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Inhomogeneous broadening of the Lyman-series absorption of simple hydrogenic donors*
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Inhomogeneous broadening of hydrogenic-donor 1s-np transitions due to the electric fields and field gradients
of randomly distributed donor and acceptor ions is considered for the case of a simple isotropic parabolic
conduction band. It is shown that for n even, the transition has a nearly unshifted and relatively sharp central
line, whereas for n odd, the central peak is missing; what remain are peaks symmetrically split about the
unperturbed transition energy and strongly broadened. Detailed calculations are made for the 1s-2p and 1s-3p
line shapes. These line shapes are in qualitative but not quantitative agreement with experimental spectra for
GaAs; it is pointed out, however, that the theory is self-consistent only for ionized impurity concentrations
*.veil below 4 g 10" cm ', characteristic of the purest GaAs samples studied to date. The self-consistency of the
broadening theory for donors in strong magnetic fields is discussed.

I. INTRODUCTION

Quantitative studies of magneto-optical line
shapes of shallow donors in high-purity epitaxial
n-QaAs have shown that the observed broadening
is due to electric fields and electric field gra-
dients arising from fixed charged impurities lo-
cated at more-or-less randomly scattered sites
in the host crystal. ~'3 It is expected that this
broadening mechanism should be important also
in other semiconductor materials of high purity
which contain residual compensating impurities.

The principles underlying the usual picture of
inhomogeneous broadening of neutral-donor transi-
tions fx om random electric fields and field gradients
are straightforward. Qne assumes that the transi-
tion linewidth from each individual donor is field
independent (one often further assumes that the
natural line shape can be approximated by a 6

function, because inhomogeneous widths are fre-
quently orders of magnitude larger than natural
linewidths). The electric fields and their gradients
serve only to shift the energies and oscillator
strengths of the donor transitions. Since optical-
absorption experiments record the sum of the ab-
sorptions of very many donors, each with a slightly
different energy and oscillator strength, the ob-
served line has a shape determined in large part
by the statistical distribution of electric fields and
field gradients at the neutral donors. Omitting
second and higher derivatives of the electric field
from the theory is justifiable when the fixed ions
producing the fields are at sufficiently large dis-
tances from the neutral donors (i.e. , distances
much larger than the characteristic dimensions of
the initial and final states of the donor).

It is well known that a hydrogenic atom in a uni-
form electric field has a finite lifetime against
electron emission which decreases rapidly with
increasing electric field (and therefore that the
hydrogenic levels experience broadening which

very rapidly increases with electric field strength).
It follows that a necessary condition for self-con-
sistency of the model of inhomogeneous broadening
described above (we shall refer to this henceforth
as the "simple inhomogeneous broadening theory"
or SIBT) is that for a large majority of neutral
donors the electric fields at the donor centers are
sufficiently weak that the lifetime broadening due to
the possibility of dissociation of the donor in either
the initial or final state of the optical transition is
small compared to the inhomogeneous broadening.

In this paper we develop a SIST for the ease of
ls to P state txansitions of simple hydrogenic
donors at low temperatures in semieonductoxs
having a simple, spherical, parabolic conduction
band. Assuming that the fixed ions giving xise to
the broadening fields are randomly distributed, we
estimate the maximum ion concentrations for
which a. SIBT is self-consistent. We find that the
maximum ionic concentration allowed for a self-
consistent treatment of the ls-2P transitions in
GaAs is almost an order of magnitude smaller
than ion concentrations in the purest samples fox'

which donor spectroscopy has been reported. As
might therefore be expected, our calculated line
shapes do not agree quantitatively with experimental
line shapes.

For odd n we find that ls-nP transitions can not
occur to levels with zero linear Stark splitting.
Therefore the predicted transition lines ax'e split
and strongly broadened, whereas for n even the
lines are relatively sharp and nearly unshifted.

We have previously applied a SIBT to GaAs donor
transitions in moderately stxong magnetic fieMs. '

It was found possible in some eases to achieve
very good quantitative fits to the line shapes near
the line peaks in the same samples for which we
now find the zexo-field calculations to fail. A pos-
sible explanation for this fact will be advanced.

I.ine-shape calculations for the ls-2P and ls
-3P transitions will be px'esented for ion coneen-



DA VID M. I ARSEN

trations in which our criterion for self-consistency
is satisfied. These calculations give insight into
the striking qualitative differences between the ls- 2P and ls- 3P line shapes observed.

II. ELECTRIC FIELD BROADENING

We begin by considering broadening due to the
Stark effect. It turns out that most of the impor-
tant qualitative features of the donor transition
line shapes can be inferred from considerations of
electric field broadening alone.

Our discussion is based on the effective-mass
Hamiltonian E of a single neutral hydrogenic donor
perturbed by the fixed scattered point ions

H = Ho —e V,„,(r),
H, =P'/2m~ —e'/e, r,

where co is the static dielectric constant, e is the
magnitude of the electron charge, and V„, is t;he

potential due to the surrounding donor and accep-
tor ions. Defining the charge and position of the
jth ion by e„(e„.=we) and R;, respectively, V„,
can be written

xP» (coseo) [e™"OP„(cos8~)e ™'+c.c. ]

where e = 2 except at m = 0 for which &0 = 1, A;,
and y~ are the spherical coordinates of the jth

ion and r, eo, and yo are those of the donor elec-
tron. The multipole expansion of {2), discussed
in Ref. 1, is most useful when the size of the donor
atom in the excited states of interest is small
compared to any R;. In that circumstance the ex-
pansion can be truncated at some low value of k

and the perturbed energy levels of {1)can readily
be evaluated as functions of the R s.

The lowest nontrivial approximation to V,„„is
obtained by neglecting all terms in (2) with k & 1.
(The 0=0 term simply shifts the zero of energy
for a given neutral donor, and we shall neglect it
henceforth. ) In this approximation we have V,„,
—= (F/e) .r where F/e=ge~R;/eoR', is the electric
field of iona evaluated at r = 0, and H in {1)be-
comes the Hamiltonian for a hydrogenic atom in a
uniform electric field. For weak electric fields
the general formula for bound-state energy levels
with quantum numbers n, m, n» and nz is

F I
ft -~+3 ' n(n, —n, )—

tl

~ [17n' —3(n, —n, ) —Qm'+ 19]+0 ((Fe,/H)'), (3)

where n is the principal quantum number and m is
the quantum number for the component of orbital
angular momentum along the electric field direc-
tion; &0 and R are the effective Bohr radius and

Rydberg of the hydrogenic donor, and n& and n~

are integers greater than or equal to zero which
obey

n=n, +~+~m~+1. (4)

To calculate the inhomogeneous broadening of,
say, the ls-2P transition in the SIBT, one cal-
culates the position and oscillator strength of each
of the four excited levels in the electric field using
(3) and the zero-order wave functions P„
given by

0 o &
=(I/v2)(q .-w &)

(shift linear in E= 3Fao),

&, ,= (I/v 2)(cp, rp, ) (5)

(shift linear in F= —3Fao),

8a„& 0 0= cpa~ (shift linear in F=0),

where the cp's are the familiar simultaneous eigen-
functions of Ho and total orbital angular momen-
turn. One then calculates the inhomogeneous line
profile by weighting each transition energy joint-
ly (i) by the probability that the electric field has
the proper strength to shift one or more of the
states (5) to the required energy and, (ii) by the
oscillator strength of the transition to each of the
states so shifted. In order to carry out such a
calculation one needs a probability distribution
P('8) for the electric field strength. We approxi-
mate this by assuming that the impurity ions are
randomly distributed, in which case, as is well
known, P{$) is given by

p($}=—S dxxe ~"'~'sinSx, (6)
7T o

where 8 is the electric fieM in units of enI /eo,
with nI the total ionized impurity concentra. tion,
and' P= —,', (2w)'~a. In Fig. 1 we show a plot of P(@).

%e have already pointed out that the SIBT is
self-consistent only for electric fields which are
not too strong. To estimate how large the field
can be we note that the n = 2 linewidth grows ex-
tremely rapidly with electric field strength so
that we can define a critical fieM E,„,,/e such that
for practical purposes the contribution to the line
shape from donors experiencing fields greater than

E„«/e is not properly given by the SIBT whereas
those donors in fields below the critical field are
we1.1 described by this model.

Of course there is some arbitrariness in
choosing I'„;,, but because of the extreme sen-
sitivity of the linewidth to the electric field
strength we are safe in bracketing E„«according
to
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FIG. 1. Probability distribution of the strength of the electric field produced by randomly scattered point charges
with number density nz and evaluated at a randomly chosen. point. (This is the Holtzmark distribution. )

0. 005 " 0.02
R

for the m=2 levels. '7 In fact, a reasonable choice
of E «, and the one which we shall use, is

F„«u,/R = 0.01 (n = 2 levels) .
For us to be confident that the SIBT may well de-
scribe the electric-field-induced inhomogeneous
broadening we must demand that a large fraction
of the neutral donors see electric fields smaller
than F «/e. If we take that fraction to be, say
~~~, then solving

Pg) 0 9

we find S «=—14. Identifying (e n, '/&0) b
=F,«and inserting into (7) yields n, ao-=0.Vx 10;
hence the criterion

+q &0 & 0. 7x 10 (n = 21evels) .
This formula gives, in effect, an estimate of the
maximum ionized impurity concentration at which
the inhomogeneous broadening calculation of the

n=2 levels can be expected to be self-consistent
when no magnetic field is present. ' We know of no
published data on shallow donor spectra of III-V
semiconductors in which n~ is small enough to sat-
isfy (8).

Bermane and coworkers have attempted to apply
a calculation of inhomogeneous broadening of the

type described here to the ls- 2P transition line
shape in shallow GaAs donors for n~a~~-1. 0x10 4,

an order of magnitude higher than (8). (In GaAs,
a, = 10 cm. ) Those authors neglect terms qua-
dratic in F in (3) for the states g~ 0, , and g, 0 0,
and all terms in (2) with k &1. We show in Sec.
III that certain field gradient (0 =2) terms play a
very important role in determining the line shape,
especially at ionized impurity concentrations
obeying(8). The line shapes obtained in Ref. 9 are
not in quantitative agreement with experiment. '

Returning to our line-shape calculation we ob-
serve from (5) that two levels are strongly shifted
by the electric field due to the linear Stark effect.
To obtain an expression for the Stark shifts in
terms of 8 we write first E in terms of 8:
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FIG. 3. Calculated ab-
sorption line shape of the
Is-3P transition in GaAs
considering linear and
quadratic Stark-effect
broadening but neglecting
field gradient broadening.
For this calculation me
have taken nlao=0. 05&10 ~.

The unshifted Is —3p tran-
sition occurs at 0 c~ '.

-0.6
l

—0.4 0.2

4';I (ufo —F&)
I 0o& = —loft (q'gI 4o&, (13)

where j stands for 3s, 3Po, or 3do. In this way we
find that the state g3 0 $ $ ls a mixture of 3s and

3do levels and therefore has no dipole oscillator
strength from the 1s level.

For completeness we list the m=3 levels and
their linear Stark shifts S~:
t/s o, , =( I/v3)(-y s+sv2 9ss~o), 8~=0,

0, o, , = (I/~3) I.W„+(-')"' V o, +(I/~2) &ps~, 1,

4s, o, o, s = (I/~3) I- Vss+ (s) Popo
—(I/~2) PssJ ~

Sq = —9Fas, (14)
&s,.s. s. o=(I/W2) (q'ss„+&pss„), Sr=r'Fao~,

.=(I/~2)(W„„- V, „),
&3,~, 0, O= @W~ S~=O.

These equations are the n = 3 analogues of Eq.
(5). Substantial lifetime broadening of the n = 3
levels occurs at fields at which the n = 2 level is
still sharp; we estimatee

E„«ao/ft =0.0025 (n=3 levels),

which, setting S„«=14 as before and using (9),
gives

x 10 ' assuming electric field broadening only.
(Field gradient broadening produces a negligible
effect on the 3P line shape. ) Notice that the ab-
sorption peaks are nearly symmetrical with re-
spect to the unperturbed position of the 1s- 3P
transition. Qualitatively speaking, the ls- 3P
transition differs from the ls-2P transition in
that the sharp central line near the unperturbed
transition energy is missing.

Study of Egs. (3) and (4) suggests that a sharp
central peak is missing for all ls- nP transitions
in which n is odd and is present for transitions in
which n is even (always assuming, of course, that
nz is small enough that a SIBT approach is valid).
For n even there always exist I m l =1 states with

n, =n2. Such states, having zero linear Stark
shift, will give a sharp centxal line if there is a
nonzero oscillator strength to them from ls. It
is easy to show that these states have odd parity;
therefore one expects a nonvanishing oscillator
strength in the transition from Is. On the other
hand, for n odd and l m I = D or 1 there is only a
single state with zero linear Stark shift (it has
quantum numbers n, =n, =-,'{n-1) and 1 ns!=0).
One can show that this is a state of even parity~;
it cannot, therefore, be reached by a dipole transi-
tion from the ls level, and no sharp central line
is present.

n, a', Z 0. 8 && 10 o (n = 3 levels) (15) III. FIELD GRADIENT BROADENING

as a self-consistency requirement for the n = 3
calculation analogous to Eq. (8). In Fig. 3 we
show the predicted 3P line shape at nla30= O. 05

We now consider contributions of the k=2 terms
in (2) to the shifts of the Stark-split levels. In
general, these shifts are of order (n, ao)B which
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means that they axe smaller than the linear Stark
shifts [of order (nrao) /~R] but larger than the
quadratic shifts [of order (n, e~o)4/'R] in the limit
nr- 0. Thus at low impurity ion concentrations
the 0 = 2 texms should play an important role in the
bxoadening of the central sharp peaks associated
with the l,s-nP transitions for m even, but they
shouM not strongly affect the relatively broad lines
arising fxom the linear Stark shift.

Recall that the sharp peaks are associated with
doubly degenerate odd parity states with I =+ 1.
For the 1s-2p transition, for which we will make
explicit calculations, the central peak is associated
with transitions to the levels [see (5)].

q2& =, &,»&2e""sin8re "~2'0 .
8(Tf&o)

Treating the field gradient terms of (2) 1n lowest-
order pex turbation theory we find that the m = 0
term has ln general a nonzero expectatlon value ln
the states g„,~», «/2&-», «/2)-» but does not break the
degeneracy of these levels. Effects due to the
m= 0 term in the bxoadening of donor magneto-
opt:ical spectra have been discussed in some detail
in Ref. 1. The shift induced by thi.s term is sim-
ply the classical energy shift arising from the in-
teraction of the electric field gradient produced by
the surrounding ions with the quadrupole moment
of the charge distribution of the electron bound to
the neutral donor. This shift is given by

g
+ eQ

where z here refers to the axis of symmetry of
the wave functions g„+» „«2» „&2», this axis lies
along the electric field direction. The quadrupole
moment Q in (17) is defined in the usual way

l(3 '- ')l l.„.,. ..,...}, (1&)

and the field gradient at the donor center is given
by

j. e,', Pz (cose, ) cos2/p;

Ts = —~ 3 Pg (cos6/) sin2(p/
l~ e/
3

=2+ ",(X,.r,),

and we have used ~'P', (cose, ) = 3p' and && =X';
+ p2 +g2

The splitting induced by T22 in the 2p, » levels is
found by solving the secular determinant

Eo —X

Qeoo(T~ + fTe)

Qea 30{T„—i Te) =0,
go —X

related" distxibutions to distinguish them from the
usual '*uncox related" distributions of previous
literature.

%'e will neglect in general the effect of the k = 2
m = 1 term on the sharp central line because for n

even this term connects states with zero linear
Stark shift only to states with nonzero shift. Thus,
fox example, this term fox n = 2 connects the 2p, »

states to the symmetrically split levels q2, » 0
and pz, o 0, , of Eq. (5). The resulting shift of the
2P, ~ levels is of higher order than (n, a')4/' and can
b gl t d.

Qn the other hand the 0= 2, m = 2 term in (2)
turns out to be very important; it bxeaks the de-
generacy of the m = +1 states with zexo linear
Stark shift. This term does not appear to have
been discussed previously in the literature, so it
would seem worthwhile to look at its effects in
some detail hex'e.

From (2) the k=m=2 term T32 can be written

Tag= 8 [{T~-&Te)e'*"'+(T~+&Te)e ""']p', (2o)

(3Z ~ )

where Z& is the component of R; along the direc-
tion of the electric field produced at the donor
center by the same ions summed over in {19). We
point out here that the statistical distribution of
the gradient eA', /Be defined in (19) from an ensem-
ble of impurity ions located at random positions in
the sexniconductor is not identical to the well-
known Lorentzian distribution derived for this
quantity for the case in which the z direction is
fixed 1D a direction independent of the posltloDS and
charges of the impurity ions. ' Thus the field gra-
dient distribution of interest to us hexe is corre-
lated with the electric field. %e shall henceforth
refer to such field gxadient distributions as "cor-

where we have used (/pgp~g I p 8 I p2p~g}
= (y2/, „I pa I ya/ ~}=24amo and Zo is the energy of the
2P, » levels when T» =0. The energy shift is

Z, —X =+ 9(T'„+T',)"'ea', . (22)

The uncorrelated statistical distribution of (T~„
+ Te)'/' from random spatial distributions of iona
can be shown to be given by

+[(T& + T& )l/8] +(T& + 7 8)1/8/(T8 T8 2)3/8

'y =
9 1T (e/eo) n/ . (23)

Although the result given in (23) is of interest
in its own right, our present purposes require cal-
culation of the correlated distribution of (T„
+ Tae)'/~. For this, as for all correlated distribu-
tions, we must resort to Monte Carlo methods.
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and (19) using the electric field direction as the z
axis (when correlated distributions are desired).
A more detailed discussion of the Monte Carlo
method is given in Ref. l.

In Fig. 4 we compare the correlated distribu-
tion of (Tz~+ Tz)'~z with the corresponding uncor-
related distribution calculated two ways: (i) by
the Monte Carlo technique and (ii) using (23). We
notice that the Monte Carlo approximation is rea-
sonably good for the uncorrelated distribution; we
have no reason to think that it should be markedly
less accurate for the correlated distribution.
Notice that the correlated distribution tends to
favor small values of (T'„+ Tzz)'~' relative to the
uncorrelated distribution. ~ 't From (17), (22),
and the fact that for the 2P, ~ states Q =- l2&0 we
conclude that the total field-gradient-induced shift
of the 2P,» levels is proportional to

y 3(T2 + Tz )1/2
ez A (24)

1 2 3 4 5 6 7 8 9 10

{T~z+Ts ) IN UNITS OF z ng

FIG. 4. Comparisons of the exact uncorrelated dis-
tribution of {Tz+T&) {solid curve) with the Monte
Carlo calculation {open circles} and with the Monte Carlo
calculation of the correlated distribution of the same
quantity {solid circles). 8000 random configurations of
point charges are used.

Our procedure is to simulate an ensemble of neu-
tral donors acted on by fields and/or field gradients
of an infinite number of charged ions of density nI
by xandomly scattering 50 positive and 50 negative
iona in a sphere of radius (300/4vn, )'~' around
each donor in the ensemble. The electric field at
the center of the sphere is calculated first and
then T„, Tz, and Sh, /Sz are calculated from (21)

Monte Carlo calculations of the correlated and un-
correlated distributions of this quantity axe shown
in Fig. 5. Both distributions appear to have a
"dimple" in the middle (although this is less well
established for the correlated distribution) and the
line shapes appear to be more than three times
broader than those we would have calculated using
only —Sh, /Sz in (24).

Our final line shape for the shaxp central line
of the ls-2P transition is obtained from combining
the field gradient shifts proportional to (24) with
the quadratic Stark shift of (ll) to obtain for the
total shift of the line the expression

(. ")(-s "ie(r .r')"*-iiii(...*)" ii)ii
(25)

The correlated statistical distribution of this quan-

0.50—
~ CORRELATED

OAO

O. 20

Ol
-25 -20

I

—10
l

10
I

-15 -5 0 5 15

+3(Ta + TB j
—86 /t'Bz IN UNITS OF —nfI

l

20

FIG. 5. Comparison of
correlated {solid circles}
and uncorrelated (open
circles) distributions of
+3 {T~2+T~~}'/2 —BSg/Bz
calculated by the Monte
Carlo method with 8000
random configurations of
point charges. The curves
serve merely as guides to
the eye.
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FIG. 6. Experimental zero-field photoconductivity
spectrum of a high-purity GaAs sample at T =1.57' with
instrumental resolution of -0.07 cm '.

tity for GaAs (R = 46. 15 cm ~) is plotted in Fig. 2

for n~ a ~ = 0. 5 & 10 ', where it is compared to the
quadratic Stark effect line shape, obtained ne-
glecting all 4=2 terms. It is clear that the field
gradients play an important role in the 1s-2P
transition line shape when (8) is satisfied.

IV. COMPARISON WITH EXPERIMENT

In Fig. 6 we show the low temperature (T= 1.5 I
K) photoconductivity spectrum of an epitaxial GaAs
crystal for which electrical measurements in-
dicate n„=2x10" cm 3 (hence n, a0=4x10 5), nn
=5x10" cm ', and p„.=210000 cm'/Vsec. The
three peaks on the sharp strong line near 35 crn ~

are 1s- 2P transitions from different donor spe-
cies. Their splitting is due to small differences
in chemical shifts among the various species of
residual donors in the sample. A second, broad-
er line with two peaks appears to the right of the
1s- 2P line. The calculated unperturbed 1s- 3P
transitions for the two strongest donors lie near
42 cm ', between the two peaks of the broader
line. We tentatively identify the double peaked
structure as the Is-Sp Stark split lines (see

Fig. 8).
Although the purity of the sample whose spec-

trum is shown in Fig. 6 is close to the present
state of the art for GaAs, its zero-temperature
ionized impurity concentration far exceeds the
limit set by either (8) or (15). It would be sur-
prising if our SIBT could achieve a quantitative
fit to either the 1s-2P or 1s-3P transition line
shape; in fa,ct we cannot properly fit these lines.
Nevertheless our theory does account for certain
qualitative features of the line shapes.

In particular, the ls- 2P transition for a given
donor species is characterized by a sharp line
little shifted from its calculated position when in-
homogeneous broadening is neglected. If, how-
ever, we attempt to calculate the actual ls-2P
line shapes using nl&0=4&&10 ' and the relative
donor strengths and line centers as determined
from magnetospectroscopic studies, r7 we find that
the SIBT gives line shapes which are too broad
near the peaks (so that only two of the three donor
species in Fig. 6 are resolved in our calculated
line shape) but much too narrow near the base.

The line which we have tentatively identified as
1s- 3P has a certain qualitative similarity to Fig.
3, the observed peaks being symmetrical about
the calculated unperturbed 1s- 3P transition ener-
gy and the lower-energy peak having smaller peak
amplitude than the higher-energy peak. One
glaring quantitative discrepancy is that the peak-
to-peak separation calculated is proportional to
n,~' so that using the measured ionized impurity
concentration of the sample in Fig. 3, the cal-
culated separation of the 1s- 3P peaks is 4. 5 cm ',
the measured separation is only - 1.2 cm ' which,
according to the SIBT, is characteristic of n, a,'
=—0. 6&&10 '. No central cell splittings are ob-
served or expected in the 1s- 3P transition be-
cause lines arising from each donor species are
so broad that they completely overlap.

V. EFFECT OF MAGNETIC FIELD ON DONOR LIFETIMES

In this paper we have emphasized the limits of
self-consistency of the SIBT approach to the line-
width problem. The inequalities (8) and (15), ex-
pressing these limits for the n = 2 and n = 3 states,
respectively, are based on the requirement that
the lifetimes of the excited states against field
ionization in a uniform field be sufficiently long.
We have concluded that the SIBT approach is not
self-consistent for describing line shapes of ab-
sorption from the 1s to the n =2 levels at zero
magnetic field in GaAs with n, as low as 4& 10"
cm '. Nevertheless, considerable success has
been reported'~ in interpreting magneto-optical
line shapes using GaAs samples with 4& 10"& gI
& 10 cm . We shall attempt here to sketch a
semiquantitative explanation of how this can be so.
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We show that the presence of a magnetic field,
even if only of moderate strength, can reduce
significantly the ionization probability of excited
states of a hydrogenic atom in a uniform weak
electric field.

Our approach is to employ the generalization,
due to Oppenheimer, ' of ordinary lowest-order
time-dependent perturbation theory to the prob-
lem of tunneling. Oppenheimer shoms that the
probability of transition from an unperturbed bound
state gs to continuum free states Pr of the same
energy is given by

where II3 is the perturbation responsible for the
tunneling, p~ is the density of the states Pz with
energy equal to the unperturbed bound state en-
ergy of P~, and the P~ are eigenfunctions of a
Hamiltonian obtained from the total Hamiltonian
by evaluating it at points far away from the binding
center. (Thus, in the case of a bound donor elec-
tron subject to the uniform electric field F/e, the

g~ are eigenfunctions of the Hamiltonian p~/2m*
—F ~ r. )

The special case of tunneling from the ls state
of a hydrogen atom in weak electric fields has
been treated by a number of authors. The transi-
tion probability is given by Ref. 19 as

C(R/Eao) exp(-3 /RaE)0,

where E/I el is the magnitude of the electric field
and C is a numencal constant.

For small E the transition probability (2V) is
determined largely by the size of the exponential
factor. We expect that this feature will persist in
the more complicated problems to be considered
here so that it will be sufficient to calculate the
exponent of terms analogous to exp(-34R/Eao)
above for making an educated guess at the critical-
fieM strength appropriate to donors in combined
magnetic and electric fields.

The general Hami1. tonian describing a donor in
the combined fields is

2Po levels, of special interest to us. The direc-
tion of quantization defining these levels is now
taken along the magnetic field since we are as-
suming henceforth

hu, » j'ao. (3o)

We employ the following approximate wave func-
tions (not normalized)

4», =(~-fy) e'"'" f(z),

6.,=«' ' f(z),

f(z) = exp[- K(z'+ n')"'],
(31)

where 4, K, and m are optimized variationally for
each magnetic field and level. These states are
easy to work with; in addition, they give lower
variational energies than the more familiar wave
functions in which f(z) is taken as e ' ' . Never-
theless, the states (31) are inferior to, for exam-
ple, trial functions of the type introduced in Ref.
20.

We shall consider separately tmo special con-
ditions: (i) the electric field is perpendicular to
the magnetic field (F 8 =0) and (ii) the fields are
parallel (F.B=+EB)

fn case (i) the wave functions gz are eigenfunc-
tions satisfying

(Hp Ey) PF EE AE &
(32)

where we have chosen, without saerifiee of gener-
ality, our y axis along the electric field direction.
Exact solutions of (32) are well known for the case
in which Ho is written in the Landau gauge. We
can employ these solutions in (32) if we multiply
them by the factor exp(- fm~~, xy/2@. Eigenfunc-
tions of (32) for the lowest Landau band have the
form (not normalized)

pr =exp(-im*&u, xy/28) exp[i(k„~+ k, z)]

&& exp[- (m* &o,/25) (y —kk„/I* ~, —E/m* ~')']

(33)
with energy

H=HO- e'/ear- F.r, Ez 2k', + k k,/2m*-——E(hk„/m*to )

—E '/21* (u', . (34)

Ho =p~/2m~ +2ur, (zp, —yp, )+ 8 m*uP(x~+y~),

(»)
with the cyclotron frequency w, = eE/m*c.
have used the symmetrical gauge in (29) and have
assumed that the magnetic field 8 points in the z
direction.

The bound states, t/rs in (26), are eigenstates of
Ho —e /ear There is. no known closed form rep-
resent;ation for t;hese states, but approximate ex-
pressions exist for a number of lom-lying states
including the experimentally prominent 2P„, and

An electron with wave function f)r is localized
in a slab of thickness 4r, [~, -=(k/2m~, ) ~3] which
is perpendicular to the electric field and centered
at

y, = kk„/m*~, +E/~* ~', = kk„/~* ~,
= 2(k„r,)r, .

We have a.ssumed Er,/h&u, «1. Neglecting
terms proportional to ka and E in (34) we find
from conservation of energy that tunneling of a
bound electron into the state fj„can occur only if
Es=E (kk„/m&u, ) = 2Er,(k„r,) when Es is the ioniza-
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tion energy of the bound electron in the magnetic
field. Rewritten this condition becomes

As the electric field gets small, Zs/Er, becomes
large; hence the overlap matrix element squared

(37)

in (26) vanishes very rapidly. Using f2~ of (31)
for the bound state function and If&r given by (33)
(but neglecting the term E/m*&02 in the exponent)
we obtain for (37) in the limit Er,/Es-0

whexe & is a constant independent of E.
The critical field is determined primarily by the

exponential factor in (38), which is extremely
sensitive to I' for small F. For the 2p, state of
GaAs shallow donors in a field near 65 ko, E~
=0 QR and r =(R/N&u )t~~ a =a /v2. The factor

-{E /Iir }z/z -{0.98/Ec )z{z~/ ",) /z becomes approximately e ' '9"/ 'o' .
Although we cannot fix a critical fieM with any ac-
curacy from the foregoing considerations, cer-

ly E~i~ao&0. 1R and probably I'~ ~~o o 3
This is to be compared to E&l. (7) for the case of
zero magnetic field. Clearly strong magnetic
fields (Ru, &R) have a profound stabilizing effect
on the 2P &

donor levels against ionization in elec-
tric fieMs perpendicular to the magnetic field
direction. Because of the increase in E~ and de-
crease of ~, with increasing magnetic field the
transition probability is a monotonically decreasing
function of magnetic field in the high-field region.

When the electric field is parallel to the mag-
netic field, the free eigenfunctions can be written,
in the symmetrical gauge,

where 4(») is the Airy function, 2~ which has the
important property

ilm 4 (») = gy4 8
OCt 2x

The energy corresponding to Pr is

~p = &@{"c+~g )

where &, is a continuous eigenvalue associated with
the motion of the electron along the electric (and
magnetic) field direction. Conservation of energy
in the tunneling requires

(41)

As E-O, therefore, $- —~and for z not too large
we can replace @ in (39}by its asymptotic form
(40). The exponential factor in the E dependence
of I &It)r I (-Fz) I /«& I' can be found by maximizing
with respect to z the exponential function in the
integrand of the z integral. The result is that the
transition probability is proportional to

expI - 2Kso[&s/R —3(Kuo)'] (RIEuo)1 (42}

times factoxs which are sums of powers of E. It
shouM be noted that the accuracy of the result
(42) is subject to considerable uncertainty since
the exponent which one obtains appears to be fairly
sensitive to the form chosen for f(z) in (31). We
have evaluated (42) at various magnetic fields for

oth 2~-i and 2P0 states Thus at 65 ko the ex
ponent in (42) is —1.1 R/Fao and —0. 5 R/Fao for
the 2P, and 2PO states, respectively. It would ap-
pear that these bound states are less stable for
FIIB than for F~8, as we would expect intuitively,
but even for F IIB they appear to be considerably
more stable than the zero-fi. eld n = 2 levels.

With increasing magnetic field the 2p &
level

deepens moxe rapidly than the 2Po and its ioniza-
tion probability in an electric field of fixed strength
likewise decreases more rapidly than that of the

2Po level.
From the foregoing discussion we see how it is

possible that the SIBT may be a good approximation
for describing the high-field magneto-optical line
shapes of a given sample while failing to describe
the zero-field spectrum.

We do not wish to suggest that in fact the SIBT
couM be improved significantly by taking into ac-
count field ionization induced broadening of the
donor lines in uniform electric fields. Such a
model would itself suffer from the difficulty that
electric fields from surrounding donor and accep-
tor ions are not uniform over the distance from
the donor center to where the electron would emerge
from the potential barrier, the barrier being cal-
culated as if the electric field were uniform.

The exact nature of the electronic wave function
produced when a relatively localized ls electron
donor is excited by photons with energy near 4. R
is not known. Presumamy the breakdown of the
SIBT is associated with delocalization of the ex-
cited electron —the electron being perhaps shared
by one or more surrounding donor ions. We ex-
pect that magnetic fieM induced compression of the
donor excited state wave functions would tend also
to inhibit this kind of delocalization, which is
driven by interdonor overlap of excited-state wave
functions centered on neighboring donor ions.
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