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Linear elasticity and piezoelectricity in pyroelectncs

D. F. Nelson
Bel) Laboratories, Murray Hill, ¹wJersey 07974

M. Lax
Physics Department, City College~ of the City University of ¹wYork, ¹wYork, ¹wYork 10031

and Bell Laboratories, Murray Hill, ¹wJersey 07974
(Received 29 May 1975)

%'e present a new, first-principles theory of linear elasticity and piezoelectricity in pyroelectrics, materials
including ferroelectrics, which possess a spontaneous polarization. The constitutive relations for the
polarization, the electric displacement, the magnetic intensity, and the total stress are found to contain linear
terms proportional to either the spontaneous polarization P or the spontaneous electric field E . The terms
involving P are found to cancel from the differential equations and boundary conditions when P is
homogeneous. If P is not homogeneous, linear terms proportional to spatial derivatives of P remain in the
Maxwell equations. The terms involving E lead to a new effective piezoelectric stress tensor of lower

symmetry than the normal piezoelectric stress tensor, because it can couple to rotation as well as to strain.
The terms involving E also produce a new effective elastic stiffness tensor of lower symmetry than the usual
stiffness tensor in that it can couple to both strain and rotations. The reduced symmetry allows it to have as
many as 45 different components instead of the usual &.l.

I. INTRODUCTION

In a preceding paper' me presented a theory of
long-wavelength electrodynamics of elastic
pyroelectrics valid for arbitrary nonlinearities in
the constitutive relations pertaining to electromag-
netic, acoustic, and internal vibrations. In this
paper we mill linearize the theory and present its
implications for linear elasticity and piezoelec-
tricity in crystalline pyroelectrics. A partial
summary of this work has already been presented.
The results of this paper will apply to pyroelectrics
of any symmetry class, of any degree of anisot-
»py, and having any number of particles (ions
and electrons) per unit ceil. The term pyroeiectric
is used here to mean any material possessing a
permanent electric dipole moment (spontaneous
polarization). As such it includes ferroelectrics,
which are reversible pyroelectrics, that is,
pyroeleetrics whose spontaneous polarization can
be reversed mith the application of a sufficiently
strong electric field.

Pyroelectricity was discovered long before
piezoelectricity and, in fact, motivated the dis-
covery of the latter in 1880 by the Curie brothers.
Early phenomenologicaL theories of piezoelectricity
including that of Voigtc of 1890 were believed to
apply to pyroelectrics as well as to nonpyroelectrie
piezoelectrics. This belief persists to the present
day as evidenced in many places in the literature. 5 7

This belief is surprising since the spontaneous
pol. arization could be reasonably expected to create
indirect piezoelectric effects. It is easy to conceive
of two such effects. First, since the spontaneous
polarization is a dipole moment per unit volume,
a volume change from a simple compression should

give a piezoeleetriclike effect. Similarly, a rota-
tion of a volume element, such as is present in a
shear wave, should produce a piezoelectriclike
effect by rotating the spontaneous polarization.

Reasoning such as this motivated the develop-
ment of the general theory of the preceding paper'
and its linearization presented here. We have, in
fact, found the tmo effects just mentioned and
several more. Motion of the spontaneous polariza-
tion enters the equations explicitly as a contribu-
tion to the dielectric current and hence to the
magnetic intensity H. These effects cause the
constitutive relations of D (and also the linear
polarization P) and H to possess fin.ear terms
depending explicitly on the spontaneous polariza-
tion P . The constitutive equations me derive
thus differ markedly from the traditional ones of
Voigt. Further we find that the spontaneous
polarization explicitly enters the boundary condi-
tion for the normal component of the dielectric
displacement D in /incus terms caused by the de-
formation of the surface area and surface normal.
The spontaneous polarization also enters the bound-
ary condition for the tangential components of the
magnetic intensity H caused by the motion of the
sul face.

It is natural to expect that nem constitutive
equations mould necessitate a reinterpretation of
past measurements of piezoelectricity in pyroelec-
tries. It thus came as a considerable surprise to
find that the new constitutive equations are in com-
plete accord with the interpretation traditionally
given to various piezoelectric measurements when
the spontaneous electric field has been cancelled
by extrinsic surface charge. Among the latter are
the measurement of a voltage across electrodes
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on a, crystal resulting from an applied stress,
measurement of a deformation resulting from an
applied voltage, measurement of resonant fre-
quencies of piezoelectric plates, and measurement
of the piezoelectric stiffening of the elastic con-
stants by ultrasonic-wave velocity observations.
Though this theory supports the traditional inter-
pretation of measurements it does not support all
aspects of the Voigt theory. We, in fact, show that
the Voigt theory has been in agreement with ex-
periments only because of two compensating errors
in the theory.

Our theory handles the spontaneous electric field
E~ and spontaneous polarization as separate
quantities, leaving their relation to be determined
in the particular situation considered. This distinc-
tion is needed because, though the spontaneous
polarization of a crystal always exists, its spon-
taneous electric field may be cancelled out by
extrinsic surface charge. Such charge results
either from a small bulk or surface conductivity of
the crystal or from attraction of charge from the
surrounding atmosphere. A spontaneous electric
field can, on the other hand, exist for a time of
the order of the dielectric relaxation time of the
crystal plus ambience.

For these reasons we are led to consider two
situations: one with the spontaneous electric
field cancelled by extrinsic surface charge, and
one with the spontaneous electric field present.
The former case we have discussed in the preced-
ing paragraphs; the latter is a new extension of
the theory of piezoelectricity and elasticity of
pyroelectrics. We find interesting new contribu-
tions to the stiffness tensor and the piezoelectric
stress tensor which depend upon E~ and which have
different interchange symmetries compared to the
conventional tensors representing these phenomena.
The new piezoe1. ectric tensor contribution is anti-
symmetric upon interchange of the two tensor
indices that couple to the displacement gradient.
This means that the new contribution couples to
rotation and not to strain. The new stiffness-
tensor contribution possesses only interchange
symmetry between the tmo pairs of indices; it
possesses no symmetry upon interchange within
either pair. This means that the new contribution
couples to both strain and rotation. We emphasize
that the new effects are intrinsic effects since a
pyroelectric crystal in its natural state possesses
a spontaneous electric field.

The paper is organized as follows: In Sec. II
we record those results from the general treat-
ment of the preceding paper that are needed here.
Since piezoelectricity involves only frequencies
low compared to internal resonances which are
typically in the infrared, we adiabatically eliminate
the internal coordinates from the equations in Sec.

III. Sections IV and V then present the linearized
electromagnetic and elastic equations, respective-
ly. Section VI follows with a discussion of the
linearized stress tensor.

Section VII considers the quasielectrostatic
approximation of the dynamical equations. This
approximation, valid when the electromagnetic
wavelength is long compared to the crystal size,
is a useful simplification and is usually valid for
piezoelectric calculations. However, we will show
that first-order corrections to this approximation
which involve the magnetic intensity H have 1.inear
terms depending on the spontaneous polarization.
This necessitates a careful consideration of H

field effects in piezoelectricity of pyroelectrics.
Section VIII considers the spontaneous electric
field caused by the spontaneous polarization and its
cancellation by extrinsic surface charge. The ex-
trinsic surface charge determined in this discus-
sion is of importance to a correct application of
boundary conditions. Section IX discusses the
various boundary conditions at the linear level.
Section X considers the implications of this work
on acoustic-wave propagation. Section XI sum-
marizes the ma. in conclusions and compares this
work with the traditional theory of Voigt and with
the recent work of Baumhauer and Tiersten. ~
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(2. 2)

where E is the electric field, B is the magnetic
induction, j n is the dielectric (bound) current,
and qD the dielectric (bound) charge, the latter
two quantities being given to electric dipole order
by

(2. 3)

q = —V ~ P

(mks umts are used).
The polarization is defined by

(2. 5)

where yr" (v =1, 2, . . . , N 1; N being t-he number
of particles per unit cell) are internal coordinates,
q" is the charge density associated with the pth
internal coordinate, x(X, t) =-yro(X, t) is the cen-

II. DYNAMICAL EQUATIONS

We will record in this section the general dy-
namical equations derived in the preceding paper'
for nonconducting, nonmagnetic pyroelectrics hav-
ing arbitrary symmetry, structural complexity,
and nonlinearity. The Maxwell charge and cur-
rent equations are
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(2. 6)Pi iA g FA
v

where Y" is the spontaneous part of y~" given by

ter-of-mass position, z is the spatial coordinate
system coordinate vector, X the center-or-mass
designation in the material coordinate system,
J(X, t) —= det(&x; /SX„) —= detxi „is the Jacobian of
the transformation, and the prime on the sum in-
dicates the exclusion of the v=0 (center-of-mass)
term. The polarization has a spontaneous part
given by

The stored energy per unit mass, Z, is given
as a polynomial expansion

AB AB ABCD AB CD
(0, 1) (0,3)

(1~0)~w Ag ~ (3&0)~if v Au Av
A A+~ AB A B

+ &ABC ~A EBC+(1&1) (2. 1 l)

where the measure of finite strain E» is defined
by

E~s= ~(&~s- s~s»
C„B-X „X.B,

(2. 16)

(2. 19)

~iAXA+ +i y (2. 8)

since FA=-XA and y, =-Mi The vector u is the con-
ventional displacement vector. The dielectric
displacement D and magnetic field H are given in
terms of the other fields by

Here we have used the convention that tensor com-
ponents referred to the spatial coordinate system
are denoted by lower-case Latin letters and corn-
ponents referred to the material coordinate system
are denoted by upper-case I.atin letters. Equa-
tion (2. 7) for v = 0 becomes

and the invariant measures AA" of the internal
displacements are defined by

A~=-(B.~- 6 ~) 6(s ys+B.»'
R,A being the finite rotation tensor given by

B(A (e ( i()BA &

and the ' '"'K coefficients are frequency-indepen-
dent material constants characterizing the crystal.
The requirement that there be no forces on the in-
ternal motions governed by Eq. (2. 14) in the nat-
ural state of the crystal leads to the relation

D=—E0 E+ P, qE =6 '' 'Ki iA A & (2. 22)
B dxH=- ——P~ —.

P,0 N

The remaining Maxwell equations are

QBQx E+ —=0
y

BI,

v-B=O

(2. 10)

(2. 11)

(2. 12)

ti~ = g ig+ Si Py+ Vlig —PXi Xg ~ (2. 23)

where mi& is the vacuum field Maxwell stress
tensor given by

where E is the spontaneous electric field.
The total stress tensor~ of the matter and elec-

tromagnetic fields was defined as

'The pyroelectric crystal is represented by N
dynamical vector equations, one for the center-of-
mass motion and N- 1 for the internal vibrations.
They are

px,. = (f ',.(+ 8, g() (+ qn E,. + ( j D x B), , (2. 13)

0
v"v v p ~P~

Pl pi=g i — Tvv

BZ
jwA &

(2. 16)

with the y ~" held fixed during the differentiation
and the effective electric field 8 is

(v=1, 2, . . . , N-1) .
(2. 14)

Here m' is the mass associated with the pth in-
ternal coordinate, p-=J 'p' is the deformed (spatial
coordinate system) mass density, p the undeforme:
(material coordinate system) mass density, f;i is
the local stress tensor defined by

m;( —= (0 E; E(+ B( B(/(io —~2((o E(,E(,+ B Bi,/((0) 5;( .
(2.24)

The total stress tensor satisfies the momentum
density conservation equation

—„[px,.+ e, (Z&&5), ]+, (-f;,) =0, (2. 26)

and possesses a scalar product with the unit nor-
mal to a surface fixed in the spatial coordinate
system which is continuous across that surface.
It was also shown that a related total stress
tensor ti~~,

&,'(-=f (+ h; Pi+ m((+ (0(K~5)(x( (2. 26)

possesses a continuous scalar product with the unit
normal to a surface, such as the body surface,
that is moving at a velocity dx/df with respect to
the spatial coordinate system.

III. ELIMINATION OF INTERNAL COORDINATES

dx8=-E+ —xB
dt

(2. 16)
Elasticity and piezoelectricity are J.ow-fre-

quency phenomena„ that is, they are significant only
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at frequencies low compared to the internal reso-
nances of the solid which are typicall. y in the
infrared. At these low frequencies the internal
motions of the solid follow the elastic deformations
adiabatically. Thus we may ignore the inertia
of the internal motions in Eq. (2. 14) and use those
equations to eliminate the internal coordinates
from the other equations. Since we are aiming at
a linear theory the expansion of p Z in Eq. (2. 17)
is sufficient for use in Eq. (2. 14). The latter then
becomes

where

'g o)""&~aAa = —""&~acEar+ @'+~

(3.1)

We define a low-frequency mechanical admittance
of the internal coordinates Y~"„by

2eog T~'„'o' 'K~o=—5ns5" (X, PWO) . (3.3)

It may be used to solve Eq. (3.1) for A~,

»» 0 Q DA( A»»c EBC q PA) (3' 4)

yields

y =& ~(I'~+ A„") . (3.6)

This can be used with Eq. (3.4'; to eliminate y
r"

from P in Eq. (2. 5). The nonlinear portions of

Eoc and E„ in Eq. (3.4) can be dropped at a later
stage.

This can now be used to eliminate A~a from poZ.
Combining Eqs. (2. 7) and (2. 20) and using the
orthogonality of the rotation tensor R;„,

(3.5)

X»»
= Q»l T»~»»I =

X»» ~ (4. 2)

~l
~rye= —~&(y&r) &0 ~ 0 ~rr '

&rgr =&pry
S If. gf» (1,1) V

~ g)
&»

=
sf (&o X»»E»+e»»». »»», a) ~ (4. 4)

are the linear electric susceptibility and the
piezoelectric stress tensor, respectively. The
varying electric field present in Eq. (4. 1) stands
for E~ = E —E~ but will be denoted simply by E in
the linear equations. Brackets enclosing tensor
subscripts denote the antisymmetrie part of the
expression with respect to interchange of the en-
closed subscripts. Parentheses in a similar use
denote the symmetric part. We have included
some of the explicit dependence of the linear po-
larization on P in the definition of e,j, because,
as we will see in later sections, it is this combina-
tion of terms that has been measured and re-
corded in the absence of the spontaneous electric
field as the piezoelectric str ess tensor in the
past. The remaining terms in the coefficient of
the displacement gradient uz „that involves P~
and E represent new predictions not present in
the traditional Voigt constitutive relation for the
polarization. '0 The linear terms involving P in
Eq. (4. 3) in combination with those in Eq. (4. 1)
have the simple interpretation of the effects de-
scribed in the Introduction, that is, piezoeleetrie
effects arising from the compression and rota-
tion of a volume element which possesses a.

spontaneous polarization.
To the linear level the dieleetrie current and

charge of Eq. (2. 3) and (2. 4) are

IV. LINEARIZED ELECTROMAGNETIC EQUATIONS

We now linearize the equations of Sec. II, in which
the internal coordinates have been adiabatically
eliminated, in terms of the displacement u and the
various electromagnetic fields. The definition of
the displacement u in Eq. (2. 6) specifies the rela-
tion of the material and spatial coordinates and
the fact that they are measured with respect to a
common Cartesian frame. Expansions of quanti-
ties such as R,~ have been given previously. An
alternate approacha is to approximate the La-
grangian of the previous paper' and obtain the
linearized equations directly from it (see the
Appendix).

The constitutive expression for the polarization
P that results is
P~f=P» + eo X»»E»+ (e»»a+ 2P&o5»»»- eo X»&»Eoj)"»o ~

8 F 8 8

—(2Pto5. »»»»» o)»- Vx P x — =»» P»»
(4. 7)

and the terms that cancelled in qn in Eq. (4. 5)
would instead be

(4. 6)S—(2P 5»», ), , =P;;»», —P, n,
Note also that, when E~cO, a coupling to the ro-
tation u &&» in contrast to the strain u&&» exists.

where

~'yr = ~ ya &0 X& t) Er (4. 6)

Note that the terms explicitly depending on P~ in
Eq. (4. 1) have disappeared from these two equa-
tions. This occurs only because P is taken as
homogeneous. If P~ were spatially varying, the
terms that cancelled in j D in Eq. (4. 4) would in-
stead be
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The expressions for the dielectric displace-
ment D and the magnetic intensity H of Eqs. (2. 9)
and (2. 10) to the linear level become

D,. —E0Ei + P, + co'(ijEj+ (e,»+2P[, ~,.»}ujS S F S

(4. 9)
B sH= ——Psx-

dt
(4. 10)

The dielectric tensor &,j is defined by

~ij ~ij+ ij (4. 11)

Note that a new term, not considered previously
in piezoelectricity, arises in H which involves the
time derivative of the displacement.

where

BZ
ti j ~ iyA jbB gg A

AB c
(5. 2)

The derivative SZ/(]A„ in Eq. (5. 1) can be eliminated
with the use of Eq. (2. 14) in the adiabatic ap-
proximation,

BZ
p v g $jR jA r

A

(5.3)

that is, we again neglect the inertial effects of
the internal motions since frequencies well below
the resonances of such motions are being con-
sidered. This approximation makes the total
stress tensor symmetric. b Equation (5. 1) then
becomes

y A g ~RA
t; j-—tij+P~Srrj E R7A .

a E
(5 4)

Linearization of the second term in the displace-
ment gradient yields

ti j —ti j—8[i Pj]+ 4 i~ 7 ur, (; Pj) —Pr u~~ «Sy A

+ P(i uj) 7 $7 —$(i uj) 7 Pr),
and linearization of t,.j yields

(5. 5)

ti j+ 2t„(i u j) rt
—ti j uit rt + ci jar u~ 7

—erti jE„A S S S

S S z S S—eri j Er, u[r„r] —E(i Pj) —",(; Pj)Er, u[r, , 7],

where
(5. 6)

(0,2) ~ (1,1) g gv (1,1) v
Cabcd 2 +abed 60 ~ Keab~ef + fcd r

(5. 7)
(5. 8)tbd = tdb

=-S S —(Ob 1)

V. LINEARIZED ELASTICITY EQUATION

In order to linearize the center-of-mass equa-
tion (2. 13) we begin with the local stress tensor
t(& of Eq. (2. 15). Expanding the derivative indicatec
in that equation yields

are the elastic stiffness tensor (when E =0) and
the spontaneous stress tensor. Use of Eqs. (5. 5)
and (5.6) in Eq. (2. 13) results in the dynamic
elasticity equation for the displacement within a
homogeneous crystal,

2p~ui F F
P at2 C.jkluk 7j- ek jzk j (5. 9}

Cabcd —C(ab) (cd) = C(cd) (ab) r

F F
Cabcd Ccdab

(5. 11)

(5. 12)

Note the much lower interchange symmetry
possessed by c„,d compared to c„,d . Based on
this interchange symmetry c„,d can have 45
different components compared to 21 allowed com-
ponents for c„,d. Since the p and E fields are
intrinsic properties of a pyroelectric crystal,
c„,d can be argued to be a basic intrinsic property
of the crystal. On the other hand, the value of ES
will depend on the shape of the crystal as well as
the surface charge condition of the surfaces and
so is not a recordable property applying to every
crystal. of the same composition.

VI. LINEARIZED TOTAL STRESS TENSOR

In the accompanying paper we showed that there
are two important total stress tensors. One, t, ,
given in Eq. (2. 23), appears in the spatial or labora-
tory frame momentum conservation law and has a
continuous normal component across a surface fixed
in the spatial frame. The other, t;,. given in Eq.
(2. 26), has a continuous normal component across
a body surface moving at a velocity dx/1)) with re-
spect to the spatial frame and is particularly im-
portant for general considerations of momentum
transfer between bodies. These two tensors differ
only by nonlinear terms. Thus to the linear level
they are identical and so we need consider only t;j.

The local stress tensor t'. j has already been
linearized in Eqs. {5.5) and (5.6). The Maxwell
stress tensor oi Eq. (2. 24) to the linear level is

where

F
abed Cabcd+ tbd ac+ ~0 [a ~b][c d] [a b]cd ~[c d]ab

1
& (E(a b](c d) + Lc d](a Pb) (a b)(c d]

(c d)La Pb] (a b]i cPd]+ (c d](a Pb])
(5. 10)

In the absence of a spontaneous electric field
c„,d reduces to the usual elastic stiffness tensor
c„,d and e„,j reduces to the usual piezoelectric
stress tensor e~,.j. In the presence of a spon-
taneous electric field a host of new effects con-
tribute to the elastic .tiffness as seen in Eq.
(5. 10) and an additional term in the definition (4. 6)
contributes to the piezoelectric interaction.

From the definitions (5. 7), (5. 8), and (5. 10) we
find the interchange symmetries,
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e;1= (0(2E~(; E)) —)E~E„5,, —E~~E),5;1+E; Ei) .
(6. l)

Substitution of Eqs. (5, 5), (5.6), and (6. l) into Eq.
(2. 23} leads to

Note that, if extrinsic surface charge cancels the
spontaneous electric field, the linearized total
stress tensor in Eq. (6.2) takes on its conven-
tional form for a nonpyroelectrie piezoeleetrie,

t', , = (t,',+ E~&,..P,', + e„E,' E,' .——.'. ~, E,'E,'6, ,) 'gy = ~sgt ~ 'M~, I. ea& y Ea ~ (6. 4)

, 8+ ("- ))+2t)' "
&)

".. &) E«e)) + E& 8 &»

8 8—E(; &;) ~A~ —&o &&; Xg) r~ &~~+ ~( ~g) r&I'~ j
S s ~. s j.

E&iii]&i Pi) + ~ &l i)&&Pi)+ ~ (1 J&(k l))«k, i

~0 E« "t&)i 2eo E&i 51)).+ eo 6&1 E).)El .
(6.2)

lt is apparent f»m Eq. (6.2) that the presence of
a spontaneous electric field and a spontaneous
elastic stress have greatly complicated the linear
stress terms as well as created a constant total
stress term,

As already discussed' the natural state of a
bgnndI'ebs pyroelectrie ean be reasonably taken as
a stress free state. This corresponds to setting
the constant terms of Eq. (6.2) to zero, Thus the
spontaneous elastic stress f~& is determined in
terms of the spontaneous electric moment and
field by

t . = 2&o E~E~&;)—F.'( I'~) —co ES g g S

A. pyl oelectrlc crystal~ flnlte ln g)$ its dlmen-
slons and ln possession of its spontaneous electric
field, cannot have a homogeneous natural state
as proved in the preceding paper. As we wish to
avoid here the complications of inhomogeneity,
let us consider the form of the linearized total
stress tensor for an infinite plate. Consideration
of the depolarization field problem ' for an infinite
plate yields the solution inside the plate

P=-N(N P')/e, (6. 5}

Sul&s'tltlltloll of Eqs. (6. 5) Rnd (6.6) lllto Eq. (6. 2)
yields

where N is the unit normal of one of the surfaces,
and E~ =0 outside the plate, In the preceding paper'
we found the spontaneous stress for this geometry
to be

t, ) (N&, P„) (N; N, —6——;1)/2 co . [clt)& + (N P /2eo)(- 2N(; e;)~& —2N„P„ iV(, 51) (~ Ni) + N„P~N, Ni Fil).
+2N& 6»() P»+N&)5&&('Pi&)~'~&). , »+(N P /~0)(Nrae&) i N P N& )&)&«N&& N&l5»& Pi&)«0 &)

&iii+ iii m(X)!(& 1)+ ).'(& NJ) —
N&i il) ]El (6. 7}

This equation is the generalization of the con-
ventional stress-strain-electric field relation to
the ease of an infinite pyroelectric plate in
possession of its spontaneous electric field. A

number of things are to be noted: (i) A spontaneous
stress, which is a combination of spontaneous
elastic and electromagnetic stresses, exists.
(ii) The stress is coupled to the rotation of the
volume element n&~ » as well as to its strain u&~ ».
(iii) The elastic coefficient of the strain «&l » con-
tains indirect contributions to the effective stiff-
ness tensor which depend on the spontaneous po-
larization P~ and on the plate geometry through the
unit normal N. (iv) The piezoelectric coefficient of
E contains indirect contributions to the effective
piezoelectric stress tensor which also depend on
the spontaneous polarization P~ and the unit normal
N. Clearly Eq. (6. 7) can be inverted through the
use of appropriately defined tensor inverses to
yield an equation for the strain ln tel ms of stl ess
rotation, and electric field. %e will not writ:e down
sucll vR1'1Rtlons of Eq. (6. 7), llowevel'.

We wish to emphasize that the electric field

variable E in Eqs. (6.2) an~1 (6. 7) includes both
the applied electric fieM plus any varying de-
polarizing field of the crystal. The latter will
contribute whenever the boundaries of the crystal
are dynamically deforming. Thus the vibration
at the surface of such a crystal een effect the vibra-
tion of the crystal at distant points through the
intermediary of the (long-range) depolarizing
electric field.

g?e conclude this section with a caveat concern-
ing linear stress tensors. The form of Eq. (5. 9)
might lead one (incorrectly) to believe that the
right-hand side of that equation is the divergence
with respect to 8/Bzt of a linear stress. Applica-
tion of Gauss's theorem to the equation within a
minute pill box enclosing a body-surface element
would lead to the conclusion that the scalar product
of that stress with the body-surface normal was
continuous at a body surface. This is not true.
Only the total. stress tensor of Eq. (6. 2) possesses
such continuity. The erlor of this 1easonlng can
be seen by observing thai the right-hand side of
Eq. (5. 9) Rl'ose fl'olll colltl'll)utlolls f1olll both R
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v=—(ut, u=u/L, , (V. 1)

(V. 2)

Equation (7.2}yields a magnetic induction in
the same units as the el.ectric field. Equations
(5.9), (2. 1), (2.2), (2. 11), (2. 12), (4. 4), and
(4. 5) then yield

divergence of a stress and from body force terms
in Eq. (2. 13). In a true divergence of a stress
the derivative must be allowed to act on the matter
tensors, such as the spontaneous polarization vec-
tor, as well as the field variables. This is of ut-
most importance at a body surface since there
the material tensors undergo a rapid (if not abrupt)
change. The body force terms of Eq. (2. 13) can-
not in general be rearranged into such a divergence
and only apped" to have been so rearranged in the
linearized form of Eq. (5.9).

VII. QUASIELECTROSTATK APPROXIMATION

The study of piezoel. ectricity typically uses
crystals whose dimensions are small compared
to the electromagnetic wavelength of a free wave
at the frequency of use. For this low-frequency
regime an approximate ox' truncated form of the
electromagnetic equations is adequate. The ap-
proximation used is called the quasielectrostatic
approximation. We will use it to obtain a truncated
set of equations for piezoelectric studies from the
linearized electromagnetic and elastic equations
of Secs. IV and V. Our interest is directed par-
ticularly at determining the magnetic field con-
tributions to the quasielectrostatic approximation.

We begin by scaling the various independent and
dependent variables with respect to characteristic
quantities. Let

with

Kii Ei i+ (sing /60) iii g
= 0(o) Jr / «O)

V'& E( '=0, (V. 13)

(7. 14)

(V. 15}

Since B' ' is not coupled to the remaining equa-
tions, it must represent an applied B field.
Typically, no such field is used in piezoelectric
studies. Equation (V. 13) shows the Ei ' field to
be irrotational and hence completely describable
as a divergence of the electric potential

E(o) &@,(o)

which may be used to eliminate E(o) from Eqs.
(V. 11) and (V. 12). These two equations governing
u' ' and 4' ' thus are the only differential equa-
tions needed for the zero-order solution,

For I = 1 Eqs. (7.3)-(7.7) with the scaling of
Eqs. (V. 1) and (V. 2) removed and with r} absorbed
canto u"', E"', and B' ' become

(1)
(1) E (1) 0~i jkl +kg lg eJH j kv f P gt 3 (7. 1V)

(v. lo)

After substitution of Eq. (7. 9) for each dependent
field the sum of coefficients of terms of like powers
of q are set to zex'o. Note that q is not present in
either Eq. (V. 3) or (7. 4) prior to the use of Eq.
(V. 9).

For n =0 the equations with the scaling of Eqs.
(V. 1) and (7. 2) now removed are

2
y ~ o

~(gkl k, lj eHf 4g ~
g 3

iiii Ei, i+ (eiii /eo) "i.ai =0
~

(V. 3)

(V. 4)

(7. 5)

(V. 6)

ci iEii, i+ (sinai /e0) lip i, ' 0 t
«1) Ji l «&)

(0)—9Q
8$

(v xB"'}, e (0 ) J'" (0)
(Eo Iiii Ei + 8(yi, Qi p),

Po

(7. 18)

(V. 19)

(v. 2o)

(7.21)

(V. 7)
with

'g = idL/c . (V. 8)

The spatial derivatives in Eqs. {V.3)-(7.7) are
taken with respect to g.

We now assume that q is small compared to one,
that is, for L = 1 cm the frequency ~a/2w must be
less than 1 GHz. We expand the three dependent
fields E, , and v in a series of the form

(7.9)

We note that u"' and E") are uncoupled from other
zero- or first-order solutions when B( ) =0, the
usual case. Further we note that B"', whose
variation is controlled by Eqs. (V. 20} and (V. 21),
is driven only by the zero order u"' and Eio' (or
4i '). For this reason the solutions uio', 4 io',

and B "are referred to as the quasielectrostatic
solutions.

If we examine the differential equations govern-
ing the quasielectrostatic solutions, we find that
the special properties of a pyroelectric crystal
(P~ and E~} enter only in c~i~», given by Eq.
(5. 10), and in the piezoelectric coefficient e,z„
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0cH, (7. 22)

and apply the above procedure, we find

II&o& Blo&/~

du" &II"& = B"&/I, —P'&&
dt

(7.23)

(7.24)

given by Eq. (4.6). If K~=0, all such special
properties vanish. However, the complete solu-
tion requires a consideration of boundary condi-
tions and these involve t~, D, and H as well as
u, 4, and B. Thus we must examine t ~, D, and
H from the quasielectrostatic viewpoint.

An examination of t z in Eq. (6.2) and D in Eq.
(4. 9) shows that only fields of the same order are
coupled by these constitutive relations. Hence, we
need not write them a,gain. We will consider their
effects on quasielectrostatie solutions via boundary
conditions in Sec. IX. Equation (4. 10) for H needs
closer examination. If we scale H to yield a field
K having the dimensions of E,

1, [q(z ') —O' ~ P(z ')]dv'

4weo „' iz —z'l
1 " [Z(z ')+ N '

~ P(z ')] ds'
47) ~0 „i I z —z '

t
(8. 1)

Here N' is the unit outward surface normal, The
free charge in the volume and on the surface mill
distribute in a way so as to cancel the electric
field everywhere. Since this redistribution is a.

quasieleetrostatic phenomenon, the electric field
is simply the negative gradient of the potential.
If it is to vanish for a body of any size and shape,
the integzands of the volume and surface integrals
in Eq. (8. 1) must vanish. If we consider struc-
turally homogeneous crystals as we do throughout
this paper for simplicity, the only inhomogeneity
in the polarization that can arise is from the effects
of the spontaneous electric field back on the finite
dimensioned crystals. Thus when the spontaneous
electric field is cancelled by extrinsic charge,
any polarization inhomogeneity vanishes and no
volume distribution of charge is required. Hence

Equation (7. 23) is seldom of interest, but Eq. (7.24)
states that a first-order H field given in terms of
u' ' and B"', the latter of which depends on u'o'

and 4 ' ', exists and will possess an interesting de-
pendence on P~.

VIII. CANCELLATION OF SPONTANEOUS ELECTRIC FIELD

'=V. P~=O

when the spontaneous electric field has been
cancelled by extrinsic charge.

IX. BOUNDARY CONDITIONS

(8. 2)

(8.3)

The spontaneous electric field first entered this
theory' in the definition of the natural state of the
pyroelectric crystal and was left unrelated to the
spontaneous polarization in the formulation. The
reasons for this were twofold. First, when the
spontaneous field exists, its magnitude and orienta-
tion depend on the shape of the crystal as well as on
P . Hence the relation cannot be specified until
the particular geometry of a problem is known.
Second, the spontaneous electric field may be
cancelled by extrinsic charge attracted to the sur-
faces from the surrounding atmosphere or by
charge flow from the small conductivity (volume
and surface) of the crystal itself. Thus the
spontaneous electric field exists only for a period
of time, sometimes very short, following either
a temperature change through the phase transition
that creates the spontaneous moment or a reversal
of the spontaneous moment in a ferroelectric by
an applied electric field. Cancellation of the
spontaneous field by extrinsic charge does not
affect the spontaneous moment, it merely creates
an equal and opposite extrinsic moment.

In order to determine how the free charge will
distribute itself to cancel the spontaneous electric
field, consider the expression'~ for the potential
of a body possessing volume (q) and surface (Z)
charge densities as well as a polarization P:

da] = JXp„dAJ, , (9.1)

that relates the oriented area element da in the
spatial (deformed) frame to the oriented area
element of dA representing the same mass points
in the material (undeformed) frame. If we in-
troduce unit normals by

da = n da, dA = N dA,

then Nanson's formula leads to

, =x, , N, (N, X, ,X, ,N, ) (9.3)

du= J(N~Xp &Xo ~No)'~2dA . (9 4)

These may be linearized in terms of the gradient
of the displacement vector defined by Eq. (2. 8).

In order to complete the characterization of
linear elasticity and piezoelectricity in pyro-
electrics we must obtain the linearized boundary
conditions. Since pyroelectrics have spontaneous
or constant parts of their electric field and elec-
tric displacement field, linear terms may arise
in the boundary conditions from first order changes
in the unit normal or area element of the boundary
surface caused by the deformation of that surface.
Thus we begin by linearizing the expressions for
the unit normal and the area element.

We begin from Nanson's formula, "
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The results are

de=—(1+.s, —X s, N, ) dA .

(9. 5)

(9.6)

(9. 13) but not both.
It is particularly important to note that the form

of Eq. (9. 13) has resulted because of the exact
cancellation,

The general electromagnetic boundary conditions
were derived in the accompanying paper" at a
surface that is deforming and moving locally at
the velocity dxldt. The electric field boundary
condition was found to be

l

cfx
' E+ —xB xn=0,

dt
(9.7)

where the brackets denote the jump in the en-
closed quantity at the boundary. If a spontaneous
electric field exists in the natural state, Eq. (9.7)
becomes simply

[E'1xN =0 (9.8)

in the natural state. Since the dx/df & B term in

the boundary condition is always nonlinear, it can
be dropped when con idering linear effects as we
are doing here Th.e linear terms from Eq (9.7.)
then. are

(E' —E)xN~ (E~' E~)x(n —N) =0, (9 9)

where o denotes outside fields and n is given by
Eq. (9.5). We see that linear terms result from
the existence of the spontaneous electric field.

The general electric displacement field boundary
condition'4 is

(9. 10)

Z = —N P Es0 Es 0 (9. 11)

If no surface charge is allowed to collect on the
surfa. ce, then Eq. (9.10) in the natural state is

(9. 12)

If we let the outside region be a vacuum, use the
expression (4. 9) for the inside linear D field, set
~S =0, and subtract off from the general condition
(9. 10) the constant terms of the natural state con-
dition (9.12), the result is

(ep E& to &zy Ey —ef yy1ly g)cV& dA

+ eo (E; ' —E; ) (n,. da —.V; d.4) = Z' dA, (9, 13)

where Z' denotes the mobile or conduction part of
the surface charge. In practice either Z' or the
spontaneous fields E ', E will be present in Eq.

where (T and Z are the spatial and material frame
surface charge densities that include both extrinsic
mobile and immobile charge. We have already
found in Sec. VIII that, if an extrinsic electric
charge is allowed to collect on the surface of a
pyroelectric, the spontaneous electric field will
be cancell. ed out with the result

H ——&D &n=k
dt

(9. 15)

where k' is a surface conduction current. In the
derivation' of this boundary condition it was found
that the convective-type surface current that re-
sults from the surface moving with an attached
charge does not contribute to the boundary condi-
tion. Thus if an immobile extrinsic charge, Eq.
(8. 3), has collected to cancel the spontaneous
electric field of a pyroelectric that charge which
depends on PS will not enter the boundary condition
(9. 15). The linear terms of this equation are

Ho H+ —X Ps & )& (Eso Es) )& N = kc
dt dt

(9. 16)
In practice either a surface conduction current
k' or the spontaneous electric fields will be pres-
ent but not both. The explicit dependence of Eq.
(9. 16) on PS is only apparent. Since B is the field
found from Eqs. (7. 20) and (7. 21), the boundary
condition (9. 16) should be converted to a B field
condition by substitution of the constitutive rela-

—2P(~ 5; jyn), ~ N; dA —P; (n;dn —N; dA) =0,
(9. 14)

between the linear piezoelectriclike term involving
P~ in the constitutive relation (4. 9) for D and the
constant spontaneous pol. arization term Ps in that
relation multiplied by the linear changes in the
deformed normal and deformed area element.
This exact cancellation eliminates P from any
explicit appearance in the boundary condition.
Thus the term —2P&, 5, j&g» that is present in the

Lk c]d
constitutive relation (4. 9) for D has cancelled out
of qn, Eq. (4. 5), jn, Eq. (4. 4), and hence from
the Maxwel. l differential equations and now has
cancelled from the D field boundary condition.
We are forced to conclude that a term in a constitu-
tive relation is unobservable even though necessary!
We say necessary because the effects that it can-
cels in the boundary condition (9. 14)—the spontane-
ous polarization multiplied by changes in the unit
normal and area element resulting from deforma-
tion —are real tangible effects. Thus the inclusion
in this theory of both this constitutive term and the
boundary deformation terms is necessary, correct,
and consistent in spite of the final disappearance
of linear terms involving Ps. The Voigt theory
included neither of these effects and so presented
a correct interpretation only through the good
fortune of compensating errors.

The general H field boundary condition" at a
moving deforming surface is
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tion (4. 10) for H. The boundary condition (9. 16)
then becomes

To the linear level this is simply

The boundary condition on the total stress has
been discussed in an accompanying paper. ' For a
moving deforming body surface it is

(9.20)T, +[t,',]n. , = 0.,
where t~& is defined in Eq. (2. 26) and T is any
traction applied to the surface between the two
media. In See. Vl we showed that to the linear
level ts,. and t, &of Eq. (2..23) are identical. The
linearized expression is given in Eq. (6.2). The
form of the spontaneous stress f, &

appearing in

Eq. (6. 2) was discussed in Sec. VI. For all cases
except the infinite medium case a constant part of
the total stress tensor of Eq. (6.2) results pro-
vided E~ 40 (see the infinite plate example of Sec.
VI). This constant part can produce linear con-
tributions in the boundary condition (9.20) by in-
teracting with the linearly varying parts of n

given in Eq. (9.5). We will not write out the re-
sulting expansion of Eq. (9.20) because of its
length.

X. ACOUSTIC PROPAGATION EQUATION

Consider acoustic plane wave propagation in a
pyroelectric, piezoelectric crystal of any sym-
metry using the quasielectrostatic approximation
of the questions. Let s denote a unit vector in the
direction of propagation, the only direction in
which there is a spatial variation of the plane
wave. Thus

9 9=S
~zy Bz

(10.1)

where z on the right-hand side is a scalar coordi-
nate. Note that Eq. (10.1}in conjunction with Eq.
(7. 16} shows that E must be longitudinal, a well-
known result. Substitution of this into Eq. (V. 12)
with the use of Eq. (7. 16) yields

g2C (0) Ii g2 (0)
nial

Z 60 Spic pqSq ~Z2 2 (10.2)

(9. 17)
Once again all explicit dependence on P~ in linear
terms has disappeared. This time a term in the
H field constitutive relation (4. 10) has been can-
celled by a moving medium term in the boundary
condition (9.15).

The general B field boundary condition'4 is

(9. 18)

This result along with Eq. (10.1) is now sub-
stituted into Eq. (7. 11) to obta. in

2 (0) E I 2 (0)
0 +i = C

I" SfVI emi~ Sn encl SP g] 2 igkl q s g q 2 i dz0 P Pq q

(10.3)
whi. ch i.s the acoustic propagation equation. Pince
the velocity of propa. gation is related to components
of the tensor enclosed in brackets, we see that
acoustic velocity measurements are a way of mea-
suring E~ within the volume of the crystal through
the altered elastic constants c,.gy7 given in Eq.
(5. 10), and through the antisymmetric contribu-

p
tensor. Note that if E~ = 0 the equation takes the
form appropriate to a nonpyroelectric, piezo-
electric crystal. .

Xl. SUMMARY AND DISCUSSION

We have produced a complete theory of linear
elasticity and piezoelectricity of pyroelectrics
beginning from general nonlinear equations derived
from a first-principles theory. ' Our interest has
been directed toward exploring the effects that the
spontaneous polarization P~ and the resulting
spontaneous electric field E~ may have on litem.
elastic and piezoelectric properties. Let us dis-
cuss the P~ effects first and the E~ effects second.

Our development first yielded piezoelectriclike
terIlls ln the polarization (4. 1) linear tn the dis-
placement gradient that were also proportional to
the constant p~. These same terms entered the
expression (4. 9) for the electric displacement
vector D. The origin of these terms was a com-
bination of volume compression and rotation of a
medium having a constant polarization, effects
noted in the past by others '5 '7 None of these
authors, however, showed that a portion of these
effects must be included in the definition (4. 3) of
the normally measured piezoelectric stress tensor
nor that the remainder of the terms in the linear
polarization and dielectric displacement would not
be measurable. We also showed that the constitu-
tive relation (4. 10) for H would involve a, term
linear in the velocity du/dt and proportional to P~.
Next we showed that the linea, r terms in P, D, and
H )nvolvtng P di, sappeared from the drelectrxc
charge (4. 5) and the dielectric current (4. 4). This
means that such terms disappear from the Max-
well equations provided P is homogeneous. When
P~ is inhomogeneous, the terms exhibited in Eqs.
(4. 7) and (4. 8) will enter the Maxwell equations.
If sufficiently strong spatial derivatives of P~ oc-
cur in a medium, these equations give expressions
for new observable effects involving these deriva-
tives.

Even though the linear terms involving P~ dis-
appeared from the differential equations (when P~
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is homogeneous), it was necessary to consider the
boundary conditions carefully since the constitutive

P
expressions for D and H enter their respective
boundary conditions. Initially~ we believed that
the H field boundary condition would bring in an
observable linear term proportional to P~ thus
making P~ measurable by a new dynamic technique.
This resulted from our trust of the H field bound-
ary condition derivation in Sommerfeld's textbook
on electrodynamics. " Our later doubts about this
derivation led us to an entirely new derivation of
all the electromagnetic boundary conditions at a
moving deforming surface by first transforming
all the Maxwell equations to the material co-
ordinate system. '4 The H field boundary condi-
tion we found from this approach, Eq. (9.15),
contained a moving medium term which cancelled
the constitutive term in H involving P~ making that
term unobservable. The derivation also revealed
the error in Sommerfeld's reasoning. It is dis-
cussed in the accompanying paper. '4 The D field
boundary condition we found, Eq. (9. 10), also
led to a similar cancellation that is exhibited in
Eq. (9.14). Here a combination of deformed nor-
mal and deformed surface area corrections in
combination with the constant spontaneous polariza-
tion term of D exactly cancel the piezoelectriclike
term involving P~ in the constitutive expression for
D. The tangibleness of the deformed normal and
deformed surface area effects shows the reality
and necessity of She constitutive term in D in spite
of the latter's unobservability t Since none of these
effects are included in the Voigt theory of piezo-
electricity in pyroelectries, the agreement of that
theory with observations is partly due to the good
fortune of having ignored two exactly cancelling
phenomena.

It has been a tenet of piezoelectric theory from
its earliest days that the direct piezoelectric ef-
fect (measurement of a voltage caused by a stress)
and the converse piezoelectric effect (measure-
ment of a strain caused by a voltage) measure the
same tensor. Our theory supports this equality
but not the traditional proof of the equality.
Traditionally the proof has been merely to note
that the coefficient of the elastic variable in the
constitutive expression for the linear polarization
was the same tensor (apart from a sign conven-
tion) as the coefficient of the electric field in the
constitutive expression for the linear stress tensor.
In our theory (even when E~ =0) these coefficients
are different. Nevertheless, our theory is con-
sistent with the direct effect —converse effect
equality since only a single piezoelectric tensor
e,» enters all the differential equations and bound-
ary conditions.

Recently Baumhauer and Tiersten~ have con-
sidered a related problem to the one of this paper.

They have considered the electroelastic equations
for small fields superposed on a biasing field which
creates a permanent polarization in a dielectric
medium. They apply their results to polarized
ferroelectric ceramics and conclude that the
linearized equations (differential equations and
boundary conditions) for such a material are
identical with the equations of linear piezoelec-
tricity. Our results are in agreement with theirs
on this conclusion. Their work begins from the
zeroth-order electrostatic approximation and so
does not consider the H field. They also assume
that extrinsic surface charge has cancelled the
spontaneous electric field and so obtain no results
for E~&0. They perform most of their calcula-
tions in the material coordinate system and do not
write any constitutive relations in the spatial or
laboratory coordinate system. Thus there are no
equations to compare to our spatial frame constitu-
tive relations for P, D, H, and t

Our theory makes new predictions for the linear
elastic and piezoelectric tensors of a pyroelectric
crystal when its spontaneous electric field is
present. The elastic stiffness tensor c„« in the
presence of E~ is given in Eq. (5. 10). Its lower
interchange symmetry compared to the stiffness
tensor c„« that applies in the absence of E~ al-
lows c~„~ to have 45 different components compared
to 21 for c.,«. In contrast to c„«, c„«ean couple
to rotation. The many new contributions to c,b«
depend on E~ and so will depend on the shape of
the crystal which determines the depolarizing field.
These contributions will disappear in a few dielec-
tric relaxation times of the crystal plus ambience.
The new terms depending on E~, however, are
large and easily measurable. In materials like
LiNb03, in fact, they can be larger than the
normal terms in c„«which indicates that under
such conditions nonlinear effects would also be
present at the same time.

We also found that a new effective piezoelectric
stress tensor e~», given in Eq. (4. 6), is present
when E exists. The new term in it is antisym-
metric with respect to interchange of the indices
that couple to the displacement gradient. Thus,
this term couples only to rotation while the normal
term e,» couples only to strain. Again we find
that the new term is measurably large but will de-
pend on the shape of the crystal and the surface
charge condition of the surfaces.
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APPENDIX

An alternate procedure to linearizing the equa-
tions of motion as done in this paper is to truncate
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the Lagrangian to linear, bilinear, and quadratic
terms ~ This approach was used in Ref. 2.

Consider first the interaction Lagrangian in the
material frame in the electric dipole approxima-
tion as given by Eq. (3. 12) of Ref. 1:

q"y r" g= Q q"R;A(YA+ A„")8, . (Al)

Adiabatic elimination of the internal coordinates
via Eq. (3.4) yields

~1 I. A+ ( ACD+ 5A(C D)) CD

+ e0 ltAB +Bj( A+ IA (A2)

with the use of Eqs. (2.6), (2. 16), (3.2), (4. 2),
and (4.3}. In Ref. 2 the notation

$
ACD ~ACD+ A(C +D) (A3)

was used. The constant term in Eq. (A2) may be
I

dropped since it cannot affect the equations of
motion. The matter Lagrangian in the material
frame after adiabatic elimination of the internal
coordinates is

2
u 1 P & p

dCQ Qp ~ ~ p
rf. t,

(A4)

where

AB AB+ ( CAB+ C(A B)} AB+ & ABCD AB CD
s $

1
+ &p Xwa FA ia ~l + &~p Xga F„Fa (A5)

The field Lagrangian in the spatial frame is

CBB= 0e0(E' —c'B'), (A6)

where the fields E and B are regarded as functions
of the scalar and vector potentials in the usual
manner.

By combining Eqs. (A2)- (A6) the total Lagrangian
ls

2

L=
~

Be0(E —c B )dv+ —p d
—BCABcD ABEcD

1 2 2 2 p 1

fAB EAB+ (BACD+ 5A(C +D))ECD +A+ +A +A+ & ~0 l(AB A +B

This was the starting point of the presentation in Ref. 2. There, since we considered the Es =0 case only,
we set t~$~=0.

If E„Band R, A are expanded in terms of u„B and EA is eliminated via Eq. (3.2), then the total Lagrangian
can be put into an alternative form most useful for obtaining the equations of motion:

0 0(E —c B ) dv+ —p ——BCABcD uA, Buc, D + (E(A PBj —tAB)uA B
2 2 2 p u $ $ $

t 2 dt

1
+ (BACD Ac +D+ AD +c+ 0 [A llDlc)uc, D A+ +A A+ 0 0 ltAB A B

Here CABDD is given by Eq. (5. 10) and h contains no spontaneous electric field part.

(A6}
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