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Light scattering from energy f1uctuations in magnetic insulators
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It is shown that fluctuations in the total magnetic energy of a magnetic insulator will scatter light, leading to
a peak in the scattered intensity around zero energy transfer with a width proportional to the spin-lattice

relaxation frequency, and an integrated intensity proportional to the specific heat.

It has been known for some time' thai fluctua-
tions in the spin density in a magnetic insulator
would scatter light. It is the purpose of this paper
to point out that the same mechanisms that are re-
sponsible for the scattering by the spin fluctuations
couple the light to the total magnetic energy of the
system. This gives rise to a peak in the differen-
tial scattering cross section centered at zero fre-
quency, with a width that can be defined to be the
spin-lattice relaxation time, a line shape that de-
pends upon the details of the coupling, and an in-
tensity that is proportional to the specific heat.

The mechanism for this peak is easily under-
stood physically. When the magnetic system is
weakly coupled to the lattice, its energy will not
be a constant, but will fluctuate about the mean de-
termined by the lattice temperature. If we define
a magnetic temperature such that the energy of the
magnetic system is the conjugate thermodynamic
variable, we can regard this temperature as a fluc-
tuating variable. These temperature fluctuations
will have a negligible direct effect on the dielectric
constant of the system. The dielectric constant is
affected by changes in the local structure of the
spin system, through the spin-orbit coupling, so
that

6a. e(x) =, 50»(x),so'(x} (l)

where O, (x) are the expectation values of some
combination of spin operators 0, (x) characterizing
the spin configuration around the point x. 50»(x)
will depend upon the temperature of the spin sys-
tem, so that there will be an indirect variation of
the dielectric constant given by

a& '
(2)

sO'(x)

with a width that can be used as a definition of the
spin-lattice relaxation time, assuming that the cou-
pling coefficients do not vanish. The coupling co-
efficient may be written more explicity, using

»» o, (x)
= P'„(56, (x)&R), (2)
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(4)

where (d =(d2-&, K=K2-K„&&, &2 are the polar-
ization vectors of the incident and scattered light,
n~, n2 are the respective indices of refraction, and
V is the volume of the crystal. ( ) denotes a ther-
mal average. The tensor M e(K) gives the depen-
dence of the polarizability on the spin operators.
To terms of second order in the spin operators we
have'

M"(K) =pe*"»M,", (sa)

where 6X is the fluctuation in the energy. The op-
erator 0, (x) will generally involve spine located
within a few lattice sites of x. In this case, one
can expect the correlation function in (2} to be pro-
portional to the specific heat C„. Since AT„~ 53C/

C„, and (5K(o) 53C(o))~C„, the integrated intensity
of the scattering due to the energy fluctuations will
be proportional to C~.

These considerations may be put on a rigorous
microscopic basis.

The differential scattering cross section for the
scattering of light from a field E~, wave vector K„
frequency &u„ to a field E2, wave vector Q, fre-
quency»d2 by a magnetic system is given by

where T„ is the temperature of the magnetic sys-
tem. As a consequence, the spectrum of the scat-
tered light will have a component proportional to

MCC»» c»$»»y V(»d }SV+ g»rOI»»I VV(»d }SVSV

M"(K) =M"(K) —(M '(K)) .

(sb)

(sc)

e '"'(t r „(t)t~r„(O))-dt,
~N

which will give rise to a peak at zero frequency

The first term in (Sb) leads to scattering from
single spin fluctuations, i.e. , fluctuations of the
spin density with a given wave vector, and is well
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understood theoretically. We shall not consider it
any further. The second term has traditionally
been regarded as giving rise to scattering by pairs
of spin fluctuations, and it will be our concern to
show that it also leads to scattering from the en-
ergy fluctuations of the system. We shall not con-
sider the most general tensor e,~

""but restrict
ourselves to

g P, '(~,)P~(~,)(5(-,' K+ q, t) . 5
CC

x(—'K q t}l~( K+q ) ' ~( K-q )),
where

~ctB((g ) Q ellI Pjg'P1BB((g )

(12)

M(" =QP„'(~,)5, (8)

The terms omitted do not contribute to the energy
fluctuation scattering for the spin Hamiltonian we
shall consider, but could contribute for a Hamilto-
nian of lower symmetry.

The time evolution in (4) is determined by the
Hamiltonian of the spin system, which we take to
be

1
I (q)~(q) ~( q}++BBi 1atuc + 1 tue

(I)
The Heisenberg term in (I) is chosen for simplic-

ity. The presence of anisotropy terms would not
affect the substance of the argument, although they
would change the scattering intensities.

The response function in (4) may be written in a
form that will make the argument more transparent.
It can readily be shown that

I(~)= dte'" (M (K)M" (K, t) )
~ OO

Re dte""'"' m"'K, t ~'K
e —1 p

'

( )
The notation ( I ) denotes an inner product on the
linear vector space V consisting of all linear op-
erators on the Hilbert space of the spin system
[for instance, S,', S,'S~~, (S;.)', SPS~S», are ele-
ments of V], and is defined for any two elements
ofV, A, andB, by

(B~B)= f e Aie " 11)B
0

(9)

L,[A] = (I/I)[X, A], (10)

i. e. , A(t) = e'~'[A] In terms o.f L, we see that the
differential scattering intensity is proportional to

I(~) =2P-'Ref(M"(K)I(~+t~-g-'IM"'(K)&. (11)

We have assumed p&u «1 in (11}. I, is Hermitian in
the inner product defined by (9). Equation (11) ex-
presses the scattering intensity in terms of the
spectral density of L.

The correlation functions appearing in (8) are of
the form

The time evolution in (8) can be expressed in terms
of the Liouville operator for the system, defined by
its action on any element A in V as

Standard treatments of light scattering proceed
by approximating the four-spin correlation function
in (12) by a product of pair correlation functions
describing the spin-density fluctuation, i.e. ,

(f(-,' K+q t) ~ 5(-,' K —q, t)
I
5(-,' K+q) ~ 5(-,' K —q))

= p-'(S'(-,' K+q, t) IS'(-,' K+q)&

x (S'(-,' K-q, t) IS'(-,' K-q)&8(q-q') . (13)

At low temperature (T «T,), such an approxima-
tion leads naturally to the interpretation of the scat-
tering as due to pairs of magnons. It has been pos-
sible to extend the calculations in the low-tempera-
ture regime4 to include magnon interactions omitted
by the approximation (13). In principle, such cal-
culations should also show the effects that we shall
describe, but existing calculations have not been de-
tailed enough to do so. Richards and Brya' have
taken another approach, which is to assume a form
for the correlation function and use a calculation of
the first two moments of the spectral density to de-
termine the parameters in the assumed form.
Either the moment method or the factorization ap-
proach misses an essential fact about the correla-
tion function in (12) which is that it does not vanish,
when K=O, as t-~, if spin-lattice interactions are
ignored. To see this most readily, we shall insert
a complete set of states in V in the matrix element
appearing in (11). Included in such a set would be
states corresponding to all the operators that were
constants of the motion of the spin system. If, as
we shall assume temporarily, the spin-lattice in-
teraction is neglected, then these would be the
magnitude of the total spin on each site, 5,
which is just S(S+1)I, with I the identity operator
on V,

Q S) N~ S'(0)—-
the total spin, and X&„„,b„~ the Hamiltonian. Be-
low T„one would also have to include the staggered
magnetization in an antiferromagnet.

These states may be orthonormalized, and de-
noted by lXt& so that the identity operator on V may
be resolved as

(14)

The states iR&& denote the remaining states needed
to form a basis in V. A particular choice for the
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operators corresponding to the states Ix,), above
T„would be

X, = P-'"I,
where I is the identity operator on the Hilbert space
of the spins,

x, =s'(o)/x'(0)'", (18)

where y, '(0) isthe static susceptibility, (S'(0) IS'(0}),

x, = (x —((x»)/(KT'c„)'", (i7)

where CH is the specific heat at constant field

Kr'c =O0-&Oc» lx-(O0»& .
We then have from Eq. (8)

Itef(M"(K}
l
(~+Ic —I }-' lM (K)& = R«p (M"(K) lx )Q, l

(~+ I~ —L}-'lx )(K;, lM""(K))

+aef P(M"(K) lR,&(R, l
(~+I~ —L)-'lR, )(R, lM""(K)) . (18)

Cross terms of the form (X, I (&u+ie —L) '
IR&&

vanish since L Ix,) =0 and O0, IR,) =0, as do terms
of the form

(x, l( ..-I lx,&,

With M ~(K) given by Eq. (7), the only nonvanish-
ing coupling coefficient is, for K =0,

(M"(0)
l
x,& =Q Pfl((u, )(5(q') ~ 5(-q')

l x,) .

At high temperatures this is readily evaluated as

P 1/2P Pys(~

where in evaluating the coupling constant, we have
neglected the spin-lattice interaction. There is,
therefore, a term in I(~) of the form

R«(M"(0)lxs&(XBIM""(0}&«~l(~+I~-L}'IXB& .
(20}

Since L Ix,& =0, this term has a pole at zero fre-
quency, indicating that the correlation function in
(12) does not vanish as I- ~. The physical origin
of this singularity is that the perturbation produced
by the light changes the total energy of the system
[assuming that (M ~(0}IX,& x0], and since the per-
turbation cannot decay if we neglect the coupling to
the lattice, the system relaxes to an equilibrium
determined by the perturbed energy, not the origi-
nal energy of the system.

This term in (18) actually vanishes, since in the
absence of any fluctuations in the energy, there can
be no absorption. It is the coupling to the lattice
that produces these fluctuations, of course, that
eventually return the system energy to its original
value, and causes the correlation functions (12) to
decay to zero as t-~. The time scale for this to
occur is by definition the spin-lattice relaxation
time, and may depend upon the particular correla-
tion function being considered. (lt need not be the
same for the magnetization and the energy, for in-
stance. ~) We shall account for these relmtation
processes by phenomenologically including a relaxa-
tion frequency v~ in the denominator in (20). We

I

obtain, therefore, that the contribution to I(+) due
to the energy fluctuations is
I' '""(&)s=2P '(M (0) lX,&(X, lM""(0)&~z/(~'+ vz).

(2i)
There is, in addition the contribution coming from
the second term on the right-hand side of (18},
which does not contain any conserved operators,
and which includes the scattering due to pairs of
spin fluctuations. Whereas the characteristic fre-
quency in (21} is vz, the characteristic frequency
for this term will be

1/3

38 8+1 V&&

and for systems of greatest interest at this time
(d„» v~. Thus the cross section for scattered
light should appear schematically as in Fig. 1, as-
suming that the coupling coefficients do not vanish.
We shall assume that if the coupling is allowed by
symmetry, then it will actually exist. Fleury and
Loudon' have investigated the symmetry of P,',~(~,)
for tetragonal crystals of the perovskite structure
and find that cfP,~~(~,) cz~ can contain terms of the
form

VL

FIG. 1. Schematic light-scattering intensity in a po-
larization that allows coupling to energy-density fluctua-
tions.
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Agg(thea+

aftra)

+Al~tfEa+BU(fifa+ oaf j)ogyvgg

+[» z]+[X z]+«x(zfaa- aazi)+~sou

+ [x, z]+[y, z], (22)

where o&&
——+ 1 depending upon whether r,&/ I r( j I is

positive or negative, and A, ~, B,~, C,~, etc. , are
coefficients that depend only on Ir, ~l, and were as-
sumed to be nonvanishing only for nearest neigh-
bors. From (19), using (22) we have

&M "(o)lx,&
= p' la+A, .v„gv'

(M (0)~3c )=p'~ I B g v , v*,,.,&t'I v

(23)

x = -Pv(q)5(-,'K+q) 5(-,'K-q) .E

The light will couPle to Xz, which is not conserved,

Since gj o f&so V&&
——0, the energy-fluctuation scat-

tering cannot be seen in the configuration in which
the incident and scattered beams have crossed
polarizations. It should, however, be visible when
the polarizations are the same and can appear in the
crossed polarized configuration if the Hamiltonian
has lower symmetry. The relative intensity of the
spin-Quctuation and energy-fluctuation scattering,
in this configuration, depends upon the range of A, &.

If it extends only to nearest neighbors, the scatter-
ing is entirely energy fluctuations, and the larger
the range, the larger the proportion of spin-fluctua-
tion scattering. At infinite temperatures, we can
calculate the ratio. The independent mode approxi-
mation holds [Eq. (10)] at t =0, so that the total in-
tensity of the scattering is [S(S+1)]a/a (A, &) . The
energy-fluctuation scattering is proportional to

2

[s(s+1)]'(I A, ~v, ~ Q(v, ~}' .

At finite temperatures, the intensity of the pole
near to =0 is proportional to 1(M (0) Ix& I a/KTaCz,
while the total intensity is proportional to
(M' (0) IM' (0)&. Assuming that P,'&' is short-
ranged, both terms should be proportional to the
specific heat.

The relaxation times v~ for RbMnF, and MnF2
have been measured by Moran and Luthi, in acous-
tic-attenuation experiments. They find 2v/va = 3
xlo a sec for MnF„2w/va=3xlo ' sec for
RbMnF3, near T,. If the coefficients A, ~ are com-
parable to B,&, these widths ought to be resolvable
with existing interferometers (For the s. pectra in
the cross-polarized configuration, see Ref. 1.)

It might be objected that the light scattering is
not exactly at K=O. The above argument is only
slightly modified in this case, since we can replace
IX,& by IXz&, where the operator corresponding to
the state IXz&,

but decays with a lifetime given by D~2, where
D~ is the thermal diffusion coefficient. The re-
maining analysis is essentially unchanged; we sim-
ply replace va by va, +DrK .

Below T„ the conserved operators no longer cor-
respond to orthogonal states, and in an antiferro-
magnet one must also include the staggered mag-
netization in the set of operators that correspond to
states that are eigenfunctions of L with zero eigen-
value in the inner product appropriate to T & T,.
We can therefore choose as a basis, for an anti-
ferromagnet,

Ix,&- p
' 'I,

IX/ -s'(0)/[k'(0)]'",

lx,&- [s'(K,) —(s'(K,}&1/k'(Ka),

I«&- «- «&- «lxa&xa-(Xlxa&x )/(KT'~ )"'.
Where

KT'~ =KT'&.+
I «lxd I'+1«lxa I'

In general, one can expect that (M a(0) IX,& wo for
i =2, 3, 4 and hence the line observed near & =0 can
have components with three different widths if the
spin-lattice coupling is such that the decay times
for the energy, staggered magnetization, and mag-
netization are different. The relative intensities
will be determined by the appropriate coupling co-
efficients, which can be written as thermodynamic
derivatives: (M a(0) Ix,&, for instance, is ~ S(x&/
SH(K, ), where H(Ka) is a staggered field. We note
that the coupling between the staggered magnetiza-
tion and the energy has been observed in neutron
scattering experiments and computer simulations.
If the finite K value of the fluctuations is consid-
ered, additional relaxation times, due to magneti-
zation and staggered magnetization diffusion as
well as cross relaxation, enter. We will not con-
sider these effects here. They can be described
by a straightforward generalization of the previous
results. We would also point out that below T,
there is also a contribution from the energy fluctu-
ations in what has been called the one magnon scat-
tering spectrum, i.e. , that arises from the first
term in (5b). This may also be calculated by anal-
ogous procedures, and will have a very different
temperature dependence and selection rules since
the coupling coefficient will be proportional to
(s(o)5B&.
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