
cribed to pair correlation functions of the spins.
In fact, the functional form of f', '(I) is well repre-
sented by the Gaussian function exp(- mg„ t '/2) for
times I ~ 2.7(m", ,) '/'. The Gaussian character is
also apparent in the ratio of coefficients

(3.1)

f '~(t) = Tr(I& e' " ' ~ "I»}/Tr (l,~ }
OO

m jk g2np( )„m,„,t
(2n)! (2.16)

D,„~=(2n)!/(2"n!) (p =x,y, z). (3 2)

If f~"(I) were a. Gaussian function then D,„~would
be given by

where H" is related to H in Eq. (2.1}by

H" "=[H, ...]. (2.17)

III. EXPERIMENTAL CORRELATION FUNCTIONS

It may then be shown, by a procedure similar to
the one given in Ref. 10, that the coefficients m",„~
and m,j~ ~ are given by

m,"„~= (-g') "Tr([(H")"I,.~][(H")"I,.~])/Tr(I»),

(2.18)

m~2'„~ = (-8') "Tr([(H")"I ~][(H")"I»])/Tr(I~») .

(2.19)

All the quantum statistical operations and the
necessary algebraic reductions involved in Eqs.
(2.18) and (2.19) are performed on a computer as
described elsewhere" and the analytical express-
ions for the coefficients are given in the Appendix.
We note that the coefficients calculated in this way
are valid for all values of the spin quantum num-
ber I, not only for classical spins.

The computations were performed on the CDC
6400 Computer at RECAU, The Regional Comput-
ing Center at Aarhus University.
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Numerical values of D,„~ are found in Table II,
from which it is seen that for classical spins D, „
and D, , deviate from the Gaussian values (3 and
15) by 1/p and F/0 on the average, respectively.
Table II also list D4 „and D, „for a spin--,' system.
In this case D4, and D, „deviate from the Gaus-
sian values by 3%%uo and 8%%uo on the average, imply-
ing that the Gaussian form of f"(t) may very well
also hold for quantum-mechanical spin systems.
The transverse pair correlation functions in Fig.
2 have a small finite value at t =0 due to the re-
stricted number of systems applied in the ensem-
ble averaging process. The experimental values
of the coefficients m', „, m', „, and m,~„deviate
from the exact values in Table III by 7%%u(}, 13%%uo, and
28%%uo on the average. Generally, the pair correla-

A representative set of correlation functions is
shown in Figs. 1-4. Before we use these functions
to examine the theories described in Secs. IV and
V we want to discuss some of the properties of the
correlation functions.

0.2

0.0

-0.1
2 ':. -- 4

I

t(x)

A. Transverse correlation functions

The reliability of the autocorrelation functions

f„'~(t) is investigated by calculating experimental
values of m jj„,m', j„,m', „from the Fourier trans-
form of fP (t) and comparing them to the exact

FIG. 1. Transverse autocorrelation functions for
classical spins with truncated dipolar interaction in a
simple cubic lattice. Solid line: molecular-dynamics
experiments; dotted line: Taylor series expansion in-
corporating the terms up to t~; dashed line: the Blume-
Hubbard model; dot-dashed line: the Kubo-Toyabe model.
The time is in units of X= 2ro/3&~p
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chanical spin systems. For intermediate times the
functional form of f,"(t) is somewhat similar of an
exponential decay. The long-time behavior of f,"
(t) is best examined for B, along [111]since this
function incorporates more systems in the aver-
aging process than the other two. In this direction

f~~(t) may for long times be represented by

0.4

0.2

0.0
15 25 t(x) 35

FIG. 3. Longitudinal autocorrelation functions for
classical spins with truncated dipolar interaction in a
simple cubic lattice. The symbols are explained in
Fig. 1.

tion functions have one relatively large extremum
value and in some cases a few smaller ones.

Figures 2(a)-2(e) show which of the pair corre-
lation functions gives the largest contribution to
the first negative region of the FID. For 8, along
[001] and [110]this comes from the pair correla-
tion between the nearest neighbors along [001],
i.e. , those spins with the strongest interaction.
This is not so for B, along [111]since in this case
there is no direct interaction between these spins
(B» ——0) and therefore f~~(t) takes on small values
only. For this orientation of B„ the largest con-
tribution stems from the correlation functions in-
volving the spins along [111]and [110].

In Fig. 5 we show how the FID is constructed as
the sum of the 26 nearest-neighbor pair correla-
tion functions and the autocorrelation function and
it is compared to a FID which incorporates all
pair correlations in a lattice with 216 spins. Al-
though the FID obtained in this way displays the
usual oscillatory behavior, the amplitude at the
first minimum is off by 45%, indicating the im-
portance of correlation functions between more
distant spins than the 26 nearest, even at the posi-
tion of the first minimum.

B. Longitudinal correlation functions

The longitudinal autocorrelation functions in
Fig. 3 are positive like the transverse correla-
tion functions, but otherwise the forms of f„"(t)and

f,"(t) are rather different. The short-time Gaus-
sian form only extends up to f ~0.5 (m', ~,) '~',
which also is clearly indicated in the D,„,values
in Table II, both for classical- and quantum-me-

IV. STOCHASTIC DESCRIPTION OF THE SPIN MOTION

The classical equation of motion for the spins,
Eq. (2.10}, shows that the local field acting on a
given dipole, g,.(t), is a function of the orientation
of the dipole itself at times prior to t, because the
orientation of dipoles neighboring to p& is deter-
mined in part by the previous orientations of p, .
However, we may argue that since many spins in-
teract simultaneously with a given neighboring di-
pole we may neglect this detailed dependence and
assume that the local field is not dependent upon

p& and, consequently, treat the local field as a
stochastic process, B(t}. Using this approxima-
tion we may write the equation of motion for a sin-
gle spin I as

=q 1 x B(f).
dt

(4.1)

=(64/ D D Dg If-3&-
where D„D„and D, are the principal values of
the spin-diffusion tensor. The theoretical values
of D„which give the best agreement" with our
data are those based on the Blume-Hubbard model
in Sec. V. The numerical values of D, are listed in
Table IV. The experimental values of the coeffi-
cients m", „m~4'„and m~', deviate from the exact
values in Table I by 1% 6% and 16% on the aver-
age.

The longitudinal pair correlations functions have
in some cases a small negative value at t =0 re-
lated to the smallness of the ensemble, but apart
from this, f,'"(t) are positive in the time region
investigated —in contrast to the transverse pair
correlation functions. The f,'"(t) oscillates at
times large enough for the corresponding trans-
verse pair correlation functions to have decayed
to zero. These oscillations, which are due to the
small number of systems applied in the averaging
process, prevent the determination of experimen-
tal values of m', "„,. The longitudinal pair correla-
tion functions, which have the largest maximum
value for B, along [001] and [110], involve the
same spins as have the largest minimum value for
the transverse paircorrelation functions, i.e. ,
those spins for which r, , is along [001].
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=f"(t}+ Z (B B, &S )f' (t).
u, ~(n~m)

(4.4)

Equation (4.4) predicts that

(BlocB)oc(t))
(BlocB(oc)P

whereas the stochastic model gives

d (B,B,(t) )
dt (Bp Bp)

(4.5)

(4.6)

r T. . .&+, a, .
p=xyz Y p p

(4 6)

The autocorrelation function f~(t} [ =f~~'(t}] for the
spin I may be expressed in terms of P(I, B, t) by

(l,(O)l, (t) )
(l,')

=Tr d'B d'II~ 0 I~P I, B, t r(l,').

(4.9)

It is convenient to find fB(t) by first calculating its
Fourier transform

d, ( )=(dd) ' f f,(l) 'dl'"
=v 'Re Tr d'Bl~(0) J~(B,&u) Tr(I~},P P

(4.10)

where Z~(B, (d) is the pth component of

d(B, )=I dl '"' Id'1IP(I, B, l)
0

(4.11)

Multiplying Eq. (4.7) by 1 dt e'"' f d'll and per-
forming the integrations, we obtain the following
equation for J(B,&u)

that is, the short-time dependence of the correla-
tion function for the local field is incorrect. How-
ever, this short-time dependence is not very im-
portant for the short-time dependence of the spin
correlation functions.

Let P(I, B, t) be the probability density of the
random variables I and 8 at time t. Following KT
we may write the equation describing the time
evolution of P(I, B, t) as

V;P(I, B, t)+ I"P(I,B, t),

(4.7)

where the operator r is
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TABLE II. Ratio of the exact coefficients D2„&= m2„' & /(m2'&)" in a simple-cubic lattice.
A: A system of classical spins (I-~, @-0, I& finite), each spin interacts with 26 nearest
neighbors. B: A system with spin —,each spin interacts with 342 neighbors.

Direction
of B(,

D4, z D6

[001]
[110]
[111]

2.95
3.03
3.04

2.81
2.97
3.05

15.1
16.1
16.9

12.9
15.0
16.6

6.12
5.99
6.39

5.24
5.34
5.78

83.5
82.3
97.3

58.9
65.2
79.8

where we have used in the last step the initial con-
dition

(- i(d —I")J'(B, ~) +yB xJ'(B,&u) = I(0)P,'(B),

(4.16)

where

J'(B, (()) = QJ (B, (d )

P (I Bi 0) = 6(I —I (0))PQ(B)

and P,(B) is the static distribution for B

(4.13)

P,'(B) = II y exp[ —(,' yB /a )']/[—(2m)'~'n ].
P,(B) = Il y exp( —,'y'fp/gp)/[(2~) & g ]

0=x, y, z

p =x,y, z

(4.17)

(4.14)

It is computionally advantageous to multiply Eq.
(4.12) by

I'r(I~).

(4.18)

g~((()} may now be written as

g( )= ( ) 'Re Tr( d'Bi (0)() 'Z (B)-',
n= II exp[(-,

'
ya, /~, )']

p=x, y, z

which leads to

(4.15) Since F' is closely related to the Hamiltonian for a
three-dimensional harmonic oscillator we shall
expand Z~(B, &u} in harmonic-oscillator ei8enfunc-

TABLE III. Numerical values of the coefficients m&„&, j&0, p =x, ~ evaluatedfora simple-cubic lattice. r.A, is the vector
between the spins j and k and Q& is the number of spins, which are in equivalent positions with respect to the jth spin.
Each spin interacts with 26 neighbors and the moments are evaluated in the limit I ~, + 0, while I@ remains finite.
m2J„& is given in units of (2'/3&~p ))

Direction
of Bn

Direction
of r, „ m'" m".

[001]
[001]
[001]
[001]
[001]
[»0]
[»0]
[»0]
[110]
[110]
[110]
[110]
[111]
[111]
[111]
[111]
[»x]

[001]
[100]
[110]
[101]
[111]
[001]
[100]
[110]
[110]
[101)
[111]
[111]
[001]
[110]
[110]
[111]
[111}

2
4
4
8
8
2
4
2
2
8
4
4
6
6
6
2
6

0.592 59
0.148 15
0.018 52
0.004 63
0.
0.148 148
0.037037
0.074 074
0.018 519
0.001 157
0.005487
0.005487
0.
0.018 518 5
0.018 518 5
0.021 947 9
0.002 438 7

5.10995
1.664 78
0.27912
0.301 18
0.037 04
0.534 679
0.157 748
0.2 73 214
0.087 088
0.021 685
0.051 007
0.031 138
0.001625 8
0.026 640 2
0.033 155 9
0.032 830 5
0.003 752 5

59.130 87
25.124 10
4.745 73
5.255 87
0.922 32
2.617 519
0.864 564
1.334 830
0.509 911
0.155 031
0.307 101
0.191170
0.005 668 9
0.053 858 5
0.079 908 8
0.068 098 1
0.008 363 0

—0.296 30
-0.074 07
-0.00926
-0.002 31

0.
-0.074 074
-0.018 519
-0.037 037
—0.009259
-0.000 579
-0.002 743
-0.002 743

0.
-0.009 259 3
—0.009 259 3
-0.010 973 9
-0.0012193

-2.229 56
-0.396 95
-0.056 88

0.050 34
0.00926

-0.161391
-0.041 015
-0.108 410
-0.017268

0.003 012
-0.002 482
-0.006 660

0.000 406 4
-0.012 352 9
-0.006 865 9
-0.011938 4
-0.001 364 5

-30.164 66
-3.519 01
-0.808 78

0.326 11
0.10196

-0.620 027
-0.172 052
-0.610 360
-0.062 828

0.010 363
-0.040 2 76
-0.039 786

0.001 114 7
-0.032 676 4
-0.008 278 1
-0 024458 7
-0.002 942 8
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tions:

0.16-

o.oo=

011

0}

t{x}
I I ['I'l1}

g'(B, ~) = p g C(p,p', n„n„n„u&}
n&, f1&, ng=o P =X,yo+

xF „„(B)I,(0),
g

(4.19)

I"F „„(B)= —E „~„F„„„(B), (4.20)

where F„,„,„(B)is a set of orthonormal eigen-
nz& n n&

functions for I':

-0.16- II[1001
)LE fly/ ~ tfZ

P=& 9,&

(4.21)

-0.32-
II[00'I[

FIG. 5. Construction of the free-induction-decay
line shape (heavy line) from the transverse autocorrela-
tion function, f„"(t) (solid line), and the pair correlation
functions, f „' (t) (solid line), of the 26 nearest neighbors.
The symmetry of the spin system is used to group the
26 pair correlation functions into five sets, each set con-
taining correlation functions between the jth spin and
those spin 0, which are in equivalent positions with
respect to the jth spin. The pair correlation functions
shown are the sum of the correlation functions in each
of the five sets and they are labeled by a vector r;&
connecting one of the equivalent spin pairs in the set.
Dashed line: free-induction-decay line shape from Ref.
9. The time is in units of X =2r3o/syiiII.

Substituting Eq. (4.19) into Eq. (4.16) leads to

( ) 23/4 —1/4(~ n g )1/2 3/2

x Re[C(P,P, O, 0, 0, u&)], (4.22)

since Fo o o(B) is given by

F...(B}=(2v) '/' '/'(a S S ) '/'0 ' (4 22)

We shall now derive a set of equations for the C's
in Eq. (4.19), which allows a determination of

C(P,P, 0, 0, 0, &u}. We substitute Eq. (4.19} into the
Pth component of Eq. (4.16), multiply the resulting
expression by Io(0)F„„(B),and perform the
trace and integration fd'B. For the xth compo-
nent of Eq. (4.16) this leads to

(-fa+E„„„)C(xp,n„,n„n„&u)+A, [n,'/ C(z,p, n„,n, —1,n„tu)+ (n, +1)'/ C(z,p, n„n, + I,n„u)]
—n, [n,'/'C(y, p, n„,n„n, —l, e)+(n, +1)'/'C(y, p, n„n„n, +1,&u)]=(2v) '/ y' '(&„&,&,) 5o,,5,„,o5,, o~ „o~

(4.24)

yB,F. .. ,.(B)=~,[(, 1)"F„.„., „(B)
+ n', /'F„„, „(B)].

Equation (4.24} and the corresponding equations
for the y and z components of Eq. (4.16) have the
form of an infinite set of linear equations in the
C's. This set of equations may be solved analyti-

(4.25)

In the calculation of Eq. (4.24) we have used prop-
erties of harmonic oscillator eigenfunctions like

Iimg, (oo) = (2/'s)a'„T„'(u ', (4.2V)

which for an isotropic interaction reduces to An-
derson's result. " For finite frequencies we re-
sort to a numerical procedure retaining only those
equations of the set Eq. (4.24), which have n„+n,

cally in the limit of infinite frequencies giving

limy„((u) = (liv)(b, ,' T, '+ n', r, ')(o ', (4.26)

TABLE IV. Components D» (p, p' =x,y, z) and eigenvalues D&, D&, and D3 of the spin diffusion tensor calculated
from the Blume-Hubbard model [Eq. (5.28) with N=216] for a simple-cubic lattice of classical spins (I ~, h —0, and
I I2 finite). Each spin interacts with 26 nearest neighbors. D& & is given in units of 3y i p ( j(2rp).

Direction
of Bp Dx x Dy, z D1 D2 Dg

[001]
[110]
[111]

0.055 26 0.055 26 0.188 74 0. 0. 0. 0.055 26 0.055 26 0.188 74
0.067 89 0.067 89 0.083 55 0.024 55 0. 0. 0.092 45 0.043 34 0.083 55
0.075 79 0.075 79 0.075 79 0.014 55 0.014 55 0.014 55 0.061 24 0.06124 0.104 89
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+z, ~ 11. The only parameters entering into the
calculation are Ap and rp (p =x, v lz) through

E„„„.Ap is taken from Eq. (4.3) and ~p may be
estimated by expanding Eq. (4.4) as

&BlocBloc (f)&
&BlocBioc

&

=1 —1/2(," Q B,,B, ,'/. S)t
a, m{a~ m)

(4.28)

If the interaction between the spins is restricted to
the 26 nearest neighbors then

B,~B, I", p/. S,
k, m(k& m)

is zero for Bo along the [001] and [111]directions.
For B, along the [110]direction the sum is (6-7)%
of m2'~. ' Accordingly, for short times we may
for all three directions of B, put

&BlocBloc(f)&/ (BlocBloc& fJ f(f) e —m2 'pt /2 (4 29)P P P P P

rp is estimated from fp (rp) = e ' giving

(4.30)

fp(t) is obtained from the calculated gp(u) by Fou-
rier inversion and is compared to the molecular-
dynamics correlation functions in Figs. 1 and 3.
The short-time behavior of fp(t) is seen to repro-
duce the experimental functions quite well as ex-
pected since a calculation of the first two time
derivatives of Eq. (4.9) at t = 0 gives the correct
values 0 and —m", ~, respectively. On the other
hand, the long time behavior of fp(t) is less satis-
factory. The transverse correlation functions have
a long negative region and the longitudinal corre-
lation functions decay to zero too fast, almost in
an exponential fashion.

One shortcoming of the model is that the form
of fp(t) is independent of the direction of B,—in
contrast to the molecular-dynamics experiments
and the ratio of moments D,„~ in Table II. This
is seen by defining a new reduced time unit [com-
pare Eq. (2.11)]as

V. BLUME-HUBBARD MODEL

Blume and Hubbard' (BH) have described a tech-
nique for calculation of the spin correlation func-
tions of the Heisenberg model at high tempera-
tures. BH found that the spin correlation functions
predicted from their model are in excellent agree-
ment with the molecular-dynamics calculations on
Heisenberg spin system at high temperatures.
Furthermore, in the last few years the technique
of BH has also proved useful in the description of
the dynamical behavior of other spin systems. " "
In this section we shall use their method to derive
a set of equations for the spin correlation func-
tions for a dipolar coupled spin system and we
shall compare the result to the experiments de-
scribed in Secs. II and III.

BH have shown that the correlation function
(AB(t)&/(AB) in the high-temperature limit may
be calculated according to

&AB(t))/&AB&=«B(f) &/&»&,

where
0

&6B(t)&= —tlim ([A(t'), B(t)])e" dt'

(5.1)

(5.2)

the position of a given spin j is made up from the
neighboring spins. For Bo along [001]the two
neighboring spins i and k along [001]and [007]
have an interaction, which is stronger by a factor
of 2 than any other interaction involving j. On the
other hand, for Bo along [111]the interaction be-
tween j and the neighboring spins are all of roughly
the same magnitude, whereas the case with Bp
along [110]largely lies in between. This means,
that the basic assumption of the model, that the
local field at spin j is independent of j at alltimes,
is expected to be the least valid for B, along [001],
since in this case the time evolution of the orien-
tations of the spins i and k depend to a relatively
large extent upon the spin j, which in turn means
that the local field at the spin j in this case is
more dependent upon the history of j itself than in
the case with B, along [111].

-I./2
Ã' = X g(1 —3 cos'8, ,)'/a,'„

&(~s)
(4.31) Introducing the spin operators

where a,.p=r,.~/r, . In this unit we find r, =('-,')' ',
r, = 27'/', 6„=( 7)' ', and A, = ( 7)' '. Accordingly,
varying the direction of B, simply changes the
time scale for fp(t), but its form is conserved.

The agreement of fp(f) with the molecular-dy-
namics experiment varies therefore from one ori-
entation of Bo to another. It is found that the over-
all agreement increases slightly in going from B,
along [001]via [110]to [111]. This becomes un-
derstandable by considering how the local field at

I (t) =N 'QI, . (t)e'q' J P =x y z (5.3)

&I'-,I'-, (t)& &6I'-, (t)&

(I I-) (6I-&

(5.4)

The equation of motion for I-(t) is

we may express the wave-vector dependent corre-
lation functions as
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d I (t)
= y'iIQB- V- x I--

dt
1

where

V-, =(--,'I», ——,'I', -', I'-)
ql' ql

'
ql

(5.5)

(5.6)

In the derivation of Eq. (5.8) we have neglected all
commutators of the type [5I-,I- - ], where p,p'
=x,y, z. However, it has been shown by Hubbard"
that this approximation does not change the final
result in the high-temperature limit, which we
are discussing here.

From the formal solution of Eq. (5.8) we may
express F-„(t) as

B = p Bh~ exp[i qh
' (rh —r))].l

(5.7)

5 I-(t) =iZ h - (t)5I-„(t}, (5.8)

where the tensor h-- has the componentsqql

h-, -„(t)=O, p=z, y, z

h*-'- (t)=iy'h ,'(B +-2B-- -)I- - (t)= —h'-'- (t),qql 3 ql q-q q-q qq

From Eq. (5.5) we derive a differential equation
for 6 I-(t):

F'-, (t) =(6I'-„(t))/(6I';(0))

exp, i ht'dt 5I 0 5Iq 0
0 q

(5.10)

where 5I (0) is a 3dV-dimensional vector with com-
ponents 5I-(0),p' = x,y, z, q = q» q„.. . , q„, and the

P
subscript 0 indicates a time ordering, and [ .]-,
means the Pth component with wave vector q of the
vector [ ]. We now make use of the basic physi-
cal approximation in the theory of BH, namely the
neglect of the detailed correlations of three or
more spin operators, so that a cumulant expansion
of Eq. (5.10} leads to

h~qq (t) =iy hp(2B +Bq q )I q q (t)qql 3

h (t) = —iy'h —', (2B +B- - ) I (t)qql 3 ql q-ql q-ql

h'-*- (t) =iy'h ,'(B- —B- - ) I'--- (t)qql 3 ql q ql q ql

(5.8)

t t PP

F;(t) = exP, — dt' dt"(h(t')h(t"))
0 0

(5.11)

where we have applied the initial condition

8- (t)=-iy'h-, '(B- -B- -)I'- - (t).qq 3 ql q-ql q-ql (5I „.(0))= (6I (0))6 .5„.. (5.12)

(5.13)

In order to account for the time ordering in Eq. (5.13) we make the approximation to the integral in the
exponential function

In Eq. (5.11) [ ];- is the pq-pq matrix element of the matrix [ ]. Differentiation of Eq (5.11) y. ields

p-(t) = — f dt (h(t)h(t')) exp'—f dtfdt, (h(t, )h(t,,))
0 0 0 Oqq

dtl dt2 dtl dt2+ dt, dt2, (5.14)

l

i.e. , we are neglecting the contribution from f, dt, f dt, We may now. handle the time ordering in Eq.
(5.13) explicitly as

pl

Since'
pl tl 1&3& P

exp, — dt, dt, (h(t, )h(t, )) =6- -6l,lF (t'),
0 0 -q3q

t t'
p'-(t)= —J' dt h(t)exp. —f' dtf'dt. (h(t, )h(t.),) h(t )exp. (- f dtf''dt. (h(t, )h(t,,))

"'
0 |I I g

l

f dt h-„-„(t) exp, — 'dt, dt(h(t, )h(t, )) h-'x (t')
&A&3

qlqaq3 t' P3P
x exp, — dt, dt, ht, ht,

0 0 q3q

(5.15)

(5.16)
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we may write Eq. (5.15) as
t

F„(t)= —~ dt'(k„(t)k„(t'))F „(t—t')F„(t'). (5.17)

PP]. PyP
The various averages (k- (t)k- -(t')) may be obtained from Eq. (5.9) so that we finally arrive at the follow-
ing set of nonlinear integro differential equations which couple the longitudinal and transverse correlation

functions as well as the various q vectors of the Brillouin zone.

t
F -(t —-t')F~ (t —t')F-(t') dt'.

t
F~(t): I(I+1)&(B +2B ) F q (t t )F (t t )F (t )dt

1 1 0 1

~ 2 4@2

Fq(t) 27 I(I+1)$(B q
B )(2B +B )

(5.18)

(5.19)

From the solution of Eqs. (5.18) and (5.19) we may obtain the spin correlation functions in Eqs. (2.7) and
(2.9) as

f~"(t) =N 'ZF-(t) exp[iq (r,. —r,)].
Q

(5.20)

Before discussing the solution of Eqs. (5.18) and (5.19) we shall point out that the dependence of F-(t) upon
I (I+ 1) is linear so that a, change in I (I+1) changes the time scale of F-, (t) [and thereby f~"(t)], but its form
is retained. In terms of the coefficients, m,"„~, this means that m,"„~~k'"[I(I+I)]" and we may therefore
expect that the theory reproduces experiments on classical spins better than those on finite spins.

In the classical limit we may express Eqs. (5.18) and (5.19) in reduced time units [Eq. (2.11)]as

F*-,(t) = (27N)-'Z—(B-, + 2B-„-„)' F'; -, (t t')F"-„(t—t')F—";(t')dt'q-q& (5.21)

t

F (t) = —2(27N) '$ (Bq q
—B )(2B +B-„-„) F (t —t')F (t —t')F (t')dt',

1

where B- has been redefined as
q

(5.22)

B-= P (1 —3 cos'0, ,) exp[i q (r,. —r,)]!a,'„.
y(~ a)

(5.23)

Equations (5.21) and (5.22) have been solved numerically using the boundary conditions F-(0) = 1 and F'-(0)
=0. In this calculation the sum over q, was approximated by a sum over 216 points in the Brillouin zone
and the sum over j in Eq. (5.23) was restricted to the 26 nearest neighbors to k. The correlation functions
obtained in this way are shown in Fig. 1-4 together with the molecular-dynamics results. It is also useful
to compare the exact coefficients rn,"„~with those obtained from the model as

m~2~ ~=(- I)"N ' P F-(2n, 0) exp[iq ~ (r,. —r,)], (5.24)

where

dt2n t =0

F-(2n, O) may be obtained from Eqs. (5.21) and (5.22), and are

ll —2 ll-2 —J ( + k)fF-(n, 0)= —(27N) ' P (2B- - +B-„)'g . , t Fq -„(j,0)F- (k, 0)F-(n —2 —j —k, 0),
1 1 j -0 =0 1

Q

(s.2s)

ll —2 II — -J (j + k) (F (n, O) = —2-(27N) ' g (B- - —B-„)(2B-+B- )g -.
i i

F- - (j,0)F- (k, 0)F-(n —2 —j —k, 0).
1 (5.26)
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&P

[F- (t') ]'dt 'F-(t)q~ p. (5.27)

Equations (5.25) and (5.26) show that all correla-
tion functions have the correct value of m,'"~, which
is in agreement with the fact that none of the ap-
proximations made in deriving Eqs. (5.21) and

(5.22) affects the coefficient to t'
For longer times the transverse correlation

functions are not in good agreement with the mo-
lecular dynamics experiments as is evident from
Fig. 1, where the transverse autocorrelation func-
tions display large oscillations, which are absent
in the experiments. " The position of the first
extremum point of the transverse pair correlation
functions in Fig. 2 is generally in good agreement
with experiment, although the amplitude at this
point is somewhat too large. For longer times the
model predicts more extremum points than the ex-
periments yield. The coefficients m~4'„and m", „
are on the average smaller than the exact values
by 17% and 37% for j= k, and by 24% and 46% for
j+k, respectively.

In discussing the transverse correlation func-
tions it is of special interest to consider E;,(t),
which is the FID. This function has the zero points
in fair agreement with experiments although the
amplitude at the first minimum is roughly a factor
2.4 too large. The moments of the corresponding
cw spectrum, M~, M„and Ms predicted from P-

p

(2n, 0) are smaller than the exact values by 20%%uq,

42%%up, and 60%%uo, respectively.
The longitudinal autocorrelation function in Fig.

3 represents the experiment well both in the short-
and long-time region although the agreement with
experiment for intermediate times is not so ex-
cellent as reported for the Heisenberg spin system
at high temperatures. The good short-time agree-
ment is also demonstrated in the values m",', and
m~6~, which differ from the exact values by 4/() and

The form of the longitudinal pair correlation
functions in Fig. 4 seems to be well described by
the model for times up to the first maximum point
and m', ~, and m~6", are found to differ from the ex-
act values by 16% and 30%%u~, respectively. For
longer times the experimental functions do not
permit a comparison due to the rather large nu-
merical uncertainties.

Equation (5.22) may also be used to investigate
I'-(t) in the hydrodynamical region, i.e. , in the
limit q-0, f-~. In this limit Eq. (5.22) becomes

f lorn which we Dlay ldentlfy the spin dlffuslon ten-
sor as

(5.28)

Numerical values of D~ ~, may be found in Table
IV. Generally, these values are 30% smaller than
those derived from the density matrix theory of
Lowe and Gade, 'P which is a satisfactory agree-
ment considering the present state of art of ex-
perimental diffusion tensors.

VI. SUMMARY

The longitudinal and transverse auto- and pair
correlation functions have been derived from a
molecular-dynamics experiment for a system of
classical spins interacting by a truncated dipolar
coupling. The obtained correlation functions are
used to examine the usefulness of two models to
describe the dynamical behavior of the spin sys-
tem.

First, we consider the Kubo and Toyabe model,
which treats the local field at a given spin as a
stochastic process independent of that spin, and
we derive an infinite set of linear equations which
permit the determination of the autocorrelation
functions. The longitudinal correlation function is
found to give the best agreement with experiment
although it does not reproduce the observed long
time dependence of the experimental correlation
function.

Next, we adapt the general theory of Blume and
Hubbard for the calculation of spin correlation
functions to the spin system considered here. We
make the same set of assumptions as Blume and
Hubbard did and obtain a set of coupled nonlinear
integro-differential equation for the transverse
and longitudinal wave-vector-dependent correla-
tion functions. Generally, we find this theory de-
scribes the longitudinal dynamics much better than
the transverse dynamics. The transverse auto-
correlation function has long-time oscillations
whereas the experimental function is always posi-
tive and the FID has far too large oscillations to
represent a better —or even as good —theoretical
description of the FID than current theories. Qn
the other hand the longitudinal correlation func-
tions represent the dynamics rather well —although
not as excellent as found for the Heisenberg spin
system at high temperatures, and the spin diffu-
sion tensor is within the accepted values.
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m, .= —,', y'I-'S, X.
2

R 2'608,'—688, —160I BR,.q (11))—84XR, .
k

(A9)

(A10)

k

+ 336 Q B~R R~R(11)+ 552 Q B~R R~R(21) — Q B'„R (22) + 586 Q B'„R'„(]I)
k k k k

—304+ B, Rq, (2()RB(3. 1) —661 RB(2() —16 Q BR' BB,B 8
)k k k,p, a

+
90 280SR —2100SRSR+

3 S,+1320+ B)RR, (1R1)+ 300 BRRR,. (21)
X 30052 I

k k

—65VQ BqRR)R(22) + XS, .1748

k
(All)

m", , = —~» y4I-2a,'kx.
8

m = [X (-320S B. +128B)R+320B)„R)(11)—160B)RR R(21)+60R (22))+84XB. ].
(A12)

(A13)

6,z=
729 27 175 ~k 5 fk fk 5 f

224SRB30 B RR,R(11). 1216B~RRR)R(31)+ BR R ~ (21)3 3144 4 2528

+ B) RR,.„(41)+ Bq RR,. (2R2) + B)RR)R(32) —444B'0 R'.R(11)
704 2016 2 1792

+ 160B,.» R,.R(21)R,.R (11)+ 220SRR,.R (22) —
152R~R (42) + 120Rq0(22)RqR(11)

+ 80R,.R(33) —240R~R(21) + 1912S,B~R R,.R(11) —952S,B,R R,.R(21)

—132B,, Q B,'.PBR~R,~(11)+792B~R Q B',RBR~RR~(11) —11. 2B,.R Q B,. BR R,. (21)
P P P

+224B~R Q BR~R)P(11) 160+ B PBRPRqq(11) ~ 48B.
R Q BRpR (22) 20 Q BR R (22)

B~PBR~RRP(11)+120Q B~PBRPRRq(21)+8Bj~R P BR R (11)

P, a

+ B)R+ 416S4B)'R+ 1904SRB)40 480SBBqRR 1448B)RR R(11) 2180B)RR R(31)
X' 30752
90 35

+916BqRR R(21)+ 128B'RR'R(41)+65VB)RR R(22)+964B~RR R(32)

—22DR, ,(42) ~ 200R) (33)) — RB,',1748
(A14)

In the above equations a prime on a summation
sign indicates that none of the spin indices may
take on the same value simultaneously.

It may be demonstrated that the coefficients in
Eqs. (A3)-(A14) fulfill the following relations

k(& f)

k(& f)
(A16)

where M,„ is the 2nth moment of the cw spectrum.
Numerical values of the coefficients mf, '„P

(P =x,z) are given in Tables I and III. In these
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tables each spin interacts with its 26 nearest neigh-
bors only. However, it should be pointed out, that
the numbers in Tables I and III do not exactly sat-

isfy Eqs. (A15) and (A16), which is due to the fact
that terms like R~~(22) may be nonzero, even if k
is not among the 26 nearest neighbor. s to j.
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