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Binding energy of an impurity in an ionic crystal
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An analysis is made of the binding energy of an impurity in an ionic crystal in terms of the frequency shifts

in the LO branch, arising out of the coupling of the polar modes through the polarization of the impurity.

Estimates are obtained for the energy shifts of both tightly-bound and loosely-bound impurities. The
connection of this approach with the bound-polaron problem is discussed.

I. INTRODUCTION

In an earlier paper' a simple model of a polar
crystal-impurity system had been used to obtain
the local optical modes generated by the impurity,
and it had been pointed out that there will be a
change in the binding energy of the impurity due to
the generation of the local modes. If the impurity
is analyzed in terms of the hydrogen-atom model,
in an ionic crystal the perturbed impurity levels
would be those of a bound polaron which has re-
ceived attention lately. The main object of this
paper is to evaluate the shift in the energy of the
impurity by a microscopic and semiclassical ap-
proach of the sort indicated in Ref. 1. The basic
feature of this approach is the evaluation of the
additional coupling between the dipolar oscillations
in the unit cells through the induced polarization
of the impurity. This additional coupling leads to
frequency shifts in the LO branch (assumed to be
undispersed}, and the resulting change in the zero-
point energy of LO oscillations gives the change in
the binding energy of the impurity. The additional
coupling depends on the polarizability of the im-
purity and hence, depends on the particular quan-
tum state it is in. We shall see that this approach
gives the energy shifts for both a tightly bound and
a loosely bound impurity, and in the limit of the
electron associated with the impurity being free,
gives the usual value of this energy obtained from
polaron theory. Also, in the appropriate limits
the results can be compared with those of the ear-
lier workers' who have used a macroscopic con-
tinuum model for the bound polaron.

II. LATTICE AND IMPURITY MODELS

electron has an effective mass m. The dipolar
oscillations in the 1th lattice cell are of an effec-
tive dipolar moment p,; which has associated with

it an effective charge e* and an effective mass M.
In the presence of the impurity its equation of mo-
tion can be written in the time-independent form

M((u', —(u') pg(o) =(e*)'(4v)'

x

Flail

~P&' ~ . 2 1

The force-constant tensor (4v) F(1,1', &u} gives the
force on the 1th dipole due to the 1'th one through
the incuded polarization of the impurity, and it
vanishes in the absence of the impurity giving vo
as the unperturbed LO branch frequency.

It will be shown in the Appendix that the explicit
form of F(1,1', )d) is

v() )', )= J)v;v;G)H; — '))RR- ')

x[V;.V;G(r' —R;.)]d r ', (2. 2)

a(, )= f s')' )~, ) v) (~ )), (2. 4)

where (VV) is the diadic formed out of the gradient
operator, G(r —r') is the electrostatic potential
Green's function given by

d ~ xp~'k
(2 w}' k

R is the location of the center of the impurity,
and n(r —R) is a polarizability density which can
be evaluated in terms of the quantum states of the
impurity. o.(~} can be written

For simplicity we consider, as in Ref. 1, an
ionic crystal with an undispersed LO branch with
frequency coo, which is the frequency of the dipolar
oscillations in each of the X unit cells. We will
also assume that the conduction band has an iso-
tropic nondegenerate minimum, so that the donor

where, as shown in the Appendix, for an impurity
which can be approximated by a hydrogenic sys-
tem in a. state In),

e ~ ( lrn, l )(mml exp[i(k r,}]l)n}

m ~nm+ ~
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(mlr, ln}(nl exp[i(k. r,)]im} ik
+

(2. 8)

i. e. , it is an isotropic tensor. For k - 0,

Here r, is the coordinate of the electron.
When in} is a. tota. lly symmetric state, such as

i ls),

o& (k„(u, ) -=n„(k, (u)7,

Here p=N/V= 1/Vo, the density of the crystal.
Using the formula

r d O' F(k') = Q d O' F(k'+ g),
A(i 0' Syne g F

(2. 18)
where V*=(2)&) /Vo is the volume of the first
Brillouin zone, and

(2. 7)
2e' ~ (nia, lm}(mls, ln)

o'n&d = ~ ~"')nm a a
lit

In k space, the secular equation (2. 1) can be
written

g =,.J' d'a,

we can write Eq. (2. 15) as

v(k) =A(&d) pQ

(2. 17)

a(~) r
p, H~)=, 2 d Od'O' ~ &r(k —k')(2v' ). g O

k'k'x,a exp[i(k ~ R; —k' ~ R",, )]

xexp[-i(k+g) R] g ™o(k—k'+g-g')
N

Here

)& exp[- i(k —k') ~ R] p;, ((u) . (2. 8) exp[i(k'+ g') R] v(k') . (2. 18)k/+ g))a

%e thus have a 3Xx3X secular determinant

A((u) = (4v)'(e*)'/M((o() —(u') .
Introducing the definition

v(k) = P p" exp[- i(k R;)J,

(2. 8)

(2. IO)

&i sf =o, -
whose roots give the perturbed LO frequencies.
The explicit form of the 3x3 submatrices of S is

multiplying both sides of Eq. (2. 8) by exp[- i(k
~ R;)], and summing over I we get,

k'k'
(k) = d I ' d I"'

S&k k' )c )'+

(k+ g) (k+ g)xP exp[- i(k —k'+ g —g') R] k+ g)gag

PP II
&& o.'(k' —k") „, exp[- i(k' —k") R]

-„(k'+ g') (k'+ g')
XZ k —k'+ g —g') -, , a(k'+ g') (2. 20)

x exp —it,k' —k" "- R; v k"
1

(2. »)
Equations (2. 18)-(2.20) form the basis of the
present treatment.

(2. 12)

v(k+ g) == v(k),

and the fact that

(2. iS)

(2. 14)

where Vo is the volume of each unit cell, we can
write Eq. (2. 11) in the form

v(k) =-A(&d) p Q exp[- i(k+ g) R]

(k+ g) (k+g), , -, k'k'
d O' o& k —k'+ g)

)& exp[i(k' R)] v(k') . (2. iS)

Noting that

exp —g k' —k ' R" =X
~0

where g is a. reciprocal-lattice vector, and from
Eq. (2. io),

The problem of evaluation of the change in the
zero-point energy of the LO modes from the secu-
lar determinant of Eq. (2. 19) is exactly analogous
to that of evaluation of the phonon self-energy of
an impurity. The change in the zero-point energy
ls

~E= . —d(d —ln I-S

I lI nSi d&u-
4mi

h Tr S'
4mi ~ g j

In this the contour encloses the positive real axis,
but for our purpose we need to take only the domi-
nant contribution from the pole at eo occurring in
A(&d). We shall now apply the formalism to a few
ca,ses.
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A. Very tightly bound impurity

If the electron orbital of the impurity has an ex-
tension small compared with the lattice constant,
n(k, &u)

-=n((d)T, where n((d) for the ground state is
k independent and is given by an expression of the
form of Eq. (2. 7). For instance, if in a hydro-
genic system we consider only the transition to
12p) from I ls),

&1&-Esp Z a66((d)=
(

' „„,, e a6, (3.2)

where ao is the Bohr radius in the medium.
When n((d) is fl independent, S6 „-. of Eq. (2. 20)

becomes separable

e,...„,.=e( )e( ) ( )V(ee"«'), (e. e)

The secular equation then becomes,

7- ( )A( ) p g ™P*(k)P(k}= 0 . (3.5)
~a+

It may be noted that

P P(k) exp(l k ~ R,) = (2v)'
X g~y*

1 kk
X d I ~ exp[i k. (Rl -R)]

Al) 6 eeece

= (2~)'(~;~;)C(R;-R) . (3.6)

P(k)=Q -, exp[-i(k+g). R] . (3.4)

' E -"(.-)-.(e-' -"(e-(-) -'E-.(( -') -;))
(lf, P7'&«* V

P P*(k') e p[-ik'" R;] g P(k)exp(ik R;)
I - k'p V+ geV+

)6", +[V;V;G(R;-R)]'.V4 1 1 1 (3. 7)

Since V*=(2)t) p, we can write Eq. (3.5) as

7- 66(~)a(~)(2~)6 Q [V;V;G(R; —R.)]' = 0.
(3.S)

The explicit forms of V;&;G(R;—R) and its square
are

1
V;V1G(R) —R}=

4&tR, -Hl'

x[3(R;-R)(R;-R)-7(R;-R) ]. (3. 9a.)

(2)t)'66((u6) e*' ~( 1
o

—
d6 Mo ~ (3.11)

and the corresponding change in the zero-point
energy is

2[""'-"']=(4.) im- niI

x[3(R;-R)(R;—R)+™l(R",—R) ] . (3.9b)

For a substitutional impurity in a. cubic lattice
the summation over l wi11 render the diadic in Eq.
(3.8) dlagollRl, Rlld lt 1'educes to R tx'lply degenel'Rte
set of secular equations

3. ~0)
l

where d is the lattice constant and in the sum over
1 the divergent term 1 = 0 is excluded.

An approximate solution of this equation is

3ffV*tr((d6) e" '
V6,VI(d6 ~ IY I6

(3. i2)

e*' eo —&

Mcu o Vo 4m&o
(3. 14)

where «o is the static dielectric constant. If the
high-frequency dielectric constant e„ is different
from unity, then (e6 —1)/&6 becomes 1/6„—1/e6,
and is usually written 1/e. With this notation we

get

3)f(c)6 2)l' o(((()6) ~ 1
c~ 3 cd; IlI

(3. iS)

For the particular choice of n(«)) given in Eq.
(3.2), the above expression reduces to

3+~o El. —Ea--;,.„...), .;)

The expression (3. 16) differs from what would
be obtained from the expression for the frequency
shifts given by Dean ct QE. 1n a model based on

This expression is reminiscent of the sum of. the
London interaction energies of the impurity with
the dipola. r oscillators in each unit cell.

The quantity e* /M(d6V6 can be written, using
the well-known Born result, in the form
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the Frohlich Hamiltonian by the factor (ao/1), and

has the necessary feature of vanishing from ~o-0
in the zeal tight-binding limit, whereas their ex-
pression goes to a finite value in this limit.

8. Loosely bound impurity

at 0= 0, ha. s a width of the order of I/ao, and has
the property f(k-5)=I/(2v) . If we use this in
Eq. (2. 18) and (S. 1), take only the term g=g'=0
for the reason stated above, and take the contribu-
tion only from the pole at re= (do, we get a series

If we take the example of an impurity in which
the electron is essentially free, it can. be shown
trom Eq. (2. 5) using box-normalized plane wave
states that r!E!= —Q5!do(4Ãpl o}

(s.21)

(s. 22)
o(k, !d) -=(e'/V!n&d') 5(k)™I.

Then Eq. (2. 18) becomes (with kc V ),

(s. Iv) which is just the free-electron contribution.
The next term becomes

A(u))e" V (k+ g)(k+ g)
(2 )a (- -)2 ~(k). (3. 18)

As expected in this translationally invariant case,
there is no R dependence of the secular equati. on.

The summation over g is apparently divergent,
the divergence arising out of the fact that the dipo-
lar oscillators are regarded as points. Since they
are not really points, but have finite size, there
would be a convergence factor with each term in
the series which would diminish quite rapidly with

g. We can then take only the term for g = |) as a.

first estimate, and if we use the formula (3. 1) and
ta.ke only the contribution of the pole at u= &0 in

the first term, we get

(4!!)'e"' e' iV V' ri

2M&do !!!!do V (2!!)' 2

In terms of the parameter & introduced in Eq.
(S. 15), the polaron size fo =(8'/2m!do), and the
Frohlich coupling constant' a=(e /2elo)/8!do, the
above expression can be written

&E =- —nfiuo(4!!pl!!) . (s. 18)

!V(k, !d) =- ( e '/m!d ')f (
~

k
~
) . {3.2o)

This form ca.n be obtained by following the pro-
cedure used by Platzman, ' who expands the energy
denominator in Eq. (2. 5). Here f(k) has a peak

This expression for the energy shift differs from
that. for a. free polaron in Frohlich's theory by the
factor of the order of pro. In our approach no ac-
count ha. s been taken of the effect of the finite size
of the polaron as in Frohlich's theory. This in-
troduces a cutoff in k space in taking the trace in

Eq. (3. 1) at a value of k- I/lo. Replacing the sum-
mation over k in the trace by an integral over a,

volume -(1/la}' it can be shown that the factor pl o

cancels out giving Frohlich's result, apart from
an unimportant numerical factor.

lf the electron is nearly free, n(k, !d) can be ap-
proximated in the form

ATE&
—— . —TrS = ——

z 4m ~p
kkhk'k' k'k' kk
& Ja" u" ~u

t

/(/k-k t)f(fk -k/) .
A good approximation for the above sum can be

made as follows. Since the width of f(Iki), i.e. ,
I/go is supposed to be small, we can set k= k',
sum over k and integrate over k' only in the neigh-
borhood of k. Thus

Tr ~,z k —k'

sphere of radius 1/ao

V 4m'

(2!!)' Sa(')
'

In summing over k the aforesaid correction for the
finite size of the polaron is neglected. Vfe then
get

40hz * e p
3 CO

O
2'J2 Cd() 0 O

3

8!d!!)G (I t p (s. 23)

If the correction due to polaron size is made we

get
3

+Ea s (@!do) !r (s. 24)

IU. CONCLUDING REMARKS

It has lately been demonstrated" ' that one can
use semiclassical techniques for evaluation of the

apart from inessential numerical factors.
Since the energy shifts due to the free electron

is always there, in this formalism the lowest-order
correction to the binding energy of the loosely
bound impurity will be given by DES of (S.24) and
this is inversely proportional to the ratio of the
volume of the region of spread of the electron orbi-
ta, l to the volume of the polaron.
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effect of intera. ction of radiation with an atom,
such as radiative corrections, by considering the
coupling between the atom and the field to be due
to the polarizability of the atom. The results of
this approach are equivalent to what one obtains
using perturbation theoretic methods in quantum
electrodynamics sta. rting with the basic electron-
field interaction (eA' p/mc). The approach in
this paper is ana, logous to the above semiclassical
methods. Instead of starting with the Frohlich
Hamiltonian we establish the coupling between the
impurity and the polar vibrations of the host crys-
tal through the polarizability of the former using
linea, r response theory, and thus avoid the use of
perturbation theory on the Frohlich Hamiltonian.
It would be a simple matter to evaluate quantities
such as the phonon Lamb shifts by this forma, lism.
Further extensions of this approach will be re-
ported later.
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APPENDIX

If we have a single k component in the electric
field in the intera, ction Hamiltonian, so that the
integral over k does not occur in (A5), from linea. r-
response theory' the induced polarization of the
atom in state In) can be written

t
p (t)=„—.„J ( ]{p{t t )t—t;„',{t,')]]~ )dt Ik'k)

where p = er„ the dipole moment operator, and
p(t —t') is taken in the Heisenberg representation.
After some simple manipulations Eq. (A6) can be
written

P„(t)= P„(k, (u) b(k, co) exp[i(k R —(dt)], (A7)

where

({ I, I )( I p{tk",)I )
(]IR k t (d

fft dnm +

(m I r, In} (nI exp(ik' r, ) I m} ik
+

This is in diadic notation with the diadic formed
out of the vectors (nl r, l m) and ik/k

If we have a superposition of fields with different
wave numbers, the generalization of (A7) would
be (dropping the time varying factor)

(Al)

The polarization developed on an atom due to an
arbitrary sinusoidally oscillating field

$(r, t) = 8(r, (u) e '"'

P.( ) Jd pe„{k, )d(k, )e p{'i R)

P„R—r, ~ 8 r, ~ d'p. (A6)

(A2)

In terms of Fourier transforms

(A3)

Eq. (A2) can be written

((l(k, u) = —ik(t)(k, (())

or

can be obtained as follows. The relation between
g(r, (d) and the corresponding electrostatic poten-
tial (I)(r, (d) is

$(r, (d) = —V(t)(r, (u) .

Since (]t„(k, (d) is a peaked function of k with a
spread of the order of I/ao, where ao is the Bohr
radius, we expect ot„(R —r, (()) to be peaked at r
= R with a spread of the order of ap or the atomic
size. Hence r in $(r, (d} in (A8) can be set equal
to R to get a polarization density

p(r, (d) = (x„(R —r, ~) g(R, (u) .

For a, point dipole p(r') at r', the electric field
at r is given by

. k (p(k, (k))
(A4)

(p(r) = —V„(t)(r) = —V„[-t], V„G(r —r')] 4](

= 47([V„V„G(r—r')] ]], . (Alo)

x xp('k R)d k) e '
(A6)

We are considering only the longitudinal electric
field here, as transverse field effects (retarda-
tion effects) will be negligible here.

The polarizable impurity may be described by
a, charge (+ e) at R and (- e) at (R+ r, ). The inter-
action energy of the field with this system is then

H„,(t) = [e(t)(R, (t)) —e(t)(R+ r, ; (k))] e '"'

",J" *' {)- p( k .)]

Here G(r —r') is the electrostatic Green's function
defined in Eq. (2. 3). If we consider a dipole t], I
at R"„use Eqs. (A10) and (A9) to find the polariza-
tion density at r, we get

p(r, (d) = 47( (x„(R —r; (d) [V„V„G(r R;, )] tkf. —

= 4v ™n„(R—r; (()) [VI.V,.G(r —RI.)] p I. .
(A 1 1}

The field due to this polarization distribution at a,

point R, will be
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Z(R;)=(4 ) j&;&;G(Rr -)~(,)d'r

= (4 )' J[v;v;Gt})",— )] rr„t})— }

x[v;,v;, G(r -R;,)j d'r .
This field will produce a force on the oscillating
charge in the dipole oscillator at R"„and hence we

get Eq. (2. 1) with V(1, 1', u) given by Eq. (2. 2)
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