
PHYSICAL REVIEW 9 VOLUME 13, NUMBER 1 1 JANUARY 1976

Paramagnetic relaxation line shape in the Mossbauer spectroscopy of 1/2~3/2 transitions in
axial symmetrys
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Hirst's theory for the line shape of Mossbauer spectra in the presence of paramagnetic relaxation phenomena
is applied to the case of 1/2 —l3/2 transitions. A detailed procedure for obtaining the lineshape is given for the
case of axial symmetry, including off-diagonal terms in the hyperfine Hamiltonian. This is applicable for
example, to the 14.4-keV transition in Fe or the 66.7-keV transition in ' 'Yb. The theory is used to analyze
the data for "'Yb in the cubic compound Cs,NaYbC16. The hyper6ne parameter A = —38.7 + 2.0 mnv'sec and
relaxation rate W = 185 + 24 MHz are in good agreement with previous measurements utilizing the resonance
of ' Yb in this material.

INTRODUCTION

The use of Mossbauer-effect spectroscopy for
studying paramagnetic relaxation phenomena has
been known for several years. ' However, its
application has been rather limited in most of
that time due to an inadequate development of theo-
retical approaches for the problems of greatest
interest. In most cases, detailed treatment has
been limited to simple cases. For example, the
situation when the electronic state is a highly
anisotropic Kramer's doublet (the so-called ef-
fective-field case)" has been extensively used,
even in cases where it did not apply, because of
its inherent simplicity. However, only a few dis-
cussions exist for more complicated situations
which include off-diagonal terms in the Hamilto-
nian. '~ The best known approaches are the sto-
chastic method developed by Blume and cowork-
ers, "and the perturbation approach which is put
in the most useful form by Hirst. s Recently,
Hirst's theory has been discussed and applied by
Gonzalez-Jimenez et al. to give a closed-form
expression for the resonance line shape in the
presence of relaxation effects for 0-2 M5ssbauer
transitions, covering a relatively wide range of
possible interactions. '

With regard to experimental work, the recent
discovery of slow relaxation effects |n the cubic
compounds of the form Cs,NaXC1, (X is a trivalent
lanthanide ion) has provided one with a system
where many of the relaxation phenomena for more
complicated hyperfine interactions may be ex-
plored. " To present, these investigations have
also been limited to 0-2 transitions for isotopes
in the lanthanide series. In this paper we present
Mossbauer-effect spectra taken at low tempera
tures for the compound Cs,NaYbC1, using the

66.7-keV, &
—

& transition in "'Yb. In considering
the data obtained, we have worked out details of
the relaxation line shape for 2 - ~ transitons in
a case of axial symmetry using Hirst's approach. '
In the following we discuss first the theoretical
formalism for this case, and then apply those
results to the data of Cs,Na"'YbCl, .

THEORY

y'(p) = Q (pnjIVI~„~ vm)
all indices

x (gnvm( V( p'n'v'm')

x (v'm'[~g„i p'n') . (2)

In dealing with problems where the hyperfine
interaction is very general, we must consider the
way in which each possible transition is coupled to
all others. '0 Thus we take as a basis vector, a
four-index entity which specifies the nuclear
ground-state spin, I„ the electronic spin when
the nucleus is inthe ground state, S„and the corre-
sponding spins in the excited state, I', and S',.
Thus the basis vector is (S„I~ S;, I', ) =—

( pnvm).
Considering all possible combinations, there are
(2I~+ 1)(2I'+1)(2$+1)' such states and, for a
very general hyperfine interaction, each of them
corresponds to a possible transition. The relax-
ation process is then to be thought as a switching
between these various states, i.e., a fluctuation
among the possible transitions for the system of
interest. The line shape of the Mossbauer spec-
trum I(~) has been given by several authors, "
and can be written in the following form:

I(&u) =Re[I (P)j,
where
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Here M~ is an electromagnetic operator and U is
an operator carrying all the essential physics, to
be discussed below. Since in a lVl5ssbauer ex-
periment M~ operates only on nuclear quantities,
we have

L =1 L=2

i
2

3
2

TABLE I. Transition probability amplitudes C~~+ for
nuclear spine I~= tt aud I~=( with M 1 aud E2 character.

& p, n
I
M ~ I vm) = 5„,(C „'")

The C„"are probability amplitudes for a transition
from a nuclear state m to a state n with multi-
polarity I. and polarization M. These are tabulated
for powder samples in Table I for I, = 2 -I, =

&

transitions in both M 1 (magnetic dipole, L = 1) and
E2(electric quadrupole, L =2) cases.

Substituting Eq. (3) into Eq. (2} then gives for a
given multipolarity L,

i
2

i
2

2

1

i
2

I"(p) = g(C )'U-'C'".
L, .V

Here it is understood from Eqs. (3) and (4) that
the only contributions to the spectrum will come
from those elements of U ' which have p = v and
~l

The problem to be solved now consists of form-
ing U and obtaining its inverse. This matrix can
be written"

(5)

I"(p) = g (C„) C „&itnitmI UI p'n' it'm'& .
all indices

(4)

The matrix elements of U in this equation can be
shown to be related to the inverse of a matrix U,
discussed in the next paragraph, and Eq. (4) can
conveniently be put into a matrix form

1 2 1
~'II = 2g Il~y &i =M'~~ ~ (10)

In terms of these quantities, the relaxation ma-
trix for S =

& becomes'

ground-state parameters 4 II and A~, and with p = 0
for I =&.

The matrix R in Eq. (6} carries all information
concerning the relaxation processes prevalent.
We assume that the pertinent interaction is ade-
quately described as a coupling of the electronic
moment with a fluctuating magnetic field H,

Ill i"BSsHs +gJ. its(SxHx +Spiv )

We further assume that the time-averaged fluc-
tuating field is the same in all directions. The
relaxation matrix then depends only on a spectral
density J involving a time averaged correlation
function for the field H, and results in two relax-
ation frequencies O'I and 8'~ given by

U = Pl —(i/il)sc+~ -R, (6)
& itnvmIIt I

it'n'v'm'&

+P[31,'—I'(I'+1)], (8)

where AI and A~ are the magnetic hyperfine con-
stants and p = e'qQ/41'(2I' —1) is the quadrupole
hyperfine constant. In the ground state, a similar
equation applies with A. II and A.,* replaced by the

where P = I —iu, and I' is the natural halfwidth of
the resonance lines. +,' is a Liouville operator
formed from the static (no relaxation effects)
Hamiltonian+0 of the ion and has matrix ele-
ments"

&gnvmI3tcI p'n'v'm'& =6„„.6 &pnIsccI v,
' '&n

—5„,.6„„.&v'm'IX,
I vm&.

Here we consider a case of axial symmetry
around the ion in question and take for 3'., the
hyperfine interaction. In the excited state this
will be

= 5,6, [6 ~ „„i(-s W~~ —W~)

+ 2W (v IS, I
v' &( u IS. I 4

+w, (&vIs, I
v'&& i 'Is-Iu&

+(vIs Iv')&q'Is, Iv&)]. (11)

For the case we wish to consider, we have I~ = ~,
I'=

& and S =-,'. The dimensionality of the matrix
U is thus 32. Inversion of this matrix point by
point to form a spectrum as in Eq. (5) is a time
consuming process even for large computers.
Fortunately, the structure of the matrix is such
that it can be factorized into small matrices, as
was previously shown for the case of 0-2 tran-
sitions. ' Considering Eqs. (7}and (8), one sees
that the only nondiagonal states coupled by 3.", are
those for which p +n = p, '+ n' or v+m = v'+m'.
Similarly, from Eq. (11)we see for S = s that It
only couples states for which p. = v, p. '= v', m =m',
and n=n'. By inspection of the 32 possible states
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E4(P) =
~
C ',/ / 2~'3(2N +N22+424N )/24D,

where
2

N22 11( 33 44

N44 =a»(a»a» —a»),

N24 =-
D=a»(a»a» «- 24» —',4»)

—a'„(a„a« —a,',}.

(12)

The N = V and N =8 matrices are too cumbersome
to allow a simple closed form expression, and
their inversion must be done numerically. The
basis states for the N = 7 matrix are given in Table
IV and the matrix elements b»~ appear in Table V.

in light of these requirements, it is found that
the full matrix U can be divided into seven inde-
pendent submatrices having dimensionalities
N=I, I, 4, 4, 7, 7, and 8. The first of these
arises from the basis state

~

—2, —2, +2, + 2) and
the second from the state in which these spin pro-
jections all have the opposite sign. Neither of these
will contribute to the spectrum because ot the re-
quirement of Eq. (4) that p = v. The two N =4 ma-
trices are found to be identical as are the two ¹'l
matrices. Thus calculation of the spectrum re-
quires handling of three matrices having N =4, V, 8.
In the following we denote these by a, b and d re-
spectively.

The basis vectors for one of the N =4 matrices
are given in Table II. The basis vectors for the
other is obtained by reversing all signs in Table
II. Both sets, as stated above, give the same ma-
trix a, which can be calculated straightforwardly
by application of Eels. (6}, (f), (8), and (11). The
nonvanishing matrix elements a»& are tabulated in

Table III. From Table II, one sees that the re-
quirement p, = v is satisfied only for the second and
fourth basis states. Thus, one needs to calculate
only the inverse elements a,,', a,4', a,~', and
a,,', and the last two are equal. For this case the
inverse can be worked out in closed form, and Eq.
(5}yields

TABLE III. Matrix elements a», for the N =4 matrix.
Elements are also obtained by transposing &&»

= a»&. All
others vanish.

a»,.

p+ i)
+ z —'[ 4(Aii -Aii) +P]

i i~3A~

p + W~ —i [ 4 (A(( + 3A () ) —p]

p /J
+ Wc+i[ 4(A() + 3A()) +p]

2

p+ W~+s[ 4(A}}+3A())+P]

Equations (4) and (5) then yield

Z3(P) = IC,'/', „,I'(&;,' +f;, +25 )

1/2 3/2 1/2 ~ 1/2( 14 13 + 24 26 } '

(14)

Similarly, for the N = 8 matrix, the basis vectors
and matrix elements d»z are given in Table VI and

VII, and one obtains

&4(p) =
I Cp, „,I'(d '+d, ,'+2d, ,')
+

~
C ~i/2. -1/2 ~ ("33 +d12'+ 2d32 )

I(141) =Re[2E,(p) + 2F3(p) +E~(p)] . (16)

It may be noted that the factorization discussed
above is only possible for a restricted3, . One
may add an external field parallel to the ~ axis as

TABLE IV. Basis vectors for one of the N =7 matrices.
The other set of vectors is obtained by changing all signs
in the table.

(15)

Calculation of the line shape for a given multipo-
larity I. is then obtained from

State

2
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2
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i
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1
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i
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3
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TABLE II. Basis vectors for one of the N =4 matrices.
The other set of vectors is obtained by changing all signs
in the table.
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TABLE V. Matrix elements &;,. for the N=7 matrix.
Elements are also obtained by transposing b, ; =b;, . All
others vanish.

TABLE VII. Matrix elements d~, for the N =8 matrix.
Elements are also obtained by transposing d, ; =d;, . All
others vanish.

p+ W~ —i [~(Ajj —3Ajj) —p]

—w~

p+ Wjj + W~ —i [-(Ajj + 3A jj) —p]
1 iv 3 A~~
2

p+ W~ —i[~4(Ajj —Ajj) + p]p+ W. +x[~4(Ajj —3Ajj)+p]

--iA1'
2

Tii ~3A*

p + Wjj + W~ + & [ 4
(A jj

—3A jj ) +p ]

3A
2

p+ W~+i[ 1(Ajj +Ajj) —p]

p + W~ + i [~(A jj
-A*j) —P ]

2

p+ Wjj+ W~+i f ~4(Ajj —Ajj) —P]

iA~

p+ Wi+s f-(Aji —Ajj) —P]4

--iA~
1.
2

p+ Wjj+ W~+s[-(Ajj+Ajj) —p]

p+ w~ —i f ~(Ajj +A+jj) +p]

iA~~ p+ Wjj+ W~+i[ i(Ajj -A~jj) —P]

p+ W~ —i[-(Ajj —Ajj)+p]

~s~3A~

p+ Wjj + W~ —i [ ~4(Ajj + 3Ajj ) —p]

p+ jj
+ i —'

4(Ajj +Ajj)+I ]

a straightforward generalization of the above. How-
ever, introduction of a nonaxial hyperfine inter-
action (A„&A, eA, o0), a nonaxial quadrupole inter-
action (t) e 0), an external field at an arbitrary di-
rection to the z axis, or incommensurate magnetic
and quadrupole principal axes will destroy the
factorization, and cause the necessity of treating
the entire 32&32 matrix as an undivided unit. In
such cases, procedures are available which sub-
stantially reduce the required computational time."
Some cases of this kind will be discussed by us
in future publications. It may be noted that cal-
culation of a 200 point spectrum using the sub-
divided matrix described here has taken approx-
imately three seconds on an IBM 370/195 comput-
er. Least-square fitting of data is therefore a
very feasible procedure.

APPLICATION TO Cs2Na ' ' YbC16

We wish now to consider the case of the cubic
compound Cs,NaYbCl, . The crystal-field ground
state is well established from our previous work
using "'Yb Mossbauer spectroscopy to be a I';
Kramers doublet. ' Analysis of the magnetic sus-
ceptibility of this compound shows that the first
excited state (I',) is about 400 K above the ground
state. " Thus at liquid-helium temperatures one
has a well-isolated electronic configuration with
cubic symmetry. In the above we therefore take
A*jj =A* =A*, Ajj =Aj. =A, Wjj = W'~ =-8', and P=O.
In addition we note that for this case an effective
spin S =

& is appropriate. The nuclear transition
for "'Yb is of mixed multipolarity, having a sub-
stantial F2 admixture to the more common M1
transition. Previous work" has shown the mixing
ratio to be 6' =&2/Ml =0.36. In our calculations
we have obtained the spectra by straightforwardly
adding a theoretical line shape given by Eq. (16)
for L =2 to that for L =1 with this relative inten-
sity. Possible interference effects between dipole
and quadrupole radiation will not be seen here,
since such terms average to zero for powder sam-
ples. "

Spectra calculated using the values A = —39.5
mm/sec and A'/A = 0.2361, appropriate to "'Yb
in a I', state, are shown as a function of the re-

TABLE VI. Basis vectors for the N =8 matrix.

State
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FIG. 1. Calculated Mossbauer-effect spectra for the
66.7-keV resonance of ' 'Yb in a cubic crystal field hav-
ing a I'6 electronic ground state. The hyperfine param-
eter is taken to be A =-39.5 mmf sec and the relaxation
rate 8' varies as shown in the figure.

laxation frequency H' in Fig. 1. The spectrum for
8'=0 is easily understood in light of previous dis-
cussions. " For both ground and excited states we
define a total angular momentum E=I+S. Since
(S

~

=-, we have E' =0, 1 for the ground state and
E'=1, 2 for the excited state. The cubic hyper-
fine interaction AI S then results in hyperfine
energies given by

E„,= ~A[E(E+1) —I(I +1) —S(S +1)]

for the various E values (see Fig. 2). Transitions
occur with the selection rules 4F =0, + j. for the
M I ca.se and hE = 0, + I, + 2, for the E2 case. Line
positions and intensities for both are given in Table
VIII, along with the intensities for the mixed multi-
polarity corresponding to "'Yb. In Fig. 2 these

FIG. 2. Hyperfine energy-level scheme for 8= 2 case
in cubic symmetry. The positions and relative inten-
sities of various transitions in ' 'Yb is shown by a bar
diagram.

transitions and their intensities are shown.
Figure 3 shows data obtained at 4.2 K using the

66.V keV transition in "'Yb for a Cs,NaYbCl, ab-
sorber. The source material was '"'Tm in ErAl„
prepared in the manner previously described. "
The absorber was 110 mg/cm' total material of
Cs,NaYbCl„enriched to 88% in "'Yb. The y
rays were detected with a 625-mm'-area 5-mm-
thick Ge(Li) solid state counter. A very low count
rate (140 counts/sec in the single channel analyzer)
was present, but data was collected for 8 days.
Due to the high enrichment, the total effective
intensity is almost 10%. The solid line shows the
results of a least-squares fit using the formalism

TABLE VIII. Line positions and intensities for ~ 2
transitions in cubic symmetry.

Transition Position
Intens ity

E2 M 1+0.36E2

~ (A~+A)

4-(-5A~ +3A)

gi(3A* —A)

--(5A*+A)

0,090

0.250

0.760

0.260
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absorbers. The relaxation frequency obtained is
iV=185 +24 MHz, compared with our previous
value 206 +12 MHz obtained from the "Yb reso-
nance in this material. ' The A value obtained here
is "'A(1;)= —38.7 +2.0 mm/sec=(8. 6+0.4) x 10 '
eV. Converting this to an equivalent A value for
the "'Yb resonance using the known spins and
nuclear moments gives "'A(I;) =(-2.92 +0.17)
&10 ' eV. This compares favorably with our pre-
vious measurement of (-3.06 +0.03) x10 ' eV using
the "'Yb M5ssbauer effect in this compound. '

I
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FIG. 3. M5ssbauer effect spectrum for 7'Yb in
Cs2NaYbC16. The solid line is a least-squares fit ob-
tained as described in the text.

discussed above. Good agreement with the de-
tailed line shape is seen. In the fit, the linewidth

(full width at half-maximum) has been fixed at 5.6
mm/sec, obtained with our source and single line

CONCLUSION

We have discussed paramagnetic hyperfine
spectra and line-shape calculations in the pre-
sence of paramagnetic relaxation effects for the
important case of 2 - & transitions in M5ssbauer-
effect spectroscopy. Details have been given for
calculating spectra via Hirst's theory for pro-
blems involving axial symmetry. The theory has
been applied to measurements using the 66.7 keV
resonance of "'Yb in the compound Cs,NaYbCl,
to give hyperfine parameter and relaxation time
at 4.2 K in agreement with previous values. Final-
ly, we emphasize that the expressions developed
here are directly applicable to a number of cases
involving "Fe.
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