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We formulate an ab initio long-wavelength Lagrangian theory of electrodynamics of elastic pyroelectrics. A
consistent set of constitutive relations and equations of motion of both the matter and electromagnetic field

are derived. The theory applies to pyroelectrics, dielectrics, and piezoelectrics of any symmetry, any degree of
anisotropy, any level of structural complexity, and any order of nonlinearity. All long-wavelength modes of
mechanical motion of the crystal, which include the center-of-mass motion and an arbitrary number of
internal motions, are considered. Discussions of the equations of motion, the conservation laws, the stress

tensor, the boundary conditions, and the meaning of the natural state of the crystal are presented. In

particular, we show that total angular momentum is conserved even though the properly defined total stress

tensor is not symmetric.

I. INTRODUCTION

Recently we developed an ab initio Lagrangian
theory of electrodynamics in elastic dielectrics. '
The theory applies to crystals having any symme-
try and degree of anisotropy, having any number of
particles (ions and electrons) per unit cell, and
having nonlinearities of any order in their constitu-
tive relations. The theory, which applies to wave-
lengths long compared to unit-cell dimensions, is
well suited to the study of interactions of electro-
magnetic and acoustic waves in crystals.

Application of the theory to the photoelastic in-
teraction led to the prediction that the independent
elastic variable relevant to this interaction was the
displacement gradient (the sum of the strain plus
rotation), not the strain as long believed. This
prediction was amply verified. ' Application of the
general theory to acoustically induced optical har-
monic generation demonstrated the usefulness of
the theory in predicting indirect contributions to
the over-all effect. Three two-step and two three-
step indirect contributions, each wave-vector de-
pendent, were found in addition to the direct inter-
action of the several waves.

In this and an accompanying paper' we turn our
attention to materials possessing a spontaneous
electric dipole moment. If the direction of the mo-
ment cannot be reoriented, they are called simply
pyroelectrics; the subclass of pyroelectrics whose
moment can be reoriented are called ferroelec-
trics. This work applies to either type. In addi-
tion to the spontaneous electric moment a sponta-
neous electric field may also be present. How-
ever, under typical laboratory conditions an ex-
trinsic charge collects on the crystal surfaces so
as to cancel the spontaneous electric field. Weak
conductivity can also contribute to this cancelling

process. Nevertheless, we will include the possi-
ble existence of the spontaneous field in our treat-
ment.

Qur interest is directed at determining whether
the spontaneous electric moment or field will lead
to indirect contributions to either linear elasticity
or piezoelectricity. We further wish to find out
whether rotations, in contrast to strains, will play
a role in any such indirect effects. Toward this
end we find it advantageous to set up the theory in
a general way that includes all levels of nonlinear-
ity. We will then specialize to linear elasticity
and piezoelectricity in an accompanying paper. '
In further papers we intend to apply the results of
this paper to various nonlinear acoustic-wave-
electromagnetic-wave interactions in pyroelectrics.

The treatment in this paper is based on our pre-
vious paper' on dielectrics and most of the justifi-
cation of the approach will not be repeated here.
Nevertheless, we will attempt to make the present
treatment as self-contained as feasible.

Briefly, the organization of the paper is as fol-
lows: From the microscopic discrete position co-
ordinates of the particles, continuum coordinates
consisting of the center-of-mass position and a set
of internal coordinates are defined (Sec. II). The
total Lagrangian is then constructed in terms of
these coordinates and the vector and scalar poten-
tials which characterize the electromagnetic field
(Sec. III). The total Lagrangian consists of the
vacuum electromagnetic field Lagrangian, the mat-
ter-field interaction Lagrangian, the kinetic ener-
gy, and the stored energy of the matter. The latter
is required to satisfy invariance under displace-
ments, rotations, inversions, and crystal group
operations. The Lagrange equations then yield the
Maxwell-Lorentz electromagnetic equations (Sec.
IV), the center-of-mass motion equation (Sec. V),
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and the internal coordinate motion equations (Sec.
VI). Momentum, angular momentum, and energy
conservation are presented briefly in Secs. VII-IX,
respectively. The form that the sources of energy,
momentum, and angular momentum take in the
presence of external fields are presented in Sec. X.
Boundary conditions on all the fields are given in
Sec. XI.

II. CRYSTAL COORDINATES

The position of a particle (ion or electron) of
type o(, having a charge e, is x" (t). The index n
has three integral components that name the primi-
tive cell n (the smallest unit of structural repeti-
tion). The particle type index a has values from 1
to N For .long-wavelength phenomena (wavelengths
large compared to primitive-unit-cell dimensiof(s)
each discrete particle sublattice can be replaced by
a continuum, giving a manifold of 1V continua to
represent the crystal. In so doing the particle type
index n is retained as a sublattice index but the cell
index n is replaced by a continuous variable X which
rides with the mass point, names it, and is called
the material coordinate (vector). Thus

u —=x —X. (2. 5)

In place of the x coordinates we find it more
convenient to use a complete set of position coordi-
nates which consist of the center-of-mass position
x(X, t) and internal coordinates yr" (X, t) (p, =1, 2,
.. . , N —1) which are displacement invariant. We
define them by

N

y (X, t)=g U x (X, t) (2. 6)

x (x, t) =g v-y" (x, t), (2. 7)

where

components XA of the center of mass equal to the
latter's spatial position components x, when the
body is in its natural state, that is, a homogeneous,
time-independent state free from applied external
influences. We also define the natural state as
having no spontaneous strain or total stress. With
this definition of X the ordinary displacement vec-
tor u used in the acoustic propagation equation, for
instance, is defined by

x" (t)-x (X, t}. (2. 1) N

P U((uV0(v 6( v (2.8)
In the continuum limit cell sums become integrals
over the body with respect to the material coordi-
nate, i.e. ,

N 1
VotP UPB gotB (2. 9)

F F( (tO —„(('"((x- tl) dX, ,
n

(2. 2) y '(X, t) -=x(X, t) . (2. 10)

where 0 is the primitive-unit-cell volume. In
terms of the continuum position coordinates x the
center-of-mass position is

Utt 0! gP0 (2. 11)

Displacement invariance of y
" (F 40) and its lack

for p, =0 require

N N

'-=~ n

( ) Qp x (X t)
Qt=1 P

(2. 3)

(2.4)

Summing Eq. (2. 9) over P with the use of Eq.
(2. 11) yields an alternate statement of displace-
ment invariance,

Throughout this paper we will retain the distinc-
tion between the material coordinate X of the cen-
ter of mass and the spatial coordinate x of the
center of mass. To facilitate this distinction we
will use upper case Latin letter subscripts to de-
note components in the material coordinate system,
e. g. , XA, and lower case Latin letter subscripts
to denote components in the spatial (laboratory) co-
ordinate system, e. g. , x, . This notation serves to
remind us that under a body rotation, the coordi-
nates x, change but the "names" XA of the particles
do not. Though we choose each of these coordinate
systems to be Cartesian, we regard their transfor-
mations as independent. When this theory is ap-
plied to the calculation of a specific problem, it is
then convenient to make these two coordinate sys-
tems identical and to make the material coordinate

V~0=1 (2. 12)

p V"
a=& P

(2. 14)

The superscript T on yT", standing for total, is
used to indicate that these internal coordinates
possess a constant or spontaneous part Y" in addi-
tion to a part y~ which may vary because of some
external influence, i.e. ,

Ttt lt
Xi ~i A~A + Xi (2. 15)

The special case p, =0 reduces to Eq. (2. 5)

Equations (2. 3), (2. 6), and (2. 10) together imply

U =p /p (2. iS)

Substitution of Eq. (2. 13) into Eq. (2. 8) yields
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x —5 ~X~+u;

when we use Eq. (2. 10) and identify

Y=X, y=u. (2. &7)

Z, =~(Z, f) A(z, f) -q(z, f)4(z, f),
where

The presence of the spontaneous parts Y" is neces-
sary to obtain a spontaneous electric dipole mo-
ment.

Besides satisfying displacement invariance the
.internal coordinates can be chosen to retain the
diagonality of the kinetic energy. Thus

q{z, f) =-P q 6(z —x (X, f)}dV,

j(z, f)-=gq (X, t)5(z —x {X,t)}dV,dt

q'=-e /n .

(3.8)

{3.9)

(3. io)

N

p V"V "'=,»'O'",

(2. 18)

(2. 19)

In either of the forms (3.6) and (3.7) the interac-
tion Lagrangian contains multipoles of all orders.
Since we wish to consider a dielectric material
which contains no free charge, i.e. , no monopole,

(3.11)

The total Lagrangian can be expressed in terms
of a Lagrangian density in the spatial coordinate
system or one in the material coordinate system:

do= i Z dV. (3.1)

If we multiply E(I. (2. 19) by U", sum over v, and
use Eq. (2.9}, we obtain the useful relation

(2. 20)

The newly introduced m" can be found from Eq.
{2.19) by setting i), = v.

III. TOTAL LAGRANGIAN

Z~ =Q q' yr'(X, f) ~ ('(x(X, f), f}, (3.12)

while in the spatial frame we find

and since w'e do not wish to consider magnetic di-
pole or electric quadrupole effects' at present, we
expand the functions of x about x using Eq. (2. I).
%e obtain the interaction Lagrangian to electric di-
pole order by using E(I. (3.11) and by remembering
that a total time (or space) derivative can be dis-
carded from the Lagrangian since it cannot affect
the equations of motion. In the material frame we
find

&' = 2'„+&', + Z~ (j = S, M) . (3.2)

Here de and dV are volume elements in the spatial
and material frames. The total Lagrangian con-
sists of the sum of three Lagrangians describing
the field, the field-matter interaction, and the
matter:

where

dx8==E+—xB .
dt

(3.13)

(3. 14)

The mell-known field Lagrangian is expressed in
terms of the vector potential A and the scalar po-
tentia1. 4, regarded as generalized coordinates, by

Z,'=-,'e, fg(z, f)]'- c'[Ii(z, I)]'}, (3.3)

where e is the speed of light in vacuum and Eo is
the permittivity of free space {mks units are used).
The electric field E, which may contain a constant
spontaneous part E~, and the magnetic induction B
are expressed as usual in terms of the potentials by

(3.4}

In these equations the prime on the summation
symbol indicates exclusion of the p, =0 term and

ls given by

q' —= gq'V' (3. iS)

Neutrality of the unit cell, E(I. (3.11), implies
q =0. Note that we use a Greek letter early in the
alphabet to denote a charge density associated with
the position x and one late in the alphabet to denote
a charge density associated with the internal co-
ordinate y ". The Jacobian of the transformation
from the X frame to the x frame is

B=&&A . (3.6) Z(X, f):—det ' =detx, ~,
A

(3.16}

The interaction Lagrangian is given by

(3.6)

where the comma denotes differentiation in the
last expression.

The matter Lagrangian consists of the kinetic
energy, as expressed in Eq. (2. 18) minus the
stored energy,
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&v=&p + &~ p~ ~ (3. 17)

where Z is the stored energy per unit undeformed
mass of the crystal. The form that 2 may take
consistent with the conservation laws has been dis-
cussed in detail previously. ' We will only sum-
marize those arguments here.

In general, Z could be a function of all the co-
ordinates, x and y

~ (p. =1, 2, . . . , N —1), their
first and higher derivatives with respect to X, and
X itself. Momentum conservation requires invari-
ance of Z with respect to uniform displacements in
the spatial coordinate system. Since all y

~ (p. =1,
2, . . . , N —1) and all orders of derivatives of the

y
" and X possess such invariance, Z may be a

function of them. The center-of-mass position x,
however, does not possess such invariance and so
Z may not be a function of it. In the true long-
wavelength limit we need only retain x A and y

"
(p. =1, 2, . . . , N —1). Wave-vector dispersion ef-
fects, such as optical or acoustic activity, which
are lowest-order corrections to the long-wave-
length limit, require the retention of dependence of
Z upon x „sand y „"(p =1, 2, . . . , N —1). Though
the latter can be incorporated into the present for-
malism, ' their physical effects can be distinguished
readily from those, caused by the presence of a
permanent electric dipole moment, which we are
considering here. We thus exclude the latter de-
pendence.

Angular momentum conservation requires invari-
ance of Z with respect to uniform rotations in the
spatial coordinate system. Such invariance is
quaranteed if each of the independent variables of
Z is individually rotationally invariant. A com-
plete set of such variables consists of EAB, A„'
(y, =1, 2, . . . , N —1), X„,and sgn(J) The G.reen
finite strain tensor EAB is defined by

EAB = 2(CAB '5AB) ~

CAB ~ i, AXi, B

Summation over repeated subscripts is implied.
The rotationally invariant internal coordinates
A„~are defined by

=—y; R; (p, =1, 2, ~ . ~, X —1),
where RiA is the finite rotation tensor' given by

iA Xi, B( )BA
-1/2

The sgn(J) variable has values of +1 and —1 for
proper and improper rotations, respectively.

Parity conservation is not a fundamental con-
servation law and its possible violation in crystal
physics has been discussed. ' Nevertheless, indi-
cations are that it is obeyed to a very high degree
of accuracy. Thus, for the purposes of this paper
we will assume its validity. Parity conservation

requires the invariance of Z with respect to inver-
sion (improper rotation) of the spatial coordinate
system. Thus sgn(Z) must be removed from the
set of variables for Z.

We will for simplj. city consider homogeneous
crystals. In the continuum limit, this r. equires in-
variance of Z with respect to arbitrary translations
of the material coordinate system. Thus XA must
be deleted from the set of variables of Z. In the
language of conservation laws homogeneity is
equivalent to crystal momentum conservation.

From the above arguments the functional depen-
dence of Z may be stated as

(EAB, AC') . (3.22)

It is worth emphasizing that by the nature of a po-
tential energy Z may not be a function of any char-
acteristic of an external influence such as a fre-
quency or wave vector.

Since the quantities E» and AcT' are small quan-
tities, it is convenient to expand p Z in a double
power series in these variables. l'he first few
terms are

0 (0, 1) (0, 2) ~~(1 0) u Tv
P ~~ +ABEAB + +ABCDEAB~CD +~ +AAA

~~ (PO) gv T~ Tv ~ (11) u, Tv;+~ HAB A B +~ @ABC A ~BC +

A~ —= Y~ (p=l, 2, . . . , N —1). (3.24)

This leads to the spontaneous value of p Z and
Sp EISA„~having an infinite series of terms. This
can be avoided if we introduce a new quantity

(3.25)

which is the difference of two rotational invariants.
Using Eq. (2. 15) we obtain

A~ = (R;~ 5r~)5is Ye~+A;wy; (3.26)

a result whose invariance is less obvious.
Equation (3.23) can now be reexpressed as

(3. 23)

Now, the stored energy must also be invariant un-
der crystal group operations. Since the terms of
the series of different degree are independent, the
requirement applies individually to the terms.
Since both EAB and Ac' are altered by crystal group
operations, conditions are imposed on the series
coefficients, ' '"'H. Such relations have been
stated before' and need not be repeated here.

The choice of A„asexpansion parameters for
p Z has one drawback. In the natural state of the
crystal, i.e. , when no external influences are ap-
plied to the crystal and all space and time deriva-
tives vanish, E» ——0 but A„has a spontaneous
value of
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p I&(EAB& A&; ) = ' KABEAs + '
KABCDEABECD

(0, 1) (0, 2) VxB 1 aE eP - dx p———=—+V X PX—=-j
dt

(4.4)
(1,0)~t pt + ~ (2, 0)gu upppv+ A A+~ AB A

e eZ' 82' a eZ'
st 8(sq;/st) sq; sz& sq, , ' (3.28)

where z is the independent variable. In the mate-
rial frame the Lagrange equation for the general-
ized coordinate qi is

~gN ~gN ~ ~gN

dt Bq; Bq; BXA eqi A
'

where X is the independent variable. Note that a
material time derivative is given by

(3.29)

+ ~ +ABC AEBC +V ~ (1,1) u.

(3.27}
Expressions for the new expansion coefficients
' '")K in terms of the old expansion coefficients
' '"'H can easily be found from Eqs. (3.23), (3.25),
and (3.27) but, since they will not be needed, they
will not be presented here. The stored energy is
now expanded in rotationally invariant variables
which vanish in the natural state. The constant
term in p Z which cannot contribute to the equa-
tions of motion has been dropped.

The Lagrange equations can be written in either
the spatial or material frames depending on which
Lagrangian density in Eq. (3.1) is used. In the
spatial frame the Lagrange equation for a general-
ized coordinate q, is

with the aid of Eqs. (3.2)-(3. 5) and (3.13). The
right-hand side of Eq. (4. 4) is the dielectric or
bound charge current in the electric dipole approx-
imation.

We see from Eqs. (4. 1) and (4.4) that to obtain
the Maxwell equations in the conventional form we
must define the electric displacement vector D and
the magnetic field H by

D=—EpE+P (4. 5)

B ~ dxH= —-Px—,
pp dt

(4.6)

which are functions, of course, of z and t.
The two remaining Maxwell equations,

VxE+—=p
at

V' B=0,

(4. 7)

(4.8)

are direct consequences of the definitions, Eqs.
(3.4) and (3. 5), of the E a.nd B fields in terms of
A and 4, the basic Lagrangian coordinates.

p gi- pX—+ —XB +p ~ E,.

V. CENTER-OF-MASS EQUATION

The material frame Lagrange equation (3.29) for
the center-of-mass position x yields

dF ~ 8F . aF—=F—=—+i idt et ' ex,.
(3. 30)

dx
+p B,i + TiA, A & {5.1)

IV. MAXWELL-LORENTZ EQUATIONS

The Lagrange equation (3.28) for the scalar po-
tential 4, regarded as a generalized coordinate,
yields

with the aid of Eqs. (3.2), (3.12), (3.1'7), and
(3.27). Here

(5.2)

D
&pV E= —V ~ P=—q (4. 1) and the Piola-Kirchoff mixed-frame stress tensor

T,A is defined by
with the aid of Eqs. (3.2)-(3. 5) and (3.13). The
right-hand side of Eq. (4. 1) is the dielectric or
bound charge in the electric dipole approximation
and the polarization P is defined by

} +. „y"(x,t)
J(&& t) s=x(x, &)

(4.2}

Ii—= 5iA~ q FA.s ~I u u (4. 3)

The Lagrange equation (3.28) for the vector po-
tential A, regarded as a generalized coordinate,
yields

Note that the polarization P can contain a constant
part, the spontaneous polarization P~, given by

p 8+
iA

i, A
(5. 3)

With the use of vector identities and Eq. (4. 7) the
center-of-mass equation (5. 1) can be reexpressed
as

p T,„„&~(p ~ V}E(—XB),. .

dx—x(p - V)B
dt

(5.4)

This equation can be transformed to a spatial frame
equation by multiplying by 7 ', defined in Eq.
(3. 16}, and rearranging terms. With the use of the
Euler-Piola- Jacobi identity,
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(J' x, „),-0,
it is easy to show that

(5. 5)

(5.6)

J —=—+V'X PX—+ P,.— (5.9)

Equation (5.4) can then be put in the spatial frame
form

where the local stress tensor t',
&

is defined by

BQ
t;', =—PXg B (5. 7)

+i,B

the y indicating that the y" variables are held fixed
while taking the derivative. The symbol

(5.8)

is used as an abbreviation for the mass density as-
sociated with the single continuum defined by the
center-of-mass motion x(X, f). We also use the
identity'

of total momentum density is zero. The total mo-
mentum consists of both matter momentum and
electromagnetic field momentum.

The change of momentum of the center of mass
is given by Eq. (5. 10). The left-hand side of this
equation can be rearranged using a well-known
identity to be

s (px, ) s (px, x, )
et

+
ez,

(7. I)

The body force terms of Eq. (5. 1O) can be regarded
as momentum transfer terms between the matter
and field. Corresponding terms of opposite sign
should thus appear in the momentum equation of
the electromagnetic field.

The latter can be found by forming the vector
product of Eq. (4. 7) with epE and the vector prod-
uct of Eq. (4. 4) with B and adding the results.
After use of Eqs. (4. 1) and (4. 8) to reexpress the
terms this yields

S(e E xB); n, g)' —m;, , = —q E; —(j xB}, , (7.2)
px, =(t~&&+h)P, }z+q E., +(j xB)& . (5. 10}

Note, however, that we have left the inertial term
expressed as a material time derivative. By sub-
stituting the dielectric charge and current from
Eqs. (4. 1) and (4. 4) we have put the body force
terms into the Lorentz force form.

VI. INTERNAL-MOTION EQUATIONS

The material frame Lagrange equation (3. 29)
for the internal coordinate y

"
(p, 40) yields

0
u-ru .gm y] —-q u; -RcA ~pu

A
(6. 1)

with the use of Eqs. (3.2), (3.12), (3.14), (3. 17),
(3.20), (3.25), and (3.27). In the natural state
(NS) of the pyroelectric crystal E =E and R,.„=5,A.
Equation (6. 1) then yields

NS
y. S ~P ~ (10)

q E~ =
~~u & A= ' &A~~A ~

A
(6.2)

v sp+ sp~m" j"; =q"8; —R;A ~u +5;A
A A

where

(6.3}

v v dx
g =-E +—xB,

dt
(6.4)

E =—E —E

VII. MOMENTUM CONSERVATION

The momentum-conservation equation states that
the sum of the partial time derivative of the total
momentum density and the divergence of the flow

We may subtract Eq. (6.2} from Eq. (6. 1} in order
to remove the constant terms from Eq. (6. 1). Thus

t„=-t„+S,P, +m„—pi, g,L — 3) (7 5)

The sign change of this quantity from that within
the divergence is chosen to give the stress tensor
the conventional sign. We show in the accompany-
ing paper that t, ~ is asymmetric. The meaning of
the antisymmetric part will be interpreted in
Sec. VIII.

It is usually assumed that the natural state (NS)
of a perfect crystal is a stress-free state. If we
adopt this viewpoint, we find

(I )y) = f )y+E()Pg) + EpE) E) pepE~ Ere)) = 0L NS S S S S S & S S

(7.6)
where the spontaneous elastic stress tsj is

S (0, 1)' &AB&iA&;B (7. 7)

We are not concerned with temperature-dependent
effects in this paper. It should be noted, however,

with the Maxwell stress tensor defined by

m;; = EpE,E, + B,B,/ppp (&pE~E .p +BQ~/p p) 5

(7. 3)
Since the internal coordinates y~u are displace-

ment invariant, they do not carry any momentum.
It is thus sufficient to add Eqs. (5. 9) and (7.2) with
the use of Eq. (7.1). This yields the spatial frame
statement of momentum conservation

8 ~ 8 0 0—[Px, + ep(E x B),]+ (Px,x& —t;', —o;P, —m;, ) = 0 ~

(7.4)
We show in an accompanying paper that the quan-

tity included within the divergence in this equation
may be properly identified as the total stress ten-
sor t, &

in the laboratory or spatial frame,
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that the stress-free condition leads, in general, to
a different natural state at each temperature. The
effect of Eq. (7. 6) is to fix the spontaneous elastic
stress in terms of spontaneous electric field
stresses. If E; =0, so also will t;j=0.

Equation (7. 6) is in the spirit of a boundless me-
dium, as considered up to this point. For a finite
body possessing a spontaneous electric field a
spontaneous Maxwell stress will exist outside the
body. Continuity of the scalar product of the unit
normal and the total stress tensor at the boundary
can lead to a different condition for the natural
state than Eq. (7. 6). This will be discussed in
Sec. XI.

VIII. ANGULAR MOMENTUM CONSERVATION

The angular momentum conservation law may be
found by combining contributions from the center-
of-mass motion, each of the internal motions, and
the electromagnetic field. The center-of-mass
contribution is found by forming the vector product
of the equation of motion IEq. (5. 10)] with x and by
using Eq. (7. 1) with the result

8 ~ 8
~...x, —(px, )+ (px„x,)

BZ f

= e...x,(t,', +h,P,),+q'(xxE), +[x&&(j'&&B)], .

Og

The electromagnetic field contribution is easily
found by forming the vector product of the electro-
magnetic momentum equation (7.2) with x and re-
arranging the left-hand side in the manner done to
Eq. (8.2} with the result

—Ieoxx(ExB}],. ( e„,x, m»)flak j kt

= —q (xxE),. —[xx(j xB)], . (8. 7)

1 ~, T„apOg
g~fjk~ Jj ~ T +t j ~Z gy

(8.8)

This equation has the conservation law form if we
can show the right-hand side vanishes. We do this
by using the rotational invariance of Z discussed
in Sec III

Consider an infinitesimal rotation of the spatial
coordinates,

We now add the angular momentum contributions
represented by Eqs. (8.2), (8.6), and (8. 7) to ob-
tain

1

8 ~ dx 9
x& p

—+eoE&&B +l, + (f, x, —e,j,xjt„)
aZg

This may be rearranged into
(8. 1)

Zf Zi + 5zt'f j3Z j (8.9)

where the brackets denote antisymmetric inter-
change symmetry. This induces changes in the
spatial vectors yT' and x, z of the form

= [ „e, (xt'„S+,P,)],—e,„(ta,+BaP, )

+q (x&&E), +[x&&(j &&B)];, (8.2)

because a spatial frame time derivative of x is zero
since z=x is held fixed.

The contribution from the internal motions is
found by forming the vector product of the equation
of motion (6. 1) of the internal coordinates with y

~

and multiplying by J ' to obtain

Xf g Xf g+ '5zff j3Xj g ~

(8. 10)

(8. 11)

Rotational invariance requires the stored energy to
obey

(8. 12)

A first-order Taylor series expansion in all the
arguments on the left-hand side leads to

j j
BZ Tu

rv 5ztk, g3j J + 5ztk. j3xj,e
eyk Xk, B

1 Tu&pZ
ijky j g Tu (8.8)

Since 5ztk j3 is an arbitrary infinitesimal antisym-
metric tensor, we must have

where
~

~

BZ Tu &Z
Tu y j3 +

g Xj3&B
Xfk, B

(8. 14)

dyT'
1 = puyTu y (8. 5)

sum Eq. (8. 8) over p, from 1 to N —1, rearrange
the left-hand side by a well-known identity, and
use the definition of the polarization, Eq. (4. 2).
The result is

p' -=m'/J . (8.4)

We now define the internal angular momentum 1 by
Forming a scalar product of this equation with the
permutation symbol e;,~ and multiplying by —po/P
now yields

1 ~ T„&pg
i jk~ yj g Tu ~f jktk jgy

(8. 15)

with the use of the definition Eq. (5. 7) for tf, This
proves that the right-hand side of Eq. (8.8) van-
ishes and so gives us
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Pfi) =(P &}*+&;;Pa.g=& Jata;- (a. 17)

This can be interpreted as an equation of motion
for the internal angular momentum with the anti-
symmetric part of the total stress tensor acting as
the driving torque.

IX. ENERGY CONSERVATION

To obtain the energy conservation statement we
must add the contributions from the center-of-mass
motion, the internal motions, and the electr omag-
netic field. The center-of-mass contribution is
found by forming the scalar product of Eq. (5.10)
with dx/dt and manipulating the inertial term in a
manner similar to Eq. (7.1). The result is

dx ~ ~ 8xx p —+qpExB +)~ +—E.x) —g.~~x.g~)
—O,

(a. 16)
the spatial frame angular momentum conservation
law. From the reasoning of the accompanying pa-
per we are justified in interpreting the quantity in
the time derivative as the spatial frame density of
angular momentum and the quantity in the diver-
gence as the flow of angular momentum across a
surface fixed in the spatial frame.

It is important to realize that this closed system
consisting of a crystal in interaction with the elec-
tromagnetic field possesses conservation of total
angular momentum even though the tot@i stress
tensor is not symmetric. This results from the
crystal being represented not simply by the center-
of-mass continuum but by a manifold of N vector
matter continua, N —1 of them representing inter-
nal motions. We see in Eq. (8. 16) that there is an
internal angular momentum density and a corre-
sponding flow of internal angular momentum density
produced by these internal motions. The balancing
role played by the internal angular momentum with
respect to the antisymmetric part of the total stress
tensor can be seen by combining Eqs. (8. 15) and

{8.6) and returning the left-hand side of Eq. {a.15)
to the form present in Eq. (8.3). We then get

Equations (9.1), (9.2) for each ii, , and (9.3) are
added to obtain the total energy equation. All terms
on the right of those equations cancel one another
with the exception of

BZ 8pZ 8till J+pg hi Tz + (pZxi) ' (9'4)
By,." Bt Bz,

Hence we obtain

Bg BS,
BI,

where

{9.5}

2 7tt 2
W—= pp —+Q —,p" + geoE +Bm/2ti. o+ pZ,

(9.6)

8;=— 2p —5i;+g 2p~ 5i&+pZ5;&

—t~ii —giP~ x;+(ExB/bio}~, (9.7)

which states energy conservation in the spatial
frame. By the arguments of the accompanying
paper we may interpret %' as the energy density
and S& as the energy-flow vector.

At first glance it appears that Eq. (9. 5) is sensi-
tive to an arbitrary constant which could have been
inserted in the definition Eq. (8. 27) of p Z, the
stored energy. However, the two terms in pZ in
Eq. (9.5) can be reexpressed as

BPZ BpZx) p ~B Bpxy p

BI, Bz& Bt Bz&

Bp Z x~Bp Z

Pp
(9.8)

Any constant in p Z clearly disappears from the
second pair of terms because of the derivatives
acting on it. The first pair of terms, whose coef-
ficient contains the constant in question, disappear
because of mass conservation,

adding the results. This yields

8, ~~ B 8 EXB ] . D )

——p — + — —Q, —t, ~
—8;P~ xg (9.9)

= —(t ~q+ 8, P~)», ~ ~ [if E,.+ ( j x B),]xi . (9.1)

Bt 2 dt 82'& 2 dt

~ ru »
=PC' Xg. & PXg 8 rg8$]

{9.2)

The electromagnetic field contribution is found by
forming the scalar product of Eq. (4.4) with —E
and the scalar product of Eq. (4. 7) with 8/bio and

Similar handling of the internal coordinate equation
(6. 1) yields

a condition implicit throughout this work. 7 These
remarks apply here because this theory is nonrela-
tivistic. Were it relativistic, mass conservation
would not be a conservation law separate from en-
ergy conservation, and the theory would be sensi-
tive to the constant term in p Z since it would be
the rest energy of all the mass of the system.

X. CONTINUITY EQUATIONS IN PRESENCE OF
EXTERNAL FIELDS

In some problems it is of interest to consider
certain electromagnetic fields E' and B' acting on
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the body under study as external fields. By this
we mean that the external fields are specified
fields, that we are interested in the action on the
body, but not interested in the action of the body
on the external fields. Thus we wish to ignore the
sources q' and j

'- of the external fields and ignore
the matter equations relating to q' and j'. The en-
ergy, momentum, and angular momentum equa-
tions for the body and its fields will not contain
source terms for these quantities arising from the
action of the external fields on the body.

With this view the energy continuity equation in
the spatial frame can be found by adding Eqs. (9. 1)
and (9.2) (for each p. ), regarded as depending on
the fields E+E' and B+B', to Eq. (9.3). The re-
sult is

gtL
[pi,—+e,(E. xB),] — "=q E;+(j xB'), . (&0.2)

for momentum continuity in the spatial frame in
the presence of external fields. Applying the pro-
cedure to the angular momentum equations yields

xx p +co(Ex B) +1 + (l;im e;,„x,t„m)

=(xx[q E +(j xB )]); (10.3)

for angular momentum continuity in the spatial
frame in the presence of external fields.

XI. BOUNDARY CONDITIONS

The boundary conditions on the four electromag-
netic fields needed for this work are those which
hold at the material surface of a moving, deform-
ing body. Previous discussions have derived the
boundary conditions at the surface of a rigidly
moving body. Even in this simpler situation sig-
nificant disagreement exists. Sommerfeld in his
book on electrodynamics presents a derivation
which shows that the tangential components of the
magnetic intensity H are continuous at the body
surface of a body having no surface currents and
moving at a uniform velocity with respect to a spa-
tial coordinate frame to which H is referred. Moi-
ler, ' on the other hand, asserts that the tangential
components of H —(dx/dt) x D are continuous under
these conditions.

In order to resolve this question and to general-

dx g dy 8
pp + 2p +2EpE + +pZ

~ti dt dt 2(U, p

(«B),
+ pZ5;; —t;; —8;P; x;+ jD, Ee ~

Pp
(10.1)

A similar procedure applied to the momentum
equations yields

ize the result to moving, deforming bodies we have
in an accompanying paper ' transformed the Max-
well equations to the material coordinate system of
a moving, deforming body. The boundary condi-
tions, found very simply in this system, are then
transformed" back to the usual spatial coordinate
system. Our result resolves the disagreement in
favor of the Moiler result and shows that Sommer-
feld's error was in assuming that the material ve-
locity dx/df was discontinuous at the body surface.

The spatial frame electromagnetic boundary con-
ditions that we find" hold at the surface of a di-
electric body moving and deforming with respect
to that frame are

n&& H ——&&D =0, (11.1)

dxnx F+—xB =0,
dt

n [D]=a,
n IB]=0,

(11.2)

(si. 3)

(11.4)

da; =JX~;dA~, (11.6)

which relates vector area elements in the spatial
and material frames. Since

(Sr. 7)da; =n; da, dA~ =N dA,

where N and dA are the material frame (unde-
formed) unit normal and area element and n and
da are the corresponding spatial frame (deformed)
quantities, we obtain the area ratio

da = J[N~(C ')I,~N„]' dA,

where

(C ')„~=X~,X„,

(11.8)

(11.9)

where the brackets here denote the jump in the
quantity contained within,

[y]—pout pan (11.5)

n is the outward unit normal and 0 is the surface
charge density. A surface charge has been in-
cluded since an immobile, extrinsic charge usually
collects on the surface of a pyroelectric in order to
cancel the spontaneous electric field. Qne would
expect that this surface charge multiplied by the
component of the material velocity dx/dt tangential
to the surface would produce a convective surface
current in the H field boundary condition (11.1).
However, we show in the accompanying paper"
that an exactly cancelling term arises in the bound-
ary condition from the BD/&t term of the differen-
tial equation with the result that no surface current
of any kind appears in the boundary condition (11.1)
for a dielectric.

To find the effects of deformation on n and 0 we
use Nanson's formula'
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follows from Eq. (3.19). We also obtain the rela-
tion between the unit normals,

n, =.N~X„,[Nr(C )rMN~]
' (11.10)

by dividing Eq. (11.6) by Eq. (11.8). This expres-
sion relates the deformed normal n, needed in
Eqs. (11.1)-(11.4), to the undeformed normal N.
The deformed state surface charge density cr is re-
lated" to the undeformed state (or spontaneous)
surface charge density Z~ by

Es J 1[N (C-1) N ]-1/2 Zs
QQ

(11.11)

This expression is to be used in Eq. (11.3).
The remaining boundary condition needed is that

for the stress tensor. In the accompanying paper
on the stress tensor the boundary condition on the
stress,

[t,', +8;P, +I;,+co(E B)ri, ]n, =0, (11.12)

X~B~It(t fft ~ + E(,rttP~) + &pEfftEIt 2 CpEII Ep 5tft y)'

=N~4o( oEmEo —oeoE„E„5~o)', (11.13)

is found for a deforming body surface moving at
velocity dx/dt. The brackets here denote the jurnp
in the quantity as defined in Eq. (11.5). If a. sur-
face traction T, could somehow be applied from the
outside to the surface between the two media, it
would appear on the left-hand side of Eq. (11.12).
If such a surface traction is used to represent the
effect of the outside medium on the inside medium,
the stress tensor term for the outside medium in

Eq. (11.12) must be dropped. If the stress tensors
for each of the two media are retained, it is diffi-
cult to conceive of what an extra surface traction
means. The only one applicable to pyroelectrics
that comes to mind is the electric force on an im-
mobile, extrinsic surface charge. However, an
examination of the derivation of the stress boundary
condition in the accompanying paper reveals that
this effect is not an extra surface traction but is
included within the stress tensor effects through the
discontinuity in the normal component of the polar-
ization at such a surface.

Note that the stress boundary condition (11.12)
includes the Maxwell stress tensor which can exist
outside the material body. In particular there is a
nonzero total stress outside the material body in
the natural state if E~ 40. This fact leads us to
reconsider the condition placed on the total stress
by the definition of the natural state. In Sec. VII
we considered the infinite body; here we wish to
consider a finite body. Just as throughout this pa-
per we consider here a homogeneous body. The
question thus is whether a homogeneous solution of
Eq. (11.12) exists for the natural state of a finite
body. Equation (ll. 12) can be reexpressed in the
natural sta.te as

where the superscripts i and o refer to inside and
outside, respectively. Here N is regarded as a
function of its position on the surface. Since it is
well known that there is no electric field which is
separately homogeneous inside and outside a finite,
homogeneously polarized body, it would appear that
there is no desired solution to Eq. (11.13). How-

ever, our objective would be met if a solution
which is homogeneous only inside the body is found.

We thus a.re led to divide the outside electric
field into normal and tangential parts (with respect
to the surface) and use Eqs. (11.2) and (11.3) to
eliminate the outside field in terms of the inside
field. Since only the latter now appears, we can
drop the superscript j. We also denote N„=6»K~.
Equation (11.13) then yields

(11.14)
The most general shape isotropic body which pos-
sesses both a homogeneous electric field and po-
larization interior to the body is an ellipsoid. '
Because of the cubic dependence on N of the first
term on the right-hand side compared to the linear
dependence of the other terms, Eq. (11.14) cannot
be satisfied for such a shape for a homogeneous
t ~. The addition of anisotropy to the problem does
not help. Thus we conclude that no pyroelectric
'eody having a spontaneous electric field and having
all dimensions finite can have a, homogeneous natu-
ral state. A consistent treatment of such bodies
will require inclusion of explicit dependence of the
stored energy on X.

Consider an infinite cylinder of arbitrary cross
section with the spontaneous polarization parallel
to the sides of the cylinder. A consideration of the
depolarization field' yields the trivial solution of
E = 0 and so f jj 0 Hence a homogeneous natural.
state exists for this shape.

Consider next an infinite plate, that is, a body of
one finite (and constant) dimension. A considera-
tion of the depolarization field' yields the relation
inside the plate

E = —eoN(N P ), (11.15)

where N is normal to the natural state surface and
P is allowed to have any orientation, Qutside the
plate E vanishes. If we require t,

„

to satisfy Eq.
(11.14), to be a symmetric tensor, see Eq. (7. 7),
and to vanish when N ~ P =0 which corresponds to
the solution of the previous paragraph, then

t;, =P„N„(Nr;Prr —zP N N, Nr)leo . . (11.16)

Last, we remark that for a finite-sized body in
all dimensions which, because of collected extr in-
sic surface charge or its own small conductivity,
has its spontaneous electric field cancelled there
exists a homogeneous natural state with I, ~j =0.
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