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Asymmetric total stress tensor
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From arguments based on momentum conservation, the stress boundary condition, the allowed functional

dependence of a stress tensor, the gauge invariance, and the vacuum form of the Maxwell stress tensor, a

proper identification of the total stress (or momentum flow) tensor for a closed system consisting of an

arbitrary dielectric crystal in interaction with the electromagnetic field is found. This tensor is shown

to be asymmetric even though the system conserves angular momentum. Jump conditions on the total stress

tensor are found both for surfaces fixed in the spatial or laboratory coordinate system, and for surfaces fixed

in the material or body coordinate system, and thus moving and deforming with respect to the laboratory

coordinate system. The ideas developed are also applied to the flow of energy and the flow of angular

momentum.

I. INTRODUCTION

The proper identification of the total stress
tensor representing total momentum flow in a
closed system consisting of an arbitrary dielec-
tric crystal in interaction with the electromag-
netic field is complicated by many considerations.
It initially arises within a divergence in a con-
servation law and so may be altered by the addi-
tion of divergenceless quantities and by other
types of transforrnations. Also, the first form
that is naturally obtained in a Lagrangian based
theory, the canonical stress tensor, is not gauge
invariant. Furthermore, both fixed surfaces
and moving body surfaces, across which the mo-
mentum flows, must be considered. Last, the
question of the interchange symmetry of the total
stress tensor needs reexamination since the
theory here contains mechanical variables that
account for all long-wavelength modes of motion
of the crystal, not just center-of-mass motion.

The purpose of this paper will be to develop a
procedure for proper identification of the total
stress tensor and to show that the one determined
is asymmetric under rather general circumstances.
The treatment will be based on our long-wave-
length theory of electrodynamics of elastic di-
electrics. ' The total stress tensor found will
represent a closed system consisting of the elec-
tromagnetic field interacting with a dielectric
crystal which can have any symmetry and anisot-
ropy, any nonlinearity, and any structural com-
plexity and which may have any elastic deforma. —

tion or internal motion, We will use arguments
based on the momentum conservation law, the
stress boundary condition, the allowed functional
dependence of a stress tensor, gauge invariance
and the vacuum forms of the stress tensor and

momentum density to arrive at a total stress

tensor which represents true momentum flow.
The expression for the momentum density will
be obtained at the same time.

We will show that there are two forms of the
total stress tensor that have important and some-
what differing meanings. One represents the
momentum flow relative to the laboratory or
spatial coordinate system. . Its flow across a
surface fixed in the spatial coordinate system is
continuous. The second represents the momen-
tum flow relative to the material coordinate sys-
tem of a body. Its flow across a surface fixed
in the mate rial coordinate syste m, such as the
body surface itself, is continuous. Thus, the
latter tensor is particularly important to con-
siderations of momentum transfer between bodies
or between the electromagnetic field and a moving
body.

The interchange symmetry of the tensor repre-
senting momentum flow across a surface in the
laboratory coordinate system is explored. We
find that it is in general gsymmefric, though at
sufficiently low frequencies it becomes symmetric.
The asymmetry of the total stress tensor is pres-
ent even though the system obeys angular rno-

mentum conservation. This situation arises
since this theory includes all internal modes of
motion (optic modes) of the crystal which must
carry angular momentum.

The reasoning applied to the flow of momentum
in this paper can also be applied to the flow of

energy and angular momentum. A brief summary
of these applications is given in Secs. VII and
VIII.

II. CANONICAL STRESS TENSOR

The homogeneity of free space causes the equa-
tions of motion of physics to be form-invariant
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to spatial displacements. In a theory, such as
ours, based on a Lagrangian this requirement
will be met if the Lagrangian is not an explicit
function of the position x. ' Momentum conser-
vation results from this spatial displacement in-
variance. It may be expressed as

P J-(P' vy rp (2. 7)

(the primed sum indicating v ranges from 1 to
N 1),-R and B are the electric field and mag-
netic induction field that are given in terms of the
vector and scalar potentials, X and (f, by

0at az,
(2. i) K= —vc— (2. 6)

where g, is the canonical momentum density
given by

(2. 2)

B =r7xA. (2. 9)

The quantities dx/dt and dy/dt are material time
derivatives (X held fixed), used for compactness
to denote

and t~& is the canonical stress tensor given by

(2. 3)

ax
xf — xf ~ a )

ay „axTv

(2. 10)

(2. ii)

~' de= 2"dV, (2. 4)

where dv =de, dz~dz3 and dV=dX&dXzdX3. Thus

Z' = [J(x/X)]-'Z"1

where J(x/R) is the Jacobian of the transforma-
tion from the material to spatial coordinates.
We use Eq. (2. 5) to transform the matter La-
grangian density of Eq. (3. 17) of the accompany-
ing paper to a spatial form. Then, using the
electromagnetic field and interaction Lagrangian
densities of Eqs. (3. 3) and (3. 13) of the same
paper we obtain

(2. 6)

dx dx 1~' „dy "
dy

Here Z~ is the spatial frame Lagrangian density.
It is regarded as a function of the N fields g
(n =1, 2, . . . , N), their spatial time derivatives
sg'/Bf (z held fixed), and their space derivatives
P;,. =- Sg'/Sx, Th.e independent variables in the
spatial description used here are z and t. Within
matter z and x, the position of the center of mass,
are synonomous. The minus sign has been in-
troduced into the conservation law (2. 1) in order
to give the stress tensor the conventional sign.

In the accompanying paper the matter Lagran-
gian density was expressed in the material de-
scription, that is, with R, the material coordinate
that names and rides with a matter point, and t
as the independent variables. The transforma-
tion of the material frame Lagrangian density
Z" to 2 must satisfy

The spatial frame mass densities p and p" as-
sociated with the center of mass and the vth in-
ternal coordinate y

" are related to the corre-
sponding material frame mass densities p and
m" by

p= J p, p" = J 'm". (2. i2)

The stored energy per unit mass is denoted by Z
and q" is the charge density associated with the
pth internal coordinate in the material description.
The electromagnetic fields are expressed in mks
units. The deformation gradient x« ———()x; /SXx
in Eqs. (2. 10) and (2. 11) is to be regarded as
a function of X~ (

=—BX~/sx( in the spatial descrip-
tion. The components of the material coordinate
vector X are referred to a Cartesian material
coordinate system and are denoted by upper-case
letters. The components of the spatial position
vector x are referred to a Cartesian spatial co-
ordinate system and are denoted by lower-case
letters.

The fields g of Eqs. (2. 2) and (2. 3) now refer
to X„,y, ", A, , and C. Substitution of Z from
Eq. (2. 6) into Eqs. (2. 2) and (2. 3} leads to

g( = px,. —(P x B),. + D(A. ( . (2. 13)

f (( = f(2( —px(x( —peoE2E(, 5((+ (1/2 pa}8„8(5((

(PxB1, , (Z, + ')21—H,2„,A. . . , (2. 14)

where 0 and H, the electric displacement and

magnetic intensity, are given by

pg+P. E+—xB +-,e, (E E —c B B).
dt

(2. 6)

Here P is the polarization given by

5 toR+ P, =

H= —B — Px—

and t', ~ is defined by

(2. iS)

(2. i6)
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BZ
t';~ =px& ~ 8Xi,p 0 " fixed

(2. 1V)

III. TOTAL STRESS TENSOR

Though we began from a gauge-invariant La-
grangian density, Eq. (2. 6), we have obtained
a canonical momentum density, Eq. (2. 13), and

a canonical stress tensor, Eq. (2. 14), which are
not gauge invariant. Clearly, they cannot rep-
resent the physical quantities we are considering,
However, since they do obey the momentum-con-
servation law, Eq. (2. 1), they must be closely
related to the quantities we seek. Thus we must
explore alternate expressions of the momentum-
conservation law.

ti~-=t';, +8;P, +m„—px, x,L (s. 9)

ag~ t L 0at (s. io)

It is also clear from an examination of the ex-
pressions for g, and t~&& that application of the
conventional "pill box" argument to Eq. (3. 10)
leads to a jump condition of t~~,

as the total stress tensor in the laboratory frame,
The justification for such assignments must now
be given, First, it is clear from the foregoing
that these quantities satisfy the spatial frame
momentum-conservation law,

In order to find gauge-invariant measures of
the momentum density and the total stress tensor
we first rearrange the canonical forms of these
quantities. With the use of Eqs. (2. 9) and (2. 15)
the canonical momentum density can be expressed
as

[f~,]n, = 0, (s. »)

where [t;;]denotes the jump in the quantity en-
closed in the brackets across the surface con-
sidered,

g» —
p&» + e o(E x B)» +A» ~ &D& (s. 1) [fI]—(fL ,)Dut (f I )»0 (s. i2)

where

+ Ai, ~~~~iHi (3. 2)

dx
)D

—= E+—X5
dt

(s. 3)

and

m»» —= eDE»E»+ (1/po)B»B» —~ze»»E), E»6»»

—(1/2 Po)B~B06;, =mj; (3..4)

is the Maxwell vacuum- field stress tensor. The
non-gauge-invariant parts of g& and t, &

can now

be seen to cancel in the momentum-conservation
law,

8—(A,. qD) — '
Dq,.~ A,.„fq, H, )

= 0, (0. 0)~A]

with the use of the two Maxwell equations for a
dielectric

and the canonical stress tensor can be expressed
as

C 3»
&A;t;

&

——t
& J + m&

&
+ 8; P; —px; x& + '

D&

and n is the unit normal of the surface pointing
in the outward direction. It is essential to the
proof of the boundary condition (3. 11) that the
boundary surface considered be stationary in the
spatial or laboratory coordinate system,

The boundary condition (3. 11) involves the
stress tensor directly while the conservation law

(3. 10) involves the divergence of the stress ten-
sor. Because of this the boundary condition is
much more restrictive in determining what the
total stress tensor is. This, we will see, is
true because a variety of transformations can
alter the quantity appearing in the divergence
term of the conservation law without affecting the
fact that the stress tensor t;; appears in the
boundary condition. Besides transformations
that involve the equations of motion like that
leading from the canonical forms of the momen-
tum density and stress tensor to those of Eqs.
(3. 8) and (3. 9), the addition of a curl-like quan-
tity inside the divergence of the conservation law
yields a new stress tensor,

V 5=0, (s. 6)
L' Lt, , = t, +~,.„f„,, (s. is)

BD
r7xH =—.Bt

(3. 7)

The cancellation exhibited in Eq. (3. 5) leads
us to identify

g, -=p~,. A- e,(R x B). (s. 6)

as the total momentum density in the spatial or
laboratory frame and

without affecting the fact that the boundary con-
dition found from this altered form of the con-
servation law will still involve t~&. In showing
this care must be taken in applying the pill-box
argument since contributions from the sides of
the pill box, which usually vanish in the limit of
vanishing side area, then arise and cancel the top
and bottom contributions of the curl term of Eq.
(3. 13). Another type of transformation,
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(3. 14)

(3. 15)

affects the form of both the stress tensor and the
momentum d'nsity in the conservation law while
clearly not affecting the boundary condition (3. 11).
Last, the transformation

where t"; is independent of time, does not affect
the stress tensor in either the conservation law
or the boundary condition. A corollary to this
discussion is that the first three types of trans-
formations mentioned can be used to alter the
interchange symmetry of the stress tensor appear-
ing in the conservation law from asymmetric to

symmetric or vice versa without affecting the in-

terchange symmetry of the stress tensor entering

the bounds. ry condition (3. 11).
From the above discussion it is clear that we

should focus our attention on the boundary con-
dition (3. 11) to determine the total stress tensor.
The first question that arises is whether the
scalar product of the stress tensor with the unit
surface normal in that relation leads to an in-
determinagce in the stress tensor. The answer
here is negative because t~& must be a function
of only the fields and the bulk material properties
and not of the orientation of a body surface and
because the orientation of the body surface (and
hence n) is arbitrary. The second question is
whether an addition to the stress tensor via one
of the transformations discussed in the preceding
paragraph could be continuous at every surface
inside, at, and outside a body surface and so
produce no affect on the boundary condition (3. 11)
while still being a part of the stress tensor. It
is clear that such an addition to the stress tensor
would be unobservable and so should be excluded
from the definition. The way to eliminate these
null stresses, as they may be called, is to define
the total stress tensor in some simple reference
state. We choose a vacuum for this purpose and
define the total stress and momentum density of
a vacuum to be, respectively,

f, &
——m; &

(vacuum),

g; =@0(R&&B), (vacuum).

Since our general definitions (3. 8) and (3. 9) re-
duce to these for a vacuum, we conclude that the
quantity in Eq. (3.8) is the momentum density and
the quantity in Eq. (3. 9) is the total stress tensor.

We may now interpret the total spatial frame
stress tensor of Eq. (3. 9) as the total force per
unit area acting in a direction determined by the
first tensor index on an imaginary surface, fixed

in the laboratory frame, whose normal is deter-
mined by the second tensor index. Alternatively,
we may interpret the total stress tensor as the
total true momentum in a direction determined
by the first index flowing per unit time across a
unit area of a surface fixed in the laboratory
frame whose normal is determined by the second
index. This leaves one severe problem. If mo-
mentum transfer from an electromagnetic field
to a material body or from one material body is
being considered, the surface of most interest
for the transfer of momentum is the body surface
which will, in general, be a moving deforming
surface when viewed from the laboratory frame
of reference. Clearly, there must be another
total stress tensor related to momentum transfer
across a body surface which will be of equal im-
portance to the one defined by Eq. (3. 9).

IV. MATERIAL-FRAME CONSERVATION LAWS

In this section we will transform a general con-
servation law from the spatial frame to the ma-
terial frame. In the process we will establish a
relation between the flow in the spatial frame of
some conserved quantity to the flow of that quan-
tity in the material frame.

Let d be the density in the spatial frame of a
conserved quantity and f be the corresponding
flow of that quantity. They satisfy the conserva-
tion law

(4. 1)

for a surface fixed in the spatial frame whose
unit normal is n.

In order to transform the conservation law to
the material frame we use the spatial equation of
continuity

(4. 3)

where d/dt represents the material time deriva-
tive (X held fixed), to eliminate the spatial time
derivative from Eq. (4. 1). The result is

——(Zd) + (f, —i d), , = 0. (4. 4)

Using the chain rule of differentiation leads to

—(Jd) + JXr,q(f) —ijd),» = 0. (4. 8)

Use of the Euler-Piola-Zacobi identity

and are defined such that application of the pill-
box argument to this equation yields the jump
condition

(4. 3)
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(JX» J)» ——0

allows Eq. (4. 5) to be rewritten

—(Jd) + [JX»,&(f&
—x&d)],» ——0.

(4. 6)

(4. 7)

V. MOMENTUM CONSERVATION IN MATERIAL FRAME

We now apply the transformation formulas of
Sec. IV to the spatial frame momentum law of
Sec. III. By Eqs. (4. 8)-(4. 10) the material-
frame momentum density,

If we now define the material-frame density of
the conserved quantity by

D=Jd (4. 8)

and the material-frame flow of the conserved
quantity by

E» = JX»,-)(f) —i~d), (4. 9)

Eq. (4. 7) becomes the corresponding material-
frame conservation law

G; = Jg, = p i; + e 0J(E x B), , (5. 1)

and the material-frame (or body system) total
stress tensor,

T'a» = JX»-„(t~, +. g;i.,)

= JX», q [t ( q + 8) P, + m, i+ e 0(@x B),xq ], (5. 2)

satisfy the momentum-conservation law in the
material frame

dD

dt +Fr,r = o (4. 10}

dG;
dt

—T;~~ = 0. (5. 3)

If the pill-box argument is applied to the last
equation, a jump condition on E~,

[F» )N» —0, (4. 11)

f~=f, —xid, (4. iS)

the formula (4. 12) and definition (4. 9) may be
used to transform the material-frame jump con-
dition (4. 11) to a spatial frame jump condition

tf, ]n~ = 0 (4. 14)

applying to a moving deforming surface.
Note that forming the scalar product of Eq.

(4. 9) with N»dA and using Eqs. (4. 12) and (4. 13)
leads to

F„N„dA= f,.n~ da, (4. 15)

a, quantity invariant to the deformation transfor-
mation. From Eq. (4. 8} and the meaning of the
Jacobian as a ratio of volume elements we have

DdV=ddV (4. 16)

as another invariant of the transformation.

is obtained across a surface fixed in the material
frame. The moving body surface itself is the
most important example of such a surface. Here
N is the unit outward normal to an element of
area dA of the surface referred to the material
frame. It is related to the unit vector n normal
to an area element da on the surface containing
the same matter points referred to the spatial
frame by

dA
nj ——JX~,.N~ —,

da

a form of Nanson's formula. ' If we define the
spatial frame measure of I'~ by

The plus sign in the first form of Eq. (5. 2) in
comparison to the minus sign in Eq. (4. 13) re-
sults from the convention of stress tensor signs
seen in Eq. (5. 3) and mentioned in Sec. II. The
general jump condition, Eq. (4. 11), yields a
total stress tensor jump condition,

[T,~]N» = 0 (5. 4)

for a surface, such as the body surface, fixed in
the material frame. Such a surface when viewed
from the spatial or laboratory frame may be a
moving def orming surface.

Following Eq. (4. 13) we define the spatial
frame measure of T~~ by

B — Lt;; -=t&&+g;x&

= t ~(, +g(P~+ m(~+eo(ExB)(x, (5. 5)

From the general jump condition (4. 14) we obtain

[t s, ]n, =0 (5. 6)

as the total stress tensor jump condition at a
surface moving and deforming in the spatial frame.
This is the desired generalization to the boundary
condition (3. 11) and t; J is seen to represent the
momentum flow across a moving, deforming sur-
face in the spatial frame. The arguments of Sec.
III concerning the uniqueness of t~& may now be
seen to apply to t;, through its defin. ition (5. 5).

VI. ASYMMETRY OF TOTAL STRESS TENSOR

The statement that angular momentum conser-
vation requires the total stress tensor to have
interchange symmetry on its two tensor sub-
scripts occurs in many works on continuum me-
chanics. What is left unstated is that this is true
if the material continuum is represented only by
the center of mass position x(X, t). We will show
in this section that the total stress tensor repre-
senting a crystal having N particles per unit cell
and thus needing N-1 vector internal. coordinates
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y
" as well as the center of mass position x need

not be symmetric even though angular momentum
is conserved.

The tensor whose symmetry must be considered
is t~& since it, in contrast to t, ~, represents the
flow of momentum across a surface fixed with
respect to the coordinate system to which the
momentum components are referred. Because
the last two terms in its definition (3. 9) are man-
ifestly symmetric we need consider only the first
two terms. We begin by considering t,'& defined
in Eq. (2. 17). By arguments similar to those in
the preceding paper ~ we may express the stored
energy per unit mass, Z, as

Z=Z(&"„,Esc), (6. 1)

where

1
E»»C 2 (+J»»+J C 6BC ) (6. 2)

~A +j y Ay/ Y A (6. 3)

are rotationally invariant measures of the finite
strain and the internal coordinates, respectively.
Y "A is the value of the vth internal coordinate in
the natural state of the crystal and is introduced
into Eq. (6. 3) to make I'"„vanish in the natural
state. Equation (2. 17) now becomes

aEAC eZ
'&~=~'~' e

"'
az

, ar" aZ
+ u

I' fixed +5 B ~A ECD fired

„eZ BZ
jaB i,c '~'&" r t» j p++», B P 3» souBC i I D B ECD B ECD

(6. 4)

where

r~i, =-P&g,BXi,C ~~BC 1D

(6. 6)

is a symmetric portion of the stress tensor. The
equations of motion of the internal coordinates, ~

az I

u e ~ Tu 'up) 0
,A er"

A ECD
(6. 6)

can be solved for the stored energy derivative,

-1 u uii Tv
~ ~I u ~ ~ ~kxB,k ~ yk XB&k ~

B IECD

Elimination of this derivative from Eq. (6. 4) now

yields

(6. 7)

tv =t»»++»~» P P J» 3'»~ (6. 8)

with the use of Eq. (2. 7). This may be substi-
tuted into the expression for t~»», Eq. (3. 9), with
the result

t ~, = t r, + (8; p, + p, 8,) + m»» —px, x,

(6. 9)

An examination of this expression for t~& shows
that all parts of it except the last term are sym-
metric upon interchange of the tensor indices.
The last term is asymmetric causing the total
stress tensor t&~& to be asymmetric. It is ap-
parent that the asymmetry results from the pres-
ence of the N- 1 vector internal coordinates.

Because of the presence of the second (material)
tame denvatzve zn that term, thzs term wall be
very small for frequencies well below the reso-
nances of the internal coordinates. In this low-
frequency regime the total stress tensor becomes
symmetric.

Antisymmetric total stress tensors have been
shown before to arise from the presence of in-
ternal structure, namely Cosserat continua pos-
sessing directors and coupj. e stresses. Since
our antisymmetric contribution vanishes in the
low-frequency limit, it does not have as its ori-
gin a couple stress since the latter would remain
finite at zero frequency. Couple stresses
would appear in our theory if we went to the next
order of derivatives, i. e. , if we included the
effects of wave- vecto r dispers ion.

In summary, we have shown by the arguments
of Sec. III that t~& is the total stress tensor rep-
resenting momentum flow across surfaces fixed
in the laboratory or spatial frame. We have now

shown that this tensor is asymmetric. We demon-
strated in the preceding paper that the closed
system of a dielectric crystal and the electro-
magnetic fields, which is represented by this
total stress tensor, conserves angular momen-
tum. Finally, we pointed out that these two condi-
tions can apply to the same system because the in-
ternal coordinates, which are needed to account
for the various modes of internal motion of the
crystal, can carry angular momentum. This is a
generaL conclusion, applying to all dielectric crys-
tals.
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VII. APPLICATION TO ANGULAR MOMENTUM FLOW

It is apparent that the line of argument of Secs.
III and IV can be applied. to other conserved quan-
tities to obtain correct identification of the flow
of that quantity and jump conditions that the flow
satisfies, If we begin from the angular momen-
tum conservation equation found from the equa-
tions of motion as in the preceding paper~ or
from the conservation law involving the canonical
quantities found directly from the Lagrangian,
these arguments lead us to identify the total
angular momentum density co in the spatial frame
as

VIII. APPLICATION TO ENERGY FLOW

+(&/2u&)B B+VZ

and to &densify the flow of energy as

(a. i)

If the arguments of Secs. III and IV are applied
to the energy-conservation equation, we are led
to identify the energy density in the spatial frame
of the dielectric crystal plus electromagnetic
field as

Zv Z'pdx dx 1 I „dy dy8'=- ~ p—' —+— p"—' — + &c E- E
dt dt 2 dt dt

dx~ =xx p—+e ExB +l
dt (v. i) 1&x dx 1~ „dy" dy"

where 1. is the angular momentum density resi-
dent in the internal motions, —(f';„+6; p,); + (&/p ) (E x g), . (a. 2)

„(p dV.

) (7. 2)
These quantities satisfy the spatial frame energy
conservation equation

and to identify the flow of angular momentum
k~, as

aw—+8 . . =0.
at

(a. 8)

L — ' L= k x ~ —~
g, gxpt gg, (7. 8)

These quantites satisfy the spatial frame angular
momentum conservation equation

From this equation is obtained the jump condition
on the energy flow across a surface fixed in the
spatial coordinate system,

[S~]n~ = 0. (a. 4)
8(dg-+ k;), —-0. (7. 4)

From this equation is obtained the jump condition
across a surface fixed in the spatial coordinate
system,

By the reasoning of Sec. IV the jump condition
on the energy flow across a surface fixed in the
material coordinate system is

[S',. ]n,. =0,

where
[k ~, ]n, =0. . (v. 8}

=$ —Rx;

[ks, ]n, = 0, (v. 8}

where

L dx ~ ~ ~

= —~.a, , xI ~,&
— x + p—+ ~OK x B x .t dt (7. 7)

For a surface fixed in the material coordinate
system the jump condition by the arguments of
Sec. IV becomes

= —(f'„+h, P, )x; + (1/po)(Ex B),

—[-';e,E E+ (1/2p, ) B B]x, (a. 8)

The flow oi energy S~ of Eq. (a. 2) (or the anal-
ogous quantity 5 relevant to a moving body sur-
face) includes both mechanical and electromagnetic
energy. The division between the two types is
indistinct, however, because terms such as
—g; P,.x; contain both electromagnetic fields and
mechanical variables.
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