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polaritons in quartz

S. Biraud-Laval, R. Reinisch, N. Paraire, and R. Laval

220, Centre d'Orsay 91405, France
(Received 13 March 1975)

%e study coherent excitation of polaritons by a two-beam method, measuring the amplification of the lomer-

frequency beam. The experimental polariton dispersion curve is used to get the oscillator strengths for the F
modes of quartz. Damping constants and Raman nonlinear coefficients are also determined from a comparison
between experimental and theoretical results, including incident-beam spectral vvidth and divergence influence.

I. INTRODUCTION

Quartz has been widely studied in the past, but
most of the published results are only qualitative
ones. From polariton experiments, we quantita-
tively determine several parameters for the E
modes of quartz: oscillator strengths, damping
constants, and nonlinear susceptibilities. These
results are obtained by stimulated Baman scatter-
ing. The usual way to get stimulated Haman effect
is to focus a powerful incident beam inside a medi-
um. A coherent Stokes emission at the frequency
corresponding to the maximum gain can be ob-
served, but very often, owing to the high intensity
of the incident beam, some crystal damage occurs.
In order to avoid this, we use a two-beam method
(TBM): two coherent light beams are simulta-
neously sent into the crystal, and polaritons are
excited at the beat frequency. Interaction is then
immediately coherent, for any incident power. By
this method, we get a selective excitation at any
frequency and any wave vector, by varying one of
the incident frequencies, and the angle between the
two incident beams independently.

On the other hand, TBM is a very convenient
method to achieve forward scattering; this is im-
portant, since polariton studies require small
scattering angles.

We describe here our experimental setup. Mea-
surements are generally performed on the lower-
frequency beam (Stokes beam): as the interaction
occurs, this beam is amplified. We get an experi-
mental determination of polariton dispersion curves
which allows us to calculate the oscillator strength
values. Comparison between experimental results
and theoretical calculation of the Stokes beam ampli-
fication, including the influence of the spectral width
and the divergence of the incident beams lead to the
determination of damping constants and Paman sus-
ceptibilities for each vibration mode.

II. EXPERIMENTAL

linear effects under study become more and more
intense as the incident powers increase. So we
need two powerful coherent sources, one (at least)
being frequency tunable.

The experimental setup is given in Fig. 1. Two
dye lasers are simultaneously pumped by a Q-
switched ruby laser (20 MW, 30 nsec). The dye is
diethyl-thiadicarbocyanine iodide (DTDC), the
solvent being ethanol. Each dye laser delivers a
15-nsec pulse, with a peakpower of 2-3 M%. The
divergence is about 1 mrad, and the spectral
width is estimated to 2 cm '. The polarization is
the same as that of the pumping ruby light, and
can be adjusted by means of the half-wave plates
I.. For a difference between the two incident
beam frequencies larger than 400 cm ', we only
use one dye laser, the second beam being a part of
the ruby laser light.

When the interaction occurs inside the crystal
between the two light beams and the yolaritons,
the higher frequency beam (El& ~lt k1) is depi«d
while the lower frequency one (E„~„k,) is am-
plified, as the interaction follows the scheme

photon 1- photon 2+ polariton.
We measure the power relative variation (PHV)

of either the higher-frequency or the lower-fre-
quency beam, as polariton frequency is tuned
(Fig. 2). This is done for a constant value of the
angle between the two incident beams. The sig-
nals given by the two photodiodes P1 and P2 are
compared with a differential amplifier, I'1 signal
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Although polaritons excited by TBM are coher-
ent for any power of the incident beams, ' the non- FIG. l. Experimental setup.
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lariton field E, has a nonzero divergence. Then,
the expression of the power variation thus ob-
tained include scattering from the longitudinal
phonon modes. %e get the following approximate
expression:
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FIG. 2. Power relative variations of the lower-fre-
quency beam vs polariton frequency. The experimental
points give a, frequency 0 3 ~~, = 433 cm ~ for the peak
position. The integrated-power-variation (~) calcu-
lated curve (solid line) peak frequency is 0& t&=428 cm ~.

where n, „and n2, are the refractive indices of
quartz for the fields F, and Ez, respectively,
and X~ are elements of nonlinear susceptibility and
Raman susceptibility tensors, L, being the crystal
thickness, and W, „the incident power of the ~,
beam, k and k, are wave vectors of the free and
driven waves which propagate in the crystal at
frequency ~3. A is given by the usual complex
dispersion relation

ke ~m~m
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is also used as a power reference. The PBV is
maximum for a value 0, of the polariton frequency
~„which is known from the dye laser frequencies
(~3 = u&, —+2). The corresponding polariton wave
vectox k3 can be easily deduced from the value of
the angle 8 between the tmo incident beams, and
thus me experimentally determine the polariton
dispe rslon curves.

This is done here for a quartz crystal. In order
to observe only E modes and to use quartz bire-
fringence to achieve the phase-matching condition,
we choose a n„, scattering geometry. The higher-
frequency beam (E,) is polarized along the x axis
and always propagates along the normal y to the
crystal front face; the lower frequency one (E2)
is polarized along the optical axis z and propagates
in the xy plane. Under these conditions, the po-
laritonwave vector a.iso lies in the xy plane, and
we can observe the ordinary polariton modes
(purely transverse), and the longitudinal phonon
modes. The experimental points for the disper-
sion curve are shown in Fig. 3. The PRV maxi-
mum intensity and its spectral width (Fig. 2) are
also measured, and mill be compared with the
theoretical values.

and k, is defined by k, = k, —ka.
In this calculation, we assumed each of the two

incident beams strictly monochromatic (with fre-
quencies ru, and ~z, respectively) and we neglected
any divergence, considering a mell-defined wave
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III. CALCULATION AND DISCUSSION

Kith the geometrical conditions described in
Sec. II, we can calculate the theoretical expres-
sion of the relative amplification of the lower-fre-
quency beam 6Wz, / W„ from the propagation equa-
tions for the electric fields at frequencies w„(d2,
and (d„and the ion-motion equation. The de-
tailed calculation is reported in Ref. 4. In this
calculation, we take care of the fact that the po-
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FIG. 3. Po1.ariton dispersion curve for E modes of
quartz. Dotted lines: theoretical curves obtained with
oscillator strength values from Befs. 6 and 7. Solid
lines: theoretical curves obtained by fitting the experi-
mental points. Vertical lines: experimental results.
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TABLE I. Oscillator strengths, longitudinal frequen-
cies, damping constants, and nonlinear Raman coeffi-
cients for the E modes of quartz.

and the parameters A (closely related to the
Raman susceptibilities).

A. Oscillator strength determination

(cm ')
~ m

(Am) vr.
(10 "' mksA)

Lo ngitudi nal
frequencies [cm ')

meas u red calc ulated

We show in Ref. 4 that the dispersion curves
can be accurately described by the relation

128.4
265
395
452
702
797

1072
1163

0. 007
0. 071
0. 29
0. 60
0. 018
0. 084
0. 33
0 ~ 01

0. 054
0. 017
0. 008
0. 016
0. 009
0. 013
0. 007

2. 4

2. 9
1.7
3 ~ 8

6. 2

3. 8
—3. 0
—5. I

402
509

807

267
405
504
704
809

1143
1175

5 = [v(h~, + nu!z) (68 ]+ 682) ]

a W„(cu„8) (~, —~,')'
X exp

W2, AC@, + b, a2

(8 —8')'
~ exp — —

2 2 d3d H.
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This expression is numerically computed and al-
lows a comparison between theoretical and experi-
mental values.

The Haman susceptibility its appearing in (1) can
be written

whe re A characte rizes the contribution to g & of
the resonant term at frequency ~; y is the re-
duced damping constant. We also get for the non-
linear susceptibility X,„„

1 A ~ (yS„)'!

vector for each beam (with incidence angles 8, and

8,).
To get an accurate comparison with experiments,

we must take into account the spectral width and
spatial divergence of the two incident beams. This
is done, assuming Gaussian distributions over the
the ~, 2 and 6), 2 ranges, with central values u1 2

and 8, z, a.nd halfwidths nor, z and 58, z. 6W2, /
slowly varies with (d2, but mainly depends on

3 tt)1 ~2 and on the driven wave vector k, . We
have already mentioned that A, is closely related
to the angle H = H1 92 between the incident rays.
We thus obtain the following expression for the
integrated power variation (a):

A, c Sm m
2 =6 + 2 2 ~

(d3 CO —(d3
(5)

The oscillator strengths S have been previous-
ly determined from ir techniques. ' With these
ir S values, we draw the dispersion curves which
are the dotted lines in Fig. 3. These curves do
not agree with Raman scattering results. This
discrepancy was already present in Ref. 8, in
particular for polaritons associated with the 1072-
cm ' mode.

We use dispersion relation (5) to fit the theoret-
ical dispersion curve with our experimental one
taking into account both transverse and longitudi-
nal modes (with k, =0 for the latter ones). The
best fit is obtained with the values given in Table
I, and the corresponding curves are drawn in solid
lines in Fig. 3. The agreement between our theo-
retical dispersion curve and the experimental points
is quite satisfactory for most of the observed
modes, especially in the 800-1072-cm ' range
where the initial discrepancy was the largest. The
longitudinal frequencies calculated with these S
values are reported in Table I. We note that a
good agreement cannot be simultaneously obtained
on the transverse polariton branch associated to
the phonon at 1072 cm ' and on the two highest
longitudinal frequencies for any set of S values.

Although the oscillator strengths we obtain are
rather different from those determined from ir
measurements by Spitzer and Kleinman for fre-
quencies larger than 270 cm ' and Russell and Bell
for frequencies lower than 500 cm ', the ir re-
flectivity calculated at normal incidence with our
S values is found to be equal to Spitzer and
Kleinman's results within 10%.

B. Damping constants and nonlinear susceptibilities

Let us now consider relation (1) for v, in the
vicinity of ~ . The driven wave vector A, is then
very different from the free one A, thus all terms
excepted the last one vanish. Neglecting every
nonresonant term in X~, we get

b W2, 2~2 A u u3y
2 2 22 2 2 & ~+1xS'2, C0 n, „n~ ( —~,) +(d, (d y-'

S is the oscillator strength for the mth optical
mode.

The frequencies are experimentally deter-
mined. ' 6 contains three other sets of eight pa-
rameters (quartz has eight E modes ): the os-
cillator strengths S, the damping constants y,

From experiments, we know the intensity and
spectral width of the power relative variation and
this is used together with (6) and (2) to determine
the values of y and A in the following way.

From Eq. (6), it is obvious that the halfwidth is
independent of A . The y are numerically ad-
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justed to give to the 4 variations in the vicinity of
a spectral width equal to the experimental one.

This is done for each mode independently, and the
results are reported in Table I.

Approximate values are calculated for IA„I us-
ing Eq. (6) and the measured PRp maximum inten-
sity obtained at w, =~ . These values are then
improved using the whole polariton range results.
For calculation convenience, we consider tha, t the
measured PRV maximum intensity corresponds to
the theoretical frequency ~3 tgy determined from
the calculated dispersion curve, instead of the
experimental value 0, ,„„.

The pa, rameters A can be either positive or
negative. But we can note from Eqs. (I), (3), and

(4) that it is only possible to determine their rela-
tive signs. Quartz has eight E modes, so 2 sign
combination will be considered. For each sign
combination, using the IA I approximate values,
the 6 peak values are computed over the whole
polariton frequency range, and compared to the
corresponding measured values of PRV.

Computation results show that most of the sign
combinations give a, discrepancy between theoret-
ical and experimental values of the power variation
peaks in the 820-1072-cm range. In this range,
a good fit is only obtained with the following sign
combination for A4, A„A6, A7=+++-, whatever
the signs are for the parameters A„A2, A3 asso-
ciated to the three lower-frequency modes. The
sign of Ae, corresponding to the phonon at 1163
cm ' is not crucial, nevertheless, results are
slightly improved near 1072 cm ' when Aa is neg-
ative. The signs of Ay Ap and A, are determined
by comparing the 6 and PRV peak values in the
corresponding range (0- 400 cm '). The best fit
is obtained when these three parameters are posi-
tive. Thus, we retain the following sign combina-
tion: ++++++- —. The IA I values are then more
accurately adjusted to get the best agreement with
experimental data. Results are given in Table I.
The corresponding curve and experimental points

are drawn on Fig. 4.
The uncertainty about IA I values is mainly due

to the incident beam power fluctuations and the
beam intersection adjustment (which is delicate,
as we are working with 20-nsec nonrecurrent
pulses). It is roughly estimated to 20%.

The curve given in Fig. 4 can be compared to
the graph given by Scott and Ushioda who
studied spontaneous Raman effect in quartz and
reported the variations of theoretical polariton
scattering intensities: they exhibit nearly the
same behavior for polaritons associated with the
phonons at 1072 and 797 cm ': 6 increases as
frequency is lowered from 1072 to 900 cm '; it
then goes through zero at 754 cm '. However,
they are different concerning the polaritons asso-
ciated with the phonons at 128 and 265 cm ': the
ratio between the peak values for these two modes
is different, and 6 remains rather small. Two
factors can explain this discrepancy. At first, the
Bose population factor [n(~)+ I], which only ap-
pears in spontaneous Raman scattering efficiency,
contributes to enhance the intensities of the lowest-
frequency modes in Scott and Ushioda's results.
But the main factor is the beam divergence, the
influence of which increases when the maxima of
AW2/W2 become sharper. Besides, maxima of
4Wz/W2 are all the more sharp as the slope of the
dispersion curve is larger, and consequently the
influence of divergence, which was negligible for
the higher-frequency modes, is particularly im-
portant for the two lowest-frequency modes of
quartz. If we consider the stimulated Raman scat-
tering efficiency, or n W~/ W2, we find that the
largest values occur for polaritons associated with
phonon at 128 cm ', but as this mode shows also
the sharpest maxima for EW2/W2, the correspond-
ing 6 is then smaller than for the second mode.

In the 300-700 cm ' range, the relative inten-
sities for xy and xz scattering have opposite vari-
ations. A slight misorientation of the crystal
would give rise to a mixture of polarizability com-
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FIG. 4. Measured and
calculated peak values of
the power relative varia-
tions vs pol. ariton frequen-
cy. Vertical lines: ex-
perimental results.
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ponents and this could explain some disagreement
between our results and the earlier ones of Ref. 9
near 400 and 700 cm '.

The beam divergence, as well as the spectral
linewidth, also acts on the observed linewidth.
Knowing the A and y values, we have calculated
the 6 line shape in the polariton range. The spec-
tral linewidths for different points of the dispersion
curve are in good agreement with the experimental
ones. An example is given in Fig. 2. We also ob-
serve that the theoretical linewidth (as well as the
experimental one) decreases at large angles, i.e. ,
where the dispersion curve is nearly flat. Two
factors contribute to this behavior: an intrinsic
one, which comes from the relative slopes of the
dispersion curve and the 8 = constant curves in the
(~, k) diagram; and an external one, related to the
beam divergence. When the dispersion curve be-
comes flat, the beam angular spread influence
disappears and the linewidth decreases.

IV. CONCLUSION

We pointed out that in order to correctly de-
scribe the experimental results it is important to
take into account the incident beam nonmonochro-
maticity and divergence. Indeed, considering
only the simple power variation 6 W2/Ws, given by
relation (l), would lead to very different and er-
roneous values for the nonlinear susceptibilities
A, essentially for their relative signs.

Coherent excitation of polaritons by TBM ap-
pears as a way to determine the oscillator
strengths, damping constants and nonlinear sus-
ceptibilities of a crystal.
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