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Vacancy states in Si are investigated using a recently developed self-consistent pseudopotential technique.
Three different structural models (ideal and two reconstructions) for a neutral vacancy are considered.
Vacancy states are found to exist in the Si thermal gap for each structure. The character of these states is
predominantly dangling-bond p-like localized on the four atoms surrounding the vacancy. The ideal
(unreconstructed) vacancy yields an electronic spectrum, which is unstable with respect to Jahn-Teller type
distortions. The two different reconstruction models considered yield Jahn-Teller stable situations.

I. INTRODUCTION

Despite numerous theoretical investigations,
the detailed electronic structure of deep defect
states in semiconductors remains essentially an
unsolved problem. ' The main difficulties arise
from the fact that deep levels in the semiconductor
gap imply a strongly localized defect potential
often combined with structural reconstruction in
the vicinity of the defect. Consider the case of
an isolated neutral vacancy (V ) in Si. Several
different methods of calculation have been em-
ployed leading to quite different results. Among
them defect molecule calculations ' have pro-
vided only qualitative information about the Si
vacancy levels; as of yet no connection with the
band structure has been established. Results
from one-electron methods using clusters of Si
atoms such as the extended Huckel method strongly
depend on the size of the cluster, the basis func-
tions used, and the boundary conditions imposed. '~

Finally, studies considering the vacancy as a per-
turbation on the perfect Si crystal give results
ranging from having only resonant vacancy states
in the Si conduction band to having localized
states anywhere in the forbidden gap depending
on an arbitrary scaling of the perturbing vacancy
pse udopotential. 7

Experimentally the energy levels for the n~~-
fra/ va, cancy (V ) in Si are not well determined.
However, they are believed to be deep (at least
a, few tenths of an eV) in the forbidden gap. '

Moreover, from electron paramagnetic measure-
ments, s it is found that both the singly positive
(V') and negative (V ) charged states of the Si
vacancy undergo a structural reconstruction. For
the V' state, a tetragonal Jahn-Teller distortion
is observed; and for the V state, a mixed tetrag-
onal and trigonal distortion is found. A similar
type of reconstruction is expected for the V state.

In this paper the electroni. c structure of a neu-
tral vacancy in Si is studied using a recently de-
veloped method involving self-consistent pseudo-

potentials. ' To study the effect of local recon-
struction we have considered three different
structural models for the Si vacancy: the ideal
undisturbed structure and two differently recon-
structed structures. Self-consistency in the pres-
ent context means the self-consistent electronic
response to a given structural model. Among the
above-mentioned methods for calculating the
electronic properties of a semiconductor vacancy,
onlythedefectmolecule calculations are self-con-
sistent in this spirit. To our knowledge, the present
work is the first calculation of a Si vacancy in
which bulk band-Structure effects are included and
which at the same time is self-consistent.

In the present calculations, the lattice vacancies
are repeated periodically to form a superlattice
of vacancies embedded in the infinite Si crystal
and the electronic structure of this periodic sys-
tem is calculated self-consistently. " Hence the
vacancy levels are spread into bands with disper-
sion in k space. The amount of dispersion pro-
vides a measure of the localization of the vacancy
states. It is found that localized vacancy states
in the gap and strong resonant states in the va-
lence band existed for the three structural models.
The characteristics of these states have been
studied by analyzing their charge densities. In

addition, a tight-binding model has been fitted to
the vacancy bands for the ideal case. From the
fitted tight-binding parameters, the "dispersion-
less" energies of vacancy levels which correspond
to isolated vacancies can be extracted.

The remainder of the paper is organized as fol-
lows: In Sec. II the steps in the self-consistent
calculations and the tight-binding model are dis-
cussed. In Sec. III the results for the electronic
structure of the Si neutral vacancy for three
structural models are presented and discussed.
In Sec. IV some conclusions are presented.

II. CALCULATIONS

In this section a description is given of the
self-consistent calculations, carried out for the
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FIG. 1. Block diagram of the computational steps in
achieving a self-consistent screening potential in response
to a given structural model.

three structural models of the neutral Si vacancy.
In addition a tight-binding model used to fit the
vacancy bands for the ideal vacancy is presented.

A. Self-consistent pseudopotential calculations

As mentioned in Sec. I, the method employed
here for the calculation of a local configuration
consists of periodically repeating the particular
local configuration to form a superlattice. Self-
consistent pseudopotentials are then used to com-
pute the electronic structure. The steps leading
to a self-consistent solution to the vacancy prob-
lem are schematically shown in Fig. 1. The meth-
od has been applied successfully to the calculation
of a Si diatomic molecule' and to the calculations
of crystalline surfaces' ' and solid interfaces. '
A detailed discussion of the method has been giv-
en in Ref. 13 and 15; it therefore mill only be
briefly described below.

Two essential features of the method are: (a)
Self-consistency in the potential is required to
allow for the correct electronic screening around
the vacancy site and (b) periodicity is retained
artificially which permits the use of standard
pse udopotential techniques.

For the present case of a Si vacancy, the in-
finite Si crystal is divided into large fcc unit cells
each containing 54 atoms. Neutral vacancies are
simulated by removing an identical atom from
each cell. The different structural models in-
volve different reconstructions for the positions
of the atoms surrounding the vacancy site. Test
runs with various cell sizes indicated that at
least 54-atom unit cells are needed to quantita-
tively provide the essential physics of the system.

In the 54-atom unit cell neighboring vacancies
are separated by six Si-Si bonds. The self-con-
sistent loop (see Fig. 1) is initiated with an em-
pirical pseudopotential carried over from crys-
talline calculations. From the resulting total
charge density, a Hartree screening potential and
an exchange potential of the Slater type are de-
rived and added to an atomic Si+' ion pseudopoten-
tial to form a new total pseudopotential for the
next iteration. New screening and exchange po-
tentials are derived and the process is repeated
until self-consistency (stability of input vs output
potentials within 0.005 Ry) is reached.

The self-consistent cycle is initiated using the
following starting potential:

V„„,g) =S(5)V". ,( I ~I), (1

where G are reciprocal-lattice vectors and the
Si structure factor

s(4) =— e '
(

describes the positions of the atoms in the large
54-atom unit cell. V, ,(l GI ) are the Si atomic
pseudopotential form factors fitted to empirical
bulk calculations. '6 They are derived from a
continuous extrapolation of the form

)
ui(q' —&a)

exp[a, (q' —a, )] + I

has to be evaluated. There are 106 occupied ba, nds
in the band-structure scheme (no spin-orbit in-

TABLE I. Form-factor parameters for the empirical
Si pseudopotential Ve~ [Eq. (3)] and for the ionic Si '
pseudopotential V&» [Eq. (8)].

a1= 0 ~ 342 70
ap = 2. 221 44
aa ——0. 863 34
a4 ——l. 534 57

b1 = —1.125 07
b2 = 0. 790 65
b3 = —0.352 Ol

b4 = —0.018 07

where the four parameters a, are given in Table
I. The potential V, ', (q) is normalized to an atomic
volume of 13'I.5 (a. u. ) with units of Ry if q is
entered in a. u. Using this starting potential, the
band structure E„(k) and the wave functions (t„g(r)
can then be calculated using standard methods, "
i.e., expanding the electron wave function in plane
wa, ves with reciprocal- lattice vectors and diagonaliz-
ing the Hamiltonian matrix to obtain electronic
energy E„(k) and the electronic wave function (t„r.

To perform the next step in the self-consistent
loop, the total valence charge density

(( (=I vg( (=2/+I(. ;(|(('
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teraction). For reasonable convergence of the
wave functions, a matrix size of the order of
750 x 750 is needed when the Hamiltonian is ex-
panded in plane waves. This corresponds to a
kinetic energy cutoff'1 &, = 15 I

= 2. '7 Ry.
addition, another - 800 plane waves were included
via Lowdin's perturbation scheme'7 to further
improve the accuracy of the eigenenergies. To
avoid a full Brillouin zone evaluation of the total
charge density at each iteration of the self-con-
sistent process, the total charge density p(r) is
approximated by the charge density evaluated at
one point k= I', The point I' was chosen because,
among the high-symmetry points, pr(r) provides
a good representation of p(r) for crystalline Si.
At the bond and atomic sites, pr{r) of bulk Si is
within 10% of the charge density given by a full
zone calculation, The choice of high-symmetry
points is necessary because the Hamiltonian ma-
trix can then be reduced by using symmetrized
plane waves.

Once p(r) is known, the Hartree screening po-
tential V~ and the Hartree-Fock-Slater exchange
potential V„are evaluated using

4we'p( )
If

(
(w

next iteration. ' An alternative procedure to the
one suggested in Ref. 13 is used in the present
calculations. The input screening potential of
the nth iteration is taken to be a weighted linear
combination of the input and output screening po-
tentials of the (n- 1)'" iteration. The criterion
for self-consistency is the stability of the subse-
quent output screening potentials. In the present
calculations, the final self-consistent potentials
are stable to within 0.005 Ry.

' B. T1gllt-blfldmg model

In this section a tight-binding model~~ for in-
teracting p-like atomic states in a fcc lattice is
described. This model will be used later to analyze
the vacancy levels of the Si vacancy in the ideal
crystal structure. %e consider a fcc array of
atoms which have three fold degenerate p-like
atomic levels (P„P„,P,). Then Bloch functions
of the form

g, {k)=~ ge' '+P„(r R„)—

q, (k) =~ P e'"'".P,(r —R„),
n

V„(P)= —fw(3/2w) (3w )'f ' ewp'f'(5), (6)

where n =0. V9 and p(5) and p'f'(4) are the Fourier
components of p(r) and p'f (r), respectively, Jus-
tification for the use of the Slater exchange poten-
tial and the choice of a are discussed in detail in
Ref. 13. V~ and V, together form the electronic
screening potential of the system. They are then
added to an ionic potential

P...(&) = S(&) &.'. (&)

y, (k) =~ ge""P,(r —R„)

are constructed and the band structure E„(k) is
given by diagonalizing

I I&II & E(f IHIID—

(«wlHI ~,&

(lo)

to form an input potential for the next iteration.
For V„'„we have used a local approximation of
a Abarenkov-Heine atomic model potential' which
is fitted to the foBowing four-parameter potential

vlt, (q) = (b,/q ) [cos(bwq)+f1, ]e'4' . (8)

The values of the 5, 's are given in Table I. The
normalization and the units for Efl. (8) are the
same as those for E1l. (3).

The calculation is continued by repeating the
whole cycle. However, owing to the divergent
character of Vlf and V„, for small 5's, self-
consistency cannot be achieved straightforwardly
by using the output screening potential from one
iteration as the input screening potential for the

where k is the wave vector, B„are the lattice po-
sitions, and H is the crystal Hamiltonian. As-
suming only nearest-neighbor interactions, the
Hamiltonian matrix can be expressed in terms
of three parameters: (a) u, the energy of the
isolated atomic states, (b) o, the interaction en-
ergy between parallel orbitals centered at neigh-
boring atoms which point along the line connecting
the atoms, and (c) w, the interaction energy be-
tween parallel orbitals centered at neighboring
atoms which are perpendicular to the line con-
necting the atoms. Denoting k= ($„gw, (,) with

tf 111 lllllts Of 2w/u Wllere 0 ls the la't'tice co11stall't

of the fcc superlattice, the matrix elements are
given by

{g, ~
H~ 1)1) =u+ (o+ w)[cosw(5, + t2)+ cosw(t, —t2)+ cosw((, —$3)+ cosw(t', + $1)]+2w[cosw(gw+ $,) + cosw()w —$1)],

{tII2 i Hi g2) =u+ (o+ w)[cosw($1+ t', ) + cosw()w —t3)+ cosw($2 —&,) + cosw(5w+ 5, )]+ 2w[cosw((3+ 4, ) + cosw($1- t', )],
{III,

~
H~ $3) =u+ (o+ w)[cosw($, + t, ) + cosw(g, —$, )+ cosw($, —4) + cosw{$3+ gw)]+ 2w[cosw($, + jw) + cosw($, —$,)],
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E(R= 1') =u+4cr+8v (12)

At k=X= (1,0, 0) one has (/&i HI/2) =I —4o,
(gz[H($3} =u —4v, Q, !H(g,) =u -4v and (g, (H)g, }
=0 for iw j. Thus two energy eigenvalues exist
at X: one is singly degenerate

E, (%=X) =u -4o (13)

the other is doubly degenerate

(14)

III. RESULTS AND DISCUSSIONS

A. Ideal structure

The first structural model used to study the
electronic structure of a neutral Si lattice vacancy
is the "ideal" structure. In this structure, the
atoms surrounding the vacancy site remain in
their crystalline positions after the vacancy is
created. A portion of the Si crystal structure is
shown in Fig. 2(a). Every Si atom is tetrshedrally
coordinated and the valence electrons form cova-
lent bonds linking the neighboring atoms. As a
result of creating a vacancy, four bonds are bro-

FIG. 2. Structure of cubic Si (a) and an undistorted
Si 1attice vacancy (b).

(g, ~
H

~ g,}= (w —o)[cosv(t', —5,) —cos w($, + &,)]

(g, ~H~ i(,}=(w- o)[cosv(g, —$, ) —cosv($, + $,)]

(g, ~
H

~ $3}= (v - o)[cosw(gz —$,) - cos v($3+ $, )]
(11)

For some high-symmetry k points, the eigen-
values can be obtained easily without diagonalizing
the 3x3 matrix, Eq. (10). At R=(0, 0, 0),
(g, I H} g}=u+4o+ 8v and (g, lH Jg&} =0 for f ej.
Therefore, the energies for the three bands are
degenerate at I' and have the energy

ken [see Fig. 2(b)]. The electrons which pre-
viously participated in the broken bonds will tend
to localize around the vacancy site and localized
vacancy levels are expected to appear among the
energy eigenvalues of bulk Si. In the present cal-
culations, we have found both vacancy states deep
in the Si thermal gap and strong resonant states
embedded in the bulk bands.

Before discussing the individual vacancy states,
first the total, self-consistent valence charge den-
sity as given by the approximations discussed in
Sec. II shall be examined. A necessary condition
for the present calculations to represent nonin-
teracting Si vacancies is that the charge density
away from the vacancy site should closely re-
semble the charge density of bulk Si. Figure 3
displays the total valence charge density in a
(110)plane for the ideal structure. The vacancy
site is located at the center of the unit cell (open
circle) and the atoms are indicated by full dots.
Note that, for the center chain of atoms, both an
atom and the associated covalent bonds are miss-
ing. The top and bottom chains are complete.
Their charge densities are in good accord with
densities obtained from bulk calculations'6'~'
(which illustrates the local nature of the lattice
perturbation).

As mentioned in Sec. I, vacancy levels which
are dispersionless in k space for an isolated va-
cancy will appear as bands in the present periodic
model. For the ideal structure, three vacancy
bands in the Si thermal gap and one strong reso-
nant band in the energy range of the valence bands
are found. More weak resonant states correspond-
ing to perturbed back bonds may exist in the va-
lence bands. Figure 4 shows the energies of the
vacancy bands at k= I'. The top figure depicts
the positions of the k=0 vacancy states with re-
spect to the Si bulk density of states. '6 The three
states in the gap are degenerate in energy at F.
In the bottom figure, the energy levels at I' for
several runs in the self-consistent procedure are
shown. The first row shows the energy levels of
bulk Si in the 54-atom unit-cell structure. The
empirical pseudopotential from Ref. 16 is used.
There are 108 occupied valence bands separated
from the conduction bands by the Si thermal gap
(shaded area in Fig. 4). The second row shows
the energy levels for the 53-atom unit cell (i.e. ,
53 Si atoms plus one vacancy) calculated using the
empirical pseudopotential. The last row shows
the energy levels for the 53-atom unit cell using
the final self-consistent potential. The vacancy
states are indicated by the arrows. Note that
the final self-consistent vacancy levels appear
significantly deeper in the forbidden gap than
those calculated from the empirical pseudopotential.
However, the energy of the resonant state at E
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gling-bond-like, i.e. , mostly h-like with a small
mixture of s cha, racter. Figure 5(b) shows
the charge-density contour plot for the resonant
state in the valence band. Again the charge den-
sity is highly localized on the atoms surrounding
the vacancy site. However, for this state, the
charge distribution is mostly s-like around the
atoms. Although these plots are calculated for
states at I', they are representative for the va-
cancy states, since it is found that the charge dis-
tributions of the vacancy states are virtually iden-
tical for all k points in the fcc Brillouin zone.

The origin of the vacancy states can be under-
22stood using a simple molecular-orbital picture.

In this model, one assumes that in first order
only the electrons in the broken bonds are sig-
nificantly perturbed and that the wave functions
of the vacancy states can be represented by a
combination of atomic orbitals. Specifically,
each molecular orbital (a single-electron vacancy
state) is expressed as a linear combination of
the dangling-bond orbitals (a, 5, c,d) of the four
atoms next to the vacancy site. Because of the
symmetry of a Si vacancy in the ideal structure,

FIG. 3. Total, self-consistent valence charge density
displayed in a (110) plane for a neutral Si vacancy in an
ideal, unreconstructed structure. Charge values are
normalized to one electron per unit celt. which extends
over 53 atoms and one vacancy.
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——8. 2 eV is pinned in energy by the minimum of
the density of states and changes only slightly in
the course of achieving self-consistency.

In Fig. 5(a) the charge-density contour map
for the vacancy states in the gap is displayed.
The plotting plane is the same as in Fig. 3 [(11P)
plane] and the plotting area is enclosed by the
two horizontal dashed lines in Fig. 3. As expected
from the fact that these states appear deep in the

gap, their charge density is fairly localized around
the atoms surrounding the vacancy site. There
is practically no charge built up on the atoms of
neighboring chains, however, some charge over-
lap between vacancy states within the same chain
is present. The charge distributions are dan-
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FIG. 4. (Top) crystalline density of states for Si
with the position of strong resonant and vacancy levels
at I'. (Bottom) energies at I' for the perfect 54-atom
unit-cell crystal using an empirical pseudopotential, for
the ideal vacancy using the same empirical pseudopotential
and for the ideal vacancy using the final self-consistent
pseudopotential are given. Note the lowering of the
vacancy level in the fu~dame~tal gap.
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Si VACANCY STATES
AT E = Ef- —03 eVg

~ Si VACANCY STATES
AT E = Ev —82 eV

FIG. 5. Charge-density plots in a (110) plane (area
enclosed by dashed lines in Fig. 3) of (a) the vacancy
states in. the fundamental gap and (b) the strong resonance
around —8. 2 eV.

The dehybridiza'. ion into s-like and p-like states
is, however, appreciable as seen from Fig. 5.
Moreover, the simple model does not include pos-
sible resonant state owing to perturbed back bonds.

The dispersions of the vacancy states in k space
which in a tight-binding picture are caused by the
interactions between vacancies in the superlattice
shall now be examined. The dispersion for the
resonant vacancy state at E- -8.2 eV is found to
be very small (-0.1 eV). This is confirmed by
Fig. 5(b) in which virtually no overlap between
orbitals centered at neighboring vacancy sites is
found. However, the dispersion of the three va-
cancy states in the gap is appreciable which can
be seen by the presence of charge between neigh-
boring vacancy sites [see Fig. 5(a)]. This result
indicates that the 54-atom unit cell chosen is not
large enough to completely decouple the individual
vacancies. In Fig. 6 symmetries and dispersions
of the states in the gap along the 4 direction from
1" to X are shown schematically. In the ideal
structure the three states are degenerate in en-
ergy at I with E=0.9 eV. Along 6, they split
into one nondegenerate band (6,) and one twofold
degenerate band (6,). At X the energy values are
E~(X)=0.7 eV for the twofold degenerate states
and E, (X) = —0. 3 eV for the nondegenerate state
(all energies are given with respect to the valence-
band maximum).

An estimation of the position of the energy lev-
els for a single noninteracting vacancy is obtained
using the tight-binding model described in Sec.
IIB. Assuming that the dispersions of the vacancy
bands in the Si gap are completely owing to near-
est-neighbor interactions among the "p-like" sin-
gle-electron vacancy states, the energy levels
u for an isolated vaca, ncy can be obtained by solv-
ing Egs. (12)-(14) simultaneously. This yields
the following expression for u:

u = —,'[E(I')+E,(X)+2E~(X)]
the molecular orbitals must transform under the
operation of the group T„according to irreducible
representations of that group. Thus suitable sin-
gle-electron wave functions are Sl V/lfh YQQQA&'jj

IDEAL REC. I REC. II

f)=0+5+8+4, 0&

t~=o+ 5 —c -d
ty=o Q -c+d
tg —Q~Q +6

The resonant vacancy state at E- —8. 2 eV has
the symmetry of the state a„whereas the three
states in the Si gap can be associated with the
above t2 states. This simple picture which cor-
rectly describes the symmetry of the vacancy
states found, does not of course account for the
dehybridization of sp' hybrids around the vacancy.

.I2)—() I(I)~p
I2I --- PI

Ill

Il
r x

I&
FIG. 6. Schematic energy diagram of dispersion be-

tween. I' and X and order of the Si vacancy levels in the
fundamental gap as a function of different reconstruction
models. For Bec I and Hec II, X is along the distorted
[100) direction.



1660 LOUIE, SCHLUTER, CHE LIKOWSKY, AND COHEN 13

Using the calculated values for E(I'), E,(X), and

E2(X), the energy for the threefold degenerate
vacancy state in the gap for an isolated vacancy
is u =0. 5 eV. At present no experimental data
are available which allow comparison of this cal-
culated value.

The radial dependence of the various one-elec-
tron potentia, ls of interest for the ideal neutral
Si lattice vacancy are displayed in Fig. 7. Non-
spherical contributions to the potentials are negli-
gibly small in the ideal structure. As described
in Sec. II the self-consistent calculations are
based on a lattice of Si ionic potentials V„,with
one vacant lattice site (solid curve). The long-
range Coulomb tail of this missing Si ' ion is
completely screened by the Hartree-exchange po-
tential V«of four defect electrons (dashed line)
as calculated from the total self-consistent va-
lence charge distribution. The resulting vacancy
potential Vsc (dotted line) is of short range simi-
lar to the empirical Si pseudopotential V, , (dashed-
dashed-dotted line) as used in crystal calculations.
Compared to V, „however, Vs~ shows a more
repulsive core and a deeper well around 1 A. A

similar difference has been obtained in recent
self-consistent surface calculations. " Also shown
for comparison is the self-consistent pseudopo-
tential Vsc (atom) obtained for an isolated atom
by a calculation based on the same ionic Si ' po-
tential V„, (dashed dotted curve). Even though
the vacancy and the atomic potentials show com-
parable amplitudes for the repulsive core and the
attractive bonding region, the self-consistent
atomic potential is of considerably longer range
and extends up to about 4 A. . This difference is
due to the presence of covalent bonds in the crys-

l I

Si ATOMIC AND VACANCY POTENTIALS

~0OO Oy
~ ~~ yP' ~ ~ 010 04 ~~a%v~

//

OlI
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—5
0

FIG. 7. Radial dependence of various Si atomic and
vacancy potentials.

talline case or dangling bonds in the vacancy case
which lead to an increased electron density be-
tween 1 and 2 A and thus to a stronger screening
decreasing the effective range of the potential.

B. Reconstructed structures

Results presented in Sec. IIIA indicated that,
in the ideal structure, there are three vacancy
states in the Si thermal gap which a,re degenerate
in energy. For a neutral vacancy, only one of the
three states (neglecting spin) is occupied. This
situation is unstable with respect to Jahn- Teller
distortions ' which lead to structural changes.
Indeed, a.s discussed in Sec. I, the charged V'

and V states for the Si vacancy are observed
to undergo Jahn- Teller distortions which produce
an uniaxial asymmetry in the electronic wave
function along the cubic I100] direction. Although
there exist no experimental data, on the detailed
structure of a neutral vacancy at present, it is
generally believed that a similar type of distor-
tion takes place for the neutral vacancy.

To study the effects of Jahn-Teller distortions
on the vacancy levels, the electronic structure of

a neutral vacancy is calculated for two differently
reconstructed structural models. The first re-
constructed structure is obtained by short ening
the distance between atoms d and g and between
atoms e and f in Fig. 2(b) by an amount equal to
~ = 0.48do where d& is the crystalline value of the
Si-Si bond length. This is done by symmetrically
moving the atoms toward each other along the
connecting line. This type of distortion produces
an asymmetry along the cubic I100] direction.
The estimated value for 6 is chosen to be in ap-
proximate agreement with the displacement found

by Swalin34 in his study of vacancy formation using
Morse potentials. This value does not present an
optimum choice, it merely represents a trial val-
ue. Figure 8 shows the total self-consistent
charge density for this reconstructed structure
(Rec I). As for the ideal case the charge density
away from the vacancy is very much bulklike.
However, the charge density near the vacancy
site differs significantly from that obtained for
the idea, l structure. There appears bondlike
charge between the two atoms which have been
moved closer to each other, whereas the stretched
back bonds become considerably weaker.

The effects of Rec I on the resonant vacancy
level a,re small; its energy remains at - —8. 0
eV. The effects of the distortion on the vacancy
states in the gap, on the other hand, are signifi-
cant. They are shown schematically in the cen-
ter portion of Fig. 6. The threefold degeneracy
at I' is lifted by the uniaxial distortion. The low-
er band (labeled n.,) remains in the gap, whereas
the twofold degenerate band (labeled A, ) merges
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Si WITH VACANCY
otal valence charge

(Reconstruction 1)

to occur.
To study the effects of an opposite movement

of atoms, another reconstructed structure, Re-
construction II (Rec II) is considered. The type
and symmetry of distortions for this structural
model is identical as for Rec I except for 5
=-0.48do, which corresponds to a contraction of
back bonds and a. net relaxation away from the
vacancy site. Figure 9 shows the total, self-con-
sistent charge density for Rec II. As compared
to Fig. 8, charge J;as been removed from the im-
mediate vacancy region and has been transferred
into the back bonds.

As for Rec I, the distortion does not significantly
affect the resonant vacancy level at about —8.0 eV.
The behavior of the vacancy bands in the gap is
shown on the right portion of Fig. 6. For Rec II,
only one vacancy band (As) exists in the Si thermal
gap. This band is fully occupied and separated
by a finite gap from empty states. Thus, the type

FIG. 8. Total self-consistent valence charge density
for a neutral Si vacancy in a reconstructed environment
(Rec I). The distances between the four atoms surround-
ing the vacancy are pairwise decreased, resulting in a
[100) uniaxial distortion and a net relaxation tozea~ds
the vacancy. Units are as in Fig. 3.

with the conduction band structure. The highest
fully occupied band is now h„separated by a
finite gap from unoccupied states indicating that
no further symmetry reduction (i.e. , Jahn- Teller
distortion) is needed to stabilize the system. In

addition, a netu (empty) vacancy band, labeled
6&, appears in the gap. This state is induced by
the chosen vacancy reconstruction and has its
wave function localized at the vacancy site. Rec I
has the net effect of moving the four atoms sur-
rounding the vacancy site closer towards the va-
cancy site. This distortion stretches and weakens
the back bonds. As a consequence some back-
bonding charge is spread out and transferred to
the second-nearest back bonds, which causes an
increased vacancy-vacancy interaction in the pres-
ent model. This effect is also recognizable from
the increased dispersion of the b,, vacancy band
between I' and X (see Fig. 6, middle). In analogy
to the Si (ill) surface, Rec I corresponds to an
outward relaxation and therefore seems unlikely

FIG. 9. Total self-consistent valence charge density
for a neutral Si vacancy in a reconstructed environment
(Rec II). Distances between the four atoms surrounding
the vacancy are pairwise increased, resulting in a [100]
uniaxial distortion and a net relaxation am)ay from the
vacancy. Units are as in Fig. 3.
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of distortion of Hec II which lowers cubic sym-
metry leads to a Jahn-Teller stable situation.
The strengthening of back bonds localizes the va-
cancy induced charge fluctuations which results
in a decrease of dispersion of the vacancy bands
along & (see Fig. 6). In contrast to Hec I, no

empty vacancy state is found in the gap of Si. The
6, vacancy levels become resonant levels with
the conduction bands.

While the exact atomic positions of the recon-
structed vacancy environment are still unknown,
Bec II-type relaxations are expected to occur
most likely. Analogies to the Si (111) surface
relaxation2~ support this model. More experi-
mental spectroscopic information about the neu-
tral Si vacancy is needed to clarify the situation.

IV. CONCLUSIONS

The neutral lattice vacancy in Si has been
studied embedded in a large 54-atom supercell
using a self-consistent pseudopotential formalism.
The method allows us to calculate self-consistently
the response of valence electrons to an arbitrary
arrangement of ionic cores. Thus three different
structural models of the atoms surrounding the
vacancy have been investigated, These models
are: the ideal undistorted Si structure, (Hec I)
a uniaxial. [100] distortion with a net relaxation
towards the vacancy site and (Rec II) a uniaxial
[100]distortion with a net relaxation away from
the vacancy site.

In each model one strong resonant virtually dis-
persionless band is found around -8.0 eV in the
valence-band region. Its character is predomi-
nantly s-like on the four atoms surrounding the
vacancy. In addition, vacancy bands appear in
the fundamental gap„strongly influenced by the
structural model used. In the ideal undistorted
Si structure a threefold degenerate vacancy band
is found with an estimated energy center of 0. 5
eV above the valence-band edge. This level is
onefold (neglecting spin) occupied which causes
Jahn- Teller instabilities. Spin- resonant experi-
ments on charged V+ and V vacancies indicate
the existence of a uniaxial [100] Jahn-Teller-type
distortion, which can be assumed to also exist for
the neutral vacancy. Both reconstruction models
Hec I and Rec II result in a uniaxial [100]distortion.
In both cases (inward and outward relaxation) one
vacancy level is split away to lower energies re-
sulting in a Jahn-Teller stable situation. Analo-
gous considerations to the Si (ill) surface re-
laxations favor model Hec II in which the four
atoms surrounding the vacancy are relaxed away
from the vacancy site, resulting in an increase
in strength of back bonds. The studies presented
here about the type of vacancy reconstruction ex-
isting in Si do not allow conclusive results and
call for more experimental, spectroscopic infor-
mation.
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