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The Maxwell electromagnetic equations are obtained expressed in the material coordinate system of elasticity
theory for a moving, deforming body. They are shown to be form-invariant to the deformation transformation.
The transformation laws for the electric field, the electric displacement, the magnetic induction, the magnetic
intensity, the charge density, the current density, the vector and scalar potentials, the polarization, and the
magentization are found. The boundary conditions on the fields are derived in the material coordinate system
and the simplicity of the derivation for moving, deforming bodies is emphasized. The boundary conditions are
then transformed to the familiar spatial coordinate system. A Lagrangian density capable of giving the
Lorentz form of the electromagnetic equations in the material coordinate system is found. The Lorentz form
of the equations is shown not to be form-invariant to the deformation transformation.

I. INTRODUCTION

Two descriptions of matter are commonly em-
ployed in the study of deformation of solids. One,
called the material or Lagrangian description, re-
gards the position x of a point of matter in a con-
tinuum to be a function of the designation X of the
matter point and the time t. The other, called the
spatial or Eulerian description, regards the des-
ignation X of the matter point to be a function of
its position x and time t, The designation X of the
matter point is usually, but not necessarily, taken
as the position of the matter point in the absence of
of deformation.

In studies of the interaction of the electromag-
netic fields with matter'*~ the electromagnetic
fields have been regarded as functions of position
and time and thus in the spatial description. This
is quite natural since the electromagnetic fields
can exist in a vacuum as well as within matter.
Nevertheless, one wonders whether in a region
occupied by matter a material description of the
electromagnetic fields might lead to new insights
into the field-matter interaction or simpler modes
of expressing or manipulating the interaction. Qur
immediate motivation for obtaining a material
form of the Maxwell equations was a need for the
electromagnetic boundary conditions at the sur-
face of a moving, deforming body. Since such a
surface is fixed when viewed from the material
frame of reference, boundary-condition deriva-
tions are conceptually simpler in this frame. Il-
lustrative of the difficulty of boundary-condition
calculations for moving bodies in the spatial frame
is the incorrect derivation of the boundary condi-
tion on the magnetic intensity H by Sommerfeld in
his textbook on electrodynamics. ' Use of the ma-
terial form of the Maxwell equations for boundary-

condition calculations has proven useful to us; we
suspect other uses will be found by others.

In this paper we will first summarize various
formulas relating the material and spatial descrip-
tion that we mill need in later sections. We then
find the material form of the Maxwell equations
and the definitions of the material measures of the
E, B, D, and H fields from a consideration of the
integral form of the equations. The Maxwell form
of the electromagnetic equations is shown to be
form invariant to the deformation transformation.
We then derive the electromagnetic boundary con-
ditions at a moving, deforming surface in the ma-
terial frame and transform them to the spatial
frame. Next we transform the Lagrangian of the
electromagnetic fields to the material description
and obtain from it the Lorentz form of the elec-
tromagnetic equations in this description. The
Lorentz form of the electromagnetic equations is
shown not to be form invariant to the deformation
transformation. A multipole expansion of the
charge and current densities then introduces the
polarization and magnetization and leads to con-
stitutive relations for the electric displacement
and magnetic intensity needed to yield the Maxwell
form of the equations.

II. RELATIONS BETWEEN MATERIAL AND SPATIAL
DESCRIPTIONS

As defined in Sec. I the deformation of the medi-
um in the material description is specified by

x,. =x,.(x, t), (2. 1)

while in the spatial description it is specified by

xq ——xq(x, f). (2. 2)

We assume Eqs. (21) and (22) can be continued
through the body surface a short distance.



1778 M. LAX AND D, F. NE LSON 13

BXj BXI
BX ' I, ~ Bx

(2. 3)

By the chain rule of differentiation the deformation
gradients are inverses,

Note that lower case letters are used to denote
components of vectors such as x in a spatial coor-
dinate system, while upper case letters are used
to denote components of vectors such as X in a ma-
terial coordinate system. This convention is
needed since the two coordinate systems need not
be identical; we will, however, choose them both
to be Cartesian. The convention allows a compact
notation for the deformation gradients

dx j =x j J dXJ. (2. 13)

Similarly, oriented elements of area in the two
systems are related by Nanson's formula

daj ——JXJ jdA~. (2. 14}

If the oriented area elements are expressed in
terms of unit normals n and N,

Finally, for reference we record here the trans-
formations of arc, area, and volume. An element
of arc dX in the material coordinate system is re-
lated to the element of arc dx joining the same two
neighboring matter points in the spatial coordinate
system as

jj& I~j (2. 4)

The Jacobian of the transformation from X to x is
denoted by

C =—C(x/X):—det(x, ).
Time derivatives in the two descriptions have

diff Ient meanings and notations. The spatial
time derivative is

da,. = n jda, dAz ——N~dA,

then Nanson's formula yields

dA
nj ——JXJ j NJ —-

Finally, volume elements are related by

(2. 15)

(2. 16)

(2. 17)

sE aE(x(X, f), f)
Bt Bt x f fxed

while the material time derivative is

dE 8E(x(X, f), f)
'X f ized x f tx ed

(2. 6)
For further discussion of deformation the reader
is referred to Truesdell and Toupin. '

III. MATERIAL FORM OF MAXWELL EQUATIONS

The Maxwell equations in the conventional form
are

s(Ex(X, ),f)f+Xj
Bxj

(2. 7)

Here dx/df is the velocity of the matter point. It
is related to the flow of matter 8X/sf at a fixed
position x by

BDv'xH= —+ jBt

BBgxK=- —,
V ~ D=q~

(3. 1)

(3.3)

BX~ BX~
xj =-xj ~, ———X~ jxj. (2. 8) (3.4)

A very useful relation between the material and
spatial derivatives, called the spatial equation of
continuity, is

1 C(&~) » e(~~, )
J dt Bt Bxj

(2. 9)

where y may be a scalar, vector, or tensor.
Sevexal other identities mill be needed. One,

called the Euler-Piola-Jacobi identity, has dual
forms,

(C&r.i).r = o (C '&a, ~).a = o. (2. 10)

-1
~I& lC J ~ jj k ~ j p I +j, J' X)I y

K' (2. 11)

Another involves the transformation of the permu-
tation symbol from the spatial to the material co-
ordinate system. It may be expressed as either

~g .~ y dx
3 =3 +9'

dt
(3. 5)

%e consider these equations in a volume of space
occupied by matter.

In order to determine the transformation of
these equations to material form we consider their
integral forms. Consider Eq. (3.1) first. Inte-
grating over a spatial frame area yields

where the electric field E, electric displacement
D, magnetic induction 8, and magnetic intensity
H are functions of x and t and their components are
referred to the spatial coordinate system. The
free charge density is denoted by q~. The free
charge current j~ is composed of a conduction cur-
rent part ]' and a convection current part q~(dx/
ch)

or

~I'—J~ jjh XI~ j +J
~ j ~E~A.

~
~BD(«H) ~ da = —+ j da.

Bt
(3.6)
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r
dxH- —xD ~ dx= —D da
dt dt

+ j —V ~ D — da. (3.7)

Use of Eqs. (Ala) and (A4) from the Appendix to
reexpress sD/sf and the Stokes theorem to reex-
press the curl term leads to

dx ~ ~ ~ dx
+ Bx—~ dx+ 9 ~ B —da. . (3.14)

dt dt

The last term vanishes because of Eq. (3.4).
Transformation of the integration variables to the

material frame now yields

(
dx d

E+—x B r,. ~dX~ = —— B,JX~ (. dA, . (3. 15)

We now transform the integration variables to the
material frame via Eqs. (2. 13) and (2. 14) and use
Eq. (3.3) to eliminate V. D with the result

t dx dH- —xD x dX = — D JX dA
dt " ' dt

This l.eads us to define

dx
g = F+—xB x

z =—JXz &B

(3.16)

(3.17)

+ ( j~( —q~x, )ZX~ (dA~.
(3. 8)

After introducing the conduction current through
Eq. (3.5) into the last integral on the right-hand
side we are led to define the material form of the
magnetic intensity K, the electric displacement
S, and the conduction current, J' by

(3.18)

for the material form of the electric field and the
magnetic induction. Reuse of the Stokes theorem
and the commutativity of the differentiation and

integration on the right-hand s ide gives

dS(i x8) dA= ——.dAX dt

tt (X, t) = (H( (X, t )t)—, which in turn gives
d

v xg=-—
dt

(3.19)

xD( (X, t), t)), (X, t),

q =—JX~ ]D;,

P~ =—JX„]g]

(3 9)

(3.10)

(3.11) V. Ddv = D ~ da= q dv. (3. 20)

for the second transformed Maxwel. l equation.
Next we integrate Eq. (3.3) over a spatial frame

volume and use Gauss's theorem,

dS
x X) dA = —+ D9

' dA.X dt
(3.12)

Here Stokes theorem has been used on the left-
hand side and the gradient operator with respect
to X has been denoted by v~. On the right-hand
side the commutativity of material time differen-
tiation and material space integration has been
used. Since the area of integration is arbitrary,
we must have

where the functional dependence typical of all the
field transformation equations is shown in Eq.
(3.9). The transformed electric displacement
field of Eq. (3. 10) has recently been used by
Baumhauer and Tiersten. With these definitions,
Eq (3.8) b.ecomes

Transformation to material frame integration
variables leads to

g dA= v~ ~dV= gfdV, (3.21)

where the definition of X& [Eq. (3. 10)] and the ma-
terial form of the charge density

gf =-q'J (3.22)

have been used. Since the integration volume is
arbitrary, we obtain

(3.23)

for the third transformed Maxwell equation. By
a completely analogous procedure we also obtain

v ~ 8=o (3.24)
cV XX=—+gdt

(3.13)

for the first transformed Maxwell equation.
Next consider Eq. (3.2). Following a procedure

similar to that just used we integrate over an area
in the spatial frame, use Stokes theorem, and Eqs.
(Ala) and (A4) to obtain

for the last transformed Maxwell equation.
We conclude that the Maxwell equations are

fmm invariant to the deformation transformation.

IV. FIELD TRANSFORMATIONS

It is worth exploring the field transformation
equations a bit further. First, the inverse solu-
tions of Eqs. (3.10) and (3. 17) are found to be

E dx=- — B da
dt D~-J &~,r~r~ (4. 1)
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&~=~ 'x~, rr (4. 2)

with the use of Eti. (2.4). The inverse of Eil.
(3.9) becomes

given by

g '=-K' &(s),

&'= r '5(s)

(5. 5)

z
H~ =K~X~ )+&q, -x~ ~. J x ~ &~

BX~
&si &s (ieiM i z ky r+I, L) t I.

BX~
~d'lfI

Bt I (4. 3)

BX~
E~ =X~ J &~+ &~&i ~t Bt

(4. 4)

The inverse current and charge equations become

jf CJ xf J' QJ'

(4.6)

with the successive use of Eqs. (2.4), (2. 8), (4. 1),
and (2. 11). By an analogous procedure we obtain

Here 5(S) is the one-dimensional Dira. c 5 function
and S is a material coordinate measured normal
to the surface. For a plane boundary surface, we

can write

s=N (x-x'), (5. I)

The unit normal to the surface in the material
frame

y

so that $=0 is the equation of the surfa, ce. If the
surface is not planar, Eg. (5. 't) is valid loca, lly in

the vicinity of any point X on the surface. The
bracket notation in Eris. (5.1)-(5,4) indicates the

jump in the enclosed quantity that is,

[x]-=x'"' x"

An examination of the origins of these field
transf ormatlons shows that

dA

tdAt ' (5. 9)

dx x D ~ dx
dt f

dx
8 dX= E+—&8 dx

dt

(4. V)

(4. 8)

has been removed from the brackets since it is not

discontinuous at the surface.

VI. TRANSFORMATION OF BOUNDARY CONDITIONS TO
THE SPATIAL FRAME

S~ dA =0 da.

8 ~ dA= 8 ~ da,
~ dA —

~
~ da

0'd V= q'dv

(4. 9)

(4. 10)

(4. 11)

(4. 12)

are invariants with respect to the deformation
transf ormation.

V. BOUNDARY CONDITIONS IN THE MATERIAL FRAME

[xjxN= K,
[X jxN=o,

[~] N=z',

[isj N=o,

(5. 2)

(5. 8)

where N is a unit surface normal defined by Eq.
(2. 15) and the surface conduction current density
K' and surface charge density Z consisting of
free charge and extrinsic immobile charge are

Since the Maxwell equations have now been tra, ns-

formed to the material coordinate frame of the
moving deforming body, the boundaries of the body

appear at rest. This permits the derivation of
the boundary conditions at a. body surface by the
conventional arguments. ' Because of this we will

simply quote the boundary conditions in this frame.
They are

The boundary conditions in the material frame
were obtained by the simple conventional argu-
ment because the body surface was at rest in that
frame and because questions of continuity of vari-
ous material fields, such as the deformation gra-
dients, did not arise. Both these difficulties arise
if the boundary conditions are derived in the spa-
tial frame and the 1atter difficulty also appears in
the transformation of the material frame bounda. ry
conditions to the spatial frame. Thus, it is im-
portant to discuss the continuity of material fields
at a body surface.

Consider two different material media in inti-
mate contact. It is apparent that the position
vector x(X, t) of a matter point is continuous
across such a surface provided no fracture or
slippage occurs. Imagine all the material prop-
erties of one medium such as the mass density,
the polarization, the stiffness, etc. , to approach
zero, that is, the value chara. cteristic of a vac-
uum. Since throughout the limiting process con-
tinuity of x(X, t) holds, such continuity must hold in
in the limit when one medium becomes a vacuum.
This leads immediately to the conclusion that
gradients of the position tangent&« to the surface
must a,iso be continuous even when one medium is
a vacuum. Gradients of the position normal to the
surface need not be continuous. The foregoing
reasoning also indicates that the velocity dx/dt is
continuous across a body surface even when the
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dx
H xD xj g Ng KAdt

(6. 1)

where the brackets have the meaning of Eq. (5. 8).
Since N is normal to the surface, the gradient in-
dicated by the subscript B must be tangential to the
surface. Hence xj ~ may be removed from the
brackets. Equation (2. 16) may be solved for N,

da
Nc = J x~, cnI dA

(6. 2)

with the aid of Eq. (2. 4). If this is substituted
into Eq. (6. 1) and a scalar product of the equation
with x, „dA/da formed, we obtain

-1 dxJ &„x,,„x, x H- —xD n,

dA
Xi A SPA ~

do
(6 3)

Use of the inverse of Eq. (2. 12) and the definition
of the spatial frame surface current,

c dA
k', =Xi, A+A d

(6.4)

then yields

X cH ——&CD xn=k'
dt

(6. 5)

for the boundary condition in the spatial frame of
reference.

The correctness of the surface current transfor-
mation [Eq. (6. 4)] will be demonstrated if in con-
cert with the current transformation equation
(4. 5) and the material frame surface current def-
inition (5. 5) it is shown to be consistent with the
proper definition of the spatial frame surface cur-
rent,

jf=k)5(s)- (6.6)

Here s is a Cartesian coordinate normal to the

second medium is a vacuum. The subtlety of this
conclusion is best illustrated by the fact that
Sommerfeld in his textbook on electrodynamics'
assumed that dx/dt was discontinuous across a
body surface and obtained an incorrect boundary
condition for the spatial frame H field at a moving
body surface. Lastly, we remark that the surface
normal and scalar element of area of a body sur-
face have the same values when viewed from
either side of the surface. This is true whether
they are expressed in the material or spatial
frames.

With these understandings we proceed to trans-
form the boundary conditions Eqs. (5. 1)-(5.4) to
the spatial frame. Consider the boundary condition
on K first. Inserting the definition of K [Eq.
(3.9)J into Eq. (5. 1) we obtain

surface in the spatial frame. If the point X of
the surface and the neighboring point X of Eq.
(5. 7) map into x and x, respectively,

x —= x(X,t), x=x(X, t), (6. 7)

then s is defined locally at x~ by

s= n (x-x ). (6. 6)

and s =0 is the equation of the moving surface in
the spatial frame. The differential relation fol-
lowing from this may be written

dA
ds = n ~ dx = JX«N ~

—x ~ dX„da
dA=J—N dX
da

(6. 9)

dA
ds =J—dS.

da
(6.11)

Since the Dirac 5 function transforms as a density,
in this case a one-dimensional density, we obtain

5(S) = 5(s) —= 5(s) ~ —.
ds dA

dS da (6. 12)

With this relation developed we can now reexpress
the transformation equation (4. 5),

g )
= J 'x( „~g'„=J 'x( „K„'5(S)

, dA
=x, „K„'—5(s) =k', 5( ),s (6.13)

with successive use of Eqs. (5. 5), (6. 12), and
(6. 4). Because this agrees with Eq. (6.6),
sistency is shown.

Though it is reasonable that only a surface con-
duction current should arise in the material frame
X field bounda, ry condition (5. 1), it must be re-
garded as surprising that in the spatial frame H

field boundary condition (6. 5) no convective-type
surface current consisting of a product of an im-
mobile extrinsic surface charge and the compo-
nent of the material velocity dx/dt tangential to the
surface appears. Its nonappearance may be better
understood with reference to Eq. (3.7). If this
spatial frame equation is applied to a small rec-
tangular area perpendicular to the surface and
within a transition layer representing the surface
during the limiting process, the spatial frame H

field boundary condition can be found from this
equation. The line integral on the left-hand side
yields the left-hand side of Eq. (6. 5). The first
area integral on the right-hand side disappears in
the limit before the time derivative needs to be
performed. The last term on the right-hand side

with the use of Eq. (2. 16) for n and Eq. (2. 13) for
dx. In combination with the differential relation,

dS=N'dX (6. 10)

found from Eq. (5. 7), Eq. (6. 9) implies
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of Eq. (3.7) yields only k' in the limit because
through the use of the charge equation (3.3) and
the free current definition (3.5) the convective
current cancels out of that term.

A procedure completely analogous to the fore-
going may be applied to the S field boundary con-
dition (5. 2). The resulting boundary condition is

dx
dt

E+—xB xn=O (6. 14)

in the spatial frame.
Consider the electric displacement boundary

condition (5. 3) next. By substituting the transfor-
mation of 5) [Eq. (3. 10)], into Eq. (5. 3) we find

where the electric and magnetic induction fields
are given in terms of the vector potential A and
scalar potential 4 by

BAE=- VC ——,et' (7.2)

B=VxA (7. 3)

d ass ebs a e~s
dt a(aA, /at) aA,.. ax, aA, , ' (7.4)

and j and q are the current and charge densities
that include both bound and free charge. The po-
tentials are the generalized coordinates of the
Lagrangian. The Lagrange equation for A,

[JX„;D, ]N„= Z (6. 15)
yields

Next we multiply this by dA/da and put N„and
dA/da inside the brackets since they are continu-
ous at the boundary. This gives

dA dAJX X —D"da ' da'
[

(6. 16)

Comparison with Eq. (2. 16) shows that the com-
bination of factors present in this equation is just
n. Taking n outside the brackets since it is con-
tinuous at the surface and defining the spatial
frame surface charge density by

~f gf dA

dO
(6. 1V)

q =d g = J E 5(S)=Z —a(s)=o 5(s), (6. 19)
dO

with the successive use of Eqs. (5.6), (6. 12), and
(6. 1'7). This demonstrates the correctness of the
definition (6. 17). By a, procedure a.nalogous to the
foregoing we obtain the magnetic induction bound-
ary condition

[B] n=0 (6.20)

in the spatial frame.

VII. MATERIAL FRAME LAGRANGIAN DENSITY FOR
MAXWELL-LORENTZ EQUATIONS

we find

[5]~ n =ot

for the spatial fxame boundary condition. The a.p-
propriateness of the definition (6.17) can be de-
termined by showing that in conjunction with the
transformation of charge density (4. 6) and the
definition of the material frame surface charge
(5. 6) it yields the proper spatial frame surface
charge definition. Thus Eq. (4.6) becomes

1 ~ ~ 8E—VxB=—+ j
p., at

and the Lagrange equation for @,

s ass
dt a(aC/at) a4 ax, a4,

yields

goV' E = q.

(7. 6)

(7. '7)

= VxXN,

where

A) =~~X~ ),

(V. 9)

(7.10)

dx
A @=V-—adt ' Bt

(7.11)

Note should be taken of the velocity dependent
transformation of the scalar potential,

We now wish to transform the Lagrangian den-
sity to a function of p and y. First, since it is a
density, we have

gs ('7. 12)

Substitution of Eqs. (7.8)-(7. 11) into Eq. (V. 1)
leads to

The remaining two electromagnetic equations [Eqs.
(3.2) and (3.4)] are consequences of the relations
(V. 2) and (V. 3).

In order to transform the Lagrangian to a ma-
terial form we must first find the transformed
vector and scalar potentials. By procedures sim-
ilar to those used in Sec. VI Eqs. (7.2) and (7, 3)
may be transformed to

dc8=-V y-— (7. 8)

(7. 1)

The Lagrangian density in the spatial frame
which yields the Lorentz form of the electromag-
netic equations is

&s = 2eo(E ~ E —c B B)+j ~ A —q4,

8+—x ~ C & +—x

-c J S C +,'J ~ 8 —C(p (7.13)
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egg xg g x)

(C ")ps = &~.«&s. «

'r =»r, «(7' «- &«)
~= &JAN.

('7. 14)

(V. 15)

(V. 16)

(V. IV)

d 8Zg 82~ 8 82~
8 Q~ 8 +g BXg 88@

leads to

8 1 BXg
&r~u ~ ~ Cs~«+&~~~ f &0~(C )sgBX~ P.o J Bt

(V. 18)

X $+—XQ

BX
e««J(C )rz 6+—x«s +Dr,

The Lorentz form of the electromagnetic equa-
tions may now be found from Eq. (V. 13). The
Lagrange equation for g,

BP 4xj=j~+—+7'x M+px —.
Bt N (8.2)

(8.3)

Here P is the polarization and M is the magnetiza-
tion. They may be regarded as the electric dipole
and magnetic dipole contributions, respectively,
to the multipole expansions with higher multipole
contributions dropped. Alternatively, they may
be regarded as embodying all higher multipole
contributions within themselves. By giving no fur-
ther defining relations for 5 and M we allow either
of these interpretations and so allow a greater de-
gree of generality to what follows.

The expansions (8.1) and (8.2) may now be in-
serted into Eqs. (V. 5) and (V. V). It can then be
seen that the spatial frame Maxwell form of the
equations [Eqs. (3.1) and (3.3)] results if we de-

finee

D=- qoE+ P. (8.4)
which ls the material frame analog to Eq. (V. 5).
The Lagrange equation for y,

d 82~ BZ~
8+ 8+ BX&

leads to

eo J(C ')~„b+ x«I«—JN

%e now wish to find the material frame trans-
forms of P and M. Again we omit the algebra
since it is similar to that employed in previous
sections. Substitutio~ of Eq. (8. 1) into Eq. (V. 1V)
leads to

(8.5)

which is the material frame analog to Eq. ('7. V).
The two remaining electromagnetic equations,

+~=—JX~ ~P~, P) =8 x] ~ ~. (8. 6)

Substitution of Eqs. (8.1) and (8.2) into Eq. (V. 16)
leads to

&X'+ =Oy (V. 23)
d(p«X+V XJR+— (8. V)

VIII. POLARIZATION AND MAGNETIZATION

The Maxwell form of the electromagnetic equa-
tions is obtained from the Lorentz form in the
spatial frame by expanding the charge and current
densities in terms of multipole moments. The
charge density becomes

q
—

q p'OP (8.1}

and the current density becomes

follow directly from Eqs. (V. 8) and (V. 9) and agree
with Eqs. (3, 19) and (3.24). Note that the latter
two equations retain the form of Eqs. (3.2) and
(3.4), but that Eqs. ('7. 19) and (V. 21) do not retain
the form of Eqs. (V. 5) and (V. V). Thus the form
invariance under a deformation transformation
found in Sec. III for the Maxwell form of the elec-
tromagnetic equations does not apply to the Lo-
rentz form of the electromagnetic equations.

~r -=&),z ~~ ~y =&r.y~r (8. 8)

xe,J(C ')oD h+ —x«8 —5«t„.
BX (8.9)

Substitution of the transformations for D, E, and
P [Eqs. (4. 1), (4. 4), and (8.6), respectively] into
Eq. (8.4) leads to the definition of the material
frame & field

I ast, we must obtain the material forms of the
relations (8.3) and (8.4) for H and D. Substitution
of the transformations for B, H, M, P, and dx/
df [Eqs. (4. 2), (4. 3) (8.8), (8.6), and (2. 8),
respectively] into Eq. (8.3) leads to the definition
of the material frame X field

1 BX~
CAB 8+ ~ABC

poeJ Bt
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rivative. ' We denote the convected time derivative
of I' . by F] and def1ne lt by

The definitions (8. 9) and (8. 10) fo r & and &
provide the connection between the material Lo-
rentz-form equations and the material Maxwell-
form equations. Substitution of those definitions
along with the expressions (8. 8) and (8. t) for I
and „j into the material Lorentz-form equations
('I. 19) and ('I. 21) leads to the corresponding ma-
terial Maxwell-form equations (3.13) and (3.23).

APPENDIX

We give here a short derivation for the material
time derivative of a surface integral over a moving
deforming body in terms of the convected time de-

jrf~p ' ~+8~

—(JX~,JFJ)J 'x, J,dat ~

with the use of E(I. (2. 14). Thus we have

F(=Z x( p
—(JX~ )F, ).

This may be rearranged as

(A la. )

(Alc)

(A2)

~BE ~BI"
+(F(xq) „—F)x( q

—— +(Eqx~ —F~x, ) „+E, Jx, , (A3 g

where we have used the spatial equation of con-
tinuity (2.9), the material time derivative of E(I.
(2. 4), commutativity of material time and space
derivatives, and the chain rule of differentiation.
In vector form Eq. (A3) is

BF ~ ~ dX dX ~
(F) =—+Vx Fx—+—v ~ F.

Bt dt dh

Note added to proof: Thurston has brought to
our attention some recent work of his [R. N.
Thurston, Handbuch dpi' I'hysik, edited by: S.
Flugge (Springer-Verlag, Berlin, 19't4), V'ol.

Viaj4, p. 109] having a number of things in com-
mon with this work. He has obtained the field
transformations present in Secs. III and IV of
this paper. He remarks, however, that these
transformations are not unique. We would pre-
fer to say that, given the deformation transfor-

mation, the field transformations presented by
him and us are the only ones that will leave the
Maxwell equations form invariant. Making this
a requirement of the procedure makes the trans-
formations unique. Thurston's material repre-
sentation of the potentials is different from ours.
Both are correct; each has a different gauge. We
regard Thurston's choice of making the scalar
potential invariant to the deformation transfor-
mation as awkward. The price is a vector poten-
tial transformation which is an integrodifferential
relation (not given by him) We might add that in
the quasielectrostatic limit {at least in the ab-
sence of a static magnetic field) our scalar poten-
tial transforms invariantly. Thurston does not
discuss boundary conditions, the material form
of the electromagnetic Lagrangian, or the
Lorentz form of the electromagnetic equations
which form the subjects of Secs. V-VIII.
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