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Theory of electroabsorption by anisotropic and layered semiconductors. I. Two-dimensional
excitons in a uniform electric field*
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Department of Physics and Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801

(Received 2 September 1975)

A basis for the theory of electroabsorption by excitons in anisotropic and layered semiconductors is developed,
in which the excitons are assumed to be two dimensional. The effective-mass equation for a two-dimensional
exciton in a uniform electric field of arbitrary strength is solved exactly (numerically), and the electroabsorption
spectra computed for direct allowed, direct "forbidden" (second class), and indirect allowed transitions. The
calculated spectra are compared with corresponding spectra for three-dimensional excitons and with spectra
calculated neglecting the electron-hole interaction. The results are tabulated in a form that facilitates
comparison with experimental data.

I. INTRODUCTION

Layered materials, with their ease of intercala-
tion, ' favorable lubrication properties, tendency
toward Fermi-surface-driven instabilities, ' and
observable charge-density waves, have captured
the attention of many physicists in recent years.
The layered semiconductors, particularly the
transition-metal dichalcogenides, have exhibited
optical and electro- optical spectra with well-defined
bound exciton levels —although those levels have
often frustrated attempts to interpret them as
caused by either two- or three-dimensional ex-
citons. ' 7

In this paper, we establish a framework for
treating the electric field perturbed excitons in
layered semiconductors by solving exactly the
Schrodinger equation for a two-dimensional hydro-
genic exciton in a uniform electric field of arbi-
trary strength. These solutions can then be taken
together with corresponding solutions for three-
dimensional excitons "as starting points for the
interpolation between two and three dimensions
that will be necessary for the proper description
of the layered materials. This interpolation, how-
ever, is a good deal less trivial than one might
guess, because standard approximations are ap-
plicable only to limited ranges of field strength
and photon energy. ' ' Hence we shall confine our
attention here to the case of well-separated layers,
for which the two-dimensional approximation is
apt.

Section II contains the elementary formalism of
the theory of absorption by two-dimensional ex-
citons; Sec. III discusses the separation of the ef-
fective-mass equation and, together with Appendix
makes contact with previous three-dimensional
exciton work. Various limiting cases of exciton
theory are recalled in Sec. IV, and our results are
presented in Sec. V. Interpolation formulas for

analyzing data are given in Sec. VI and our results
are summarized in Sec. VII.

II. FORMALISM

In this section, we derive Elliott's formula for
the coefficient of optical absorption by excitons in
a layered material. The absorption coefficient
K„(~) is related to the imaginary part of the di-
electric function c2(u) by

K„(&d) = (de2(&d)/C g'((d), (2. l)
where (d is the photon frequency, c is the speed of
light, and q'(~) is the (real) index of refraction.
Assuming dipole transitions, we can write &2(&u)

(loosely called the optical absorption) in terms of
the eigenstates I n) of the unperturbed Hamiltonian:

4 2

e, (ur) =," limp l(0li ~ J(q)ln)l~5(h&u —h~„o) .
0 n

(2. 2)
Here V=AL is the crystal volume, e is the photon
polarization, J(g) is the Fourier transform of the
current operator, 10) is the ground state of the
crystal in the presence of an electric field F, but
not of the photon, and A~„o is the excitation energy
of the excited state In)

Taking In) to be exciton states of total momentum
K and internal quantum numbers v [weightedby an:
envelope function U,„„x(R)], and expressing I Kcvv) in
terms of the Wannier states centered at lattice
sites R', we have

(Ol e ~ J(q)
l
Kcvv)

8Al/2 L,1/2

~1/2 Ucvvx(Reh)mN Ro
eh

x e' "(v, Rale
'' '"e 'pic, Ra+Rex) ~ (2. 3)

~
Q

Rh

Here e, m are the charge and mass of the elec-
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tron, N is the number of unit cells, and e and e
refer to the periodic parts of the conduction- and
valence-band wave functions, respectively. It is
useful to insert a complete set of single particle

Bioch states I n, (M+K)„}, where the II and J. sym-
bols refer to components parallel to and perpen-
dicular to the layers, respectively. Then Eq.
(2. 3}can be written

i/21 1/2 K+K~ Ro
(0

~
e ~ J(q)

~

Kcv v} g U,„„x(R,„) g (v, k„R„~~e "'e ~ p
~
c, (k+ K)„(R„+Ro„)~}e

eh hJ H

The maximum overlap will occur for R,„~=0 and h~ can be expanded about, the minimum point (ko =0). Then
the sum over h, in Eq. (2. 4} results in a 5 function in ft,„„,and we have [from Eq. (2.2}]the Elliott for-
mula

4 RePs

ez(&u)= z 2 lim
o

0
Reg g=o

)(v, k, ,R„',
~

e "'e
p~ c, (ko+K}„(RI',+R,'„),}) P ~

U,„„x(0)
~

5(h~ —E„, E,„„"„}-

-=C»
i

U(0) i' S(h&u —E„,) . (2. 5)

This is the principal result of Elliott's theory
of direct allowed transitions to exciton states. '4

Similar expressions [Eqs. (4. 12) and (5. 1}]hold
for direct "forbidden" and for indirect transitions.
If the one-electron matrix element is assumed in-
dependent of energy (at least for energies within
a few exciton binding energies of the band gap),
then the absorption line shape is completely de-
termined by the envelope wave function U(R) and
the density of states S(E). These functions are ob-
tained by solving the effective-mass Schrodinger
equation.

III. SEPARATION OF EFFECTIVE-MASS EQUATION

The exciton effective-mass Schrodinger equation

c
—h s' h' s' h' 9' e'

q
———eI x U= EU,

2p.„Bx 2p, , By 2M, Bz~ &r
(3. 1)

where the x axis is taken in the direction of the
applied electric field I' and is perpendicular to the
normal vector of the layers, 2g5 is Planck's con-
stant, e = —

I e I, e is the static dielectric constant
of the semiconductor (approximated as scalar),
and p, „, p, » and M, are the eigenvalues of the ef-
fective-mass tensor. Here we consider an isotro-
pic layered semiconductor in which the layers are
mell separated:

(3.2)

Focusing our attention on a single layer and tak-
ing the units of energy and length to be the exciton
Hydberg and Bohr radius

(3. 3)

and

(3.4)

we find

(-v,', —2/o+fx) U=EU,

where me have defined the reduced field f by

F =- (fIt/ I e I a)x .

(3. 5)

Qualitatively, a reduced field f of order unity ion-
izes the 1s exciton. Transformation to parabolic
cylindrical coordinatesi 5

$=p+x, g=p —x,
x= —,'($ —g), y= & $g, (3. 7)

X[' —&g(5)X&(t') =0,
x2' —&&(l)x&(&)=0,

where we have

U(x, v) = X&(k)X&(K)/(If'",

1-m' t 8 f(v(g}=-1 4(2 ( 4 8 t+ ~ +

and

(3. 8a)

(3. Bb)

(3. 9)

(3.10a}

1 —m J—f E f&
Vz(t} = —

z + + —+— (3.10b)

Here f is a separation constant (with a discrete
spectrum), 4= 1, '6 and we have m =+ 2 for two di-
mensions. The purpose of writing these equations
in this form is to facilitate comparison with the
three-dimensional case, where the separated
Schrf)dinger equations (3.8) are identical, with the
exceptions that the coordinates $ and f are some-
what differently defined, and the wavefunctionis
somewhat differently normalized. Thus, with
some minor modifications detailed in Appendix,
the problem of computing exact (numerical) solu-

leads to the separation of the Schrodinger equation:
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tions of the effective-mass equation has been
solved.

IV. LIMITING CASES

In discussing the calculated spectra, i.t vrill be
useful to compare with several limiting cases, de-
pending on the dimensionality d ( =2 or 2), electric
field strength (f}, and electron-hole interaction
strength (Z). Analytic results are available in the
folio@ring cases

Two dimensions (d = 2)

(4. 18)

a. Zero fiel-d zero electron ho« -interaction
(f =~=0):

4ze' - -, r jfi t&(i i « ~ P
Cg2 — lim 2 2 4 c ko ii Hgg

R~ 0

«Pit&(tie
+ ~y kos }) Rh&

A. Allowed direct transitions

«z(~& = Col U'(0} I'~(E&,

E= $(h& ~ E

p
— Ef-z/3

Two dimensions (d =2)

c = ...I(,ol ~ ml, O&l'.

(4. 1)

(4. 2)

(4. 8)

(4.4)

.,=(c„/4.)Ee(E) .
b Er.anz-Ketdysh effect1' (f &0, Z=O):

z/3

«z (parallel to field) =
8z 2

X 3Al 2 p +2 p Al f N
~22/3&

«z (perpendicular to field) =
—C1z f "'

a. Zero field z-ero electron ho« int-eraction

(f =d=O}:

«z = (C(a/4v) 6(E), (4. 5)

~00

A1(t )dt,
4F ~ 2/3

(4. 8)

where 6(E) is the unit step function.
b, franz Keldysh ef-fect: finite field ze-ro e«c

tron-hole interaction" (f &0, &=0):

r 4

x 2/3p Ai t dt+Ai' 22/3p
"22/3g

c. Zero field ex-citons (f =0, 8=1):

QzP ( )b(E ( 1) 2)

G1P6(E) E+ 4
4g ] ~esgl'/~g

2. Three dimensions (d = 9)

(4. 18)

(4. 17)

2

C~=lim, z z l(c, kol« ~ Plo, ko&l . (4.8}
Pl QP

0

a. Zero field zero e-lectron hole interaction-
(f =~=0):

«, =(C /4v)use(E).
b Franz Ee.tdysh effect-z' (f &0, Z=O):

«. =(c./4. )f'"[I» (p&l'- pl»(p) I'j . «. »&

c. Zero-field excitons'4 (f =0, /=1):

(4.9)

Q —5(E ), . (4. 11)2~~3~y2/g
nnl

8. "Forbidden" direct transitions

where the Airy function Ai(t) is normalized as by
Abramovritz and Stegun. '8

c. Zero-field excitons'"z~ (f =0, /= 1):

3~~+ + 2 + 2/~E
CO2

" |-z Coze(E&

tl&l
'I ].+g

(4. 7)

4zezh' - pii)(ii« ~ pC13= lim z z 5 ciko
om ~Ra ', E, -E,

0

a. Zero-field zero e«ctron hole interacti-on

(f =Z=O):

(4. 18)

«, = (C„/12v')E'/ze(E) . (4. 19)

b. Franz-Keldysh effect1~ (f &0, J=O):

«z (parallel to field) = (C»/12m)

x f[p Ai (p}—2Ai(p}Ai'(p)-plAi'(p)l j,
(4. 20)

c. Zero fietd excitons-(f =0, Z=1):

C1~~ (n —l)(n+ 1) z, C»6(E) E+ 1
sv n' 8v

& E+n /+
the 2 -e

(4. 22}
D. Vfeak-field (Starkwffect) limit (J = 1,f &&1)

«z (perpendicular to field) = ( —C»/24')

xf[2p [IAi'( p) I' -pAiz(p) j+Ai(p)Ai'(p)j .
(4. 21)

«, =c, l~v(0)l's(E) . (4. 12)
In the weak-field bmit, the usual perturbative

Stark-effect theory is applicable, giving quadratic
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&i. = —4 —6&' (4. 23)

Stark shifts of the 1s exciton and linear shifts and
splittings for n~ 2 levels. In three dimensions,
we have E„=—I -wf2 and E2= ——,'+3f .In two di-
mensions, the corresponding results are

E.=-!I~ (8/v 3)(g)'/ . (4. 24)

The two-dimensional 1s Stark-perturbed wave
function is
U„= [4/2m(l+ „",,', /')P"[1+ ,' fx( —,'+ p)-+ 0(f2)]e

(4. 25)

The dipole matrix element connecting two-dimensional s and P states is

(nP, ~x ~ns) = —eF,)&, z pdpexp —p, y 3 I,„,[I,„(x)—2I,„, (x}~L,„2(x)]
2(n+ l)(n+ 2) "2 (n+ —2)~

"
1 1 2p

4(n+ 2) (n+ —,')~(n+ -', ) dc (n! )' a'"'

—2 p p F[-n- I —n. —2n —1.(o/7)2]
I'(2n+ 2) (- 1)"r ~""
n! (n+ 1)! o~"'~ y y

, ,
—,„.,

'
~( . 2, .; 2. 2;(.y.))),I'(2n+ 3) (- 1)"ra"'

A)1 kg+2 1 g~"+~ (4. 26)

where we have;

1 1 1 1cr=, +,, r=, —,, and I"(n) =(n —1)!
'lb+ 2 Pl+ 2 Pl+ 2 '8+ 2

F[n„n„ns; u] is the Gauss hypergeometric series,
normalized as in Ref. 1.8,

The 1s Stark-effect energies are plotted in Fig.
1 as dashed lines both for two and three dimen-
sions. The perturbation theory of that level is val-
id for f &2. 3 in two dimensions and for f &0. 4 in
three dimensions. The two-dimensional exciton is
more tightly bound, less polarizable, and there-
fore less easily ionized by the same field. Note
that in both two and three dimensions the 1s ex-
citon shifts to lower energy in a weak field, but as
it broadens with increasing field, its peak shifts
to highe~ energy, eventually moving into the con-
tinuum.

so large that they are experimentally inaccessible:
f» 100.

V. COMPARSION BETWEEN TWO- AND
THREE-DIMENSIONAL ELECTROABSORPTION

LINE SHAPES

A. Allowed direct transitions

The (unbroadened) allowed excitonic (J=1) ab-
sorption for two and three dimensions is depicted
in Figs. 2(a) and 2(b} for reduced fields f=0, 1,
and 3, The zero-field one-electron (Z=O) results

r I ~ I ! '. I

E. Ultrastrong field limit (f &&1 )

E=3.Vll fa" in two dimensions, (4. 27}

A t extremely strong fields f» 1, the Coulomb in-
teraction is dominated by the applied field, and
what had been the 1s peak appears as the first
peak of the Franz-Keldysh oscillations at energies. 0 0''

(A
C3
CL

~ ~

d=Z
J=O

.
'd

J

E = 2. 338f~'~ in three dimensions . (4. 28)
-5

0.1

! t i I » ill ~id» ill I

0.2 0.5 I.O 2.0 5.0 IO.O 20.0 50.0 I00.0
f

These asymptotic curves are depicted as dotted
lines in Fig. 1. Note that even for large fields f
~ 100 the numerical calculations (solid lines) do not

yet reproduce the ultra-strong field limit, which
can only be reached for f"' » 1, that is for fields

FIG. 1. Computed positions of the 1s exciton absorp-
tion peak (solid curves) vs logfpf for d=2, 3. The small-
field limit [Eq. (4. 23)] are shown by the dashed curves,
and the Franz-Keldysh limit [calculated from the deriva-
tives of Eqs. (4. 6) and (4. 10)] is shown by the dotted
lines.
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FIG. 4. Computed electroabsorption for d=2, f&&l,
near the n =2 level. The linear Stark-shift splitting is
given in Eq. (4. 24) for small fields. For larger fields
the n = 2 state is ionized.
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FIG. 3. Franz-Keldysh effect (zero electron-hole
interaction: J = 0) for allowed transitions computed for
(a) d =2 and (b) d =3 with f= 0, 1, and 3.

FIG. 2. Allowed absorption I U(0) I S(E) for (a) d=2
and (b) d=3 plotted vs E:—(Ace —E~)/R for f=0, 1, 3.
The zero-field one-electron limit is shown by the dashed
lines. The unbroadened zero-field excitons are & func-
tions indicated by arrows,

are also depicted in those figures as dashed lines.
Corresponding curves for the finite-field one-elec-
tron theory are given in Figs. 3(a) and 3(b). Note
that in both dimensions the electron-hole Coulomb
interaction enhances the absorption over the one-
electron result, producing bound states at energies
E„=—R/[n ——,'(3 —d)]' which join on continuously to
the Coulomb-enhanced continuum. For a particular
field strength, the remnants of the bound excitons
are much more pronounced in two dimensions than
in three; the classical ionization field for the nth
exciton f, —= e I E„I~/41el =(8[n ——,'(3 —d)]~] ~ is larger
in two dimensions than in three and so the excitons
are less easily ionized by an applied field. Even
for fields such as f=3, well above the classical
ionization field, a well-defined excitonic resonance
persists below the band gap.

In Fig. 4, we display the two-dimensional weak-
field excitonic absorption (f&1, J= 1) in the vicin-
ity of the 2s exciton. For f=0. 04, the n=2 Stark
doublet is visible with its center shifted slightly to
lower energy and a splitting nearly equal to the
perturbation theory value. For the larger fields,
the 2s exciton is thoroughly ionized.

The ionization of the two-dimensional 1s exciton
is documented in Fig. 5 for large fields f&1. Cor-
responding figures for three dimensions have been
published previously by Ralph' and by Blossey.

B. "Forbidden" (second-class) direct transitions

The absorption strength for direct forbidden
transitions in two and three dimensions is given in
Figs. 6 and 7 including the electron-hole interac-
tion (J= 1) and neglecting it (J=o) for reduced fields.
f= 0, 1, and 3 and for light polarized along the
direction of the field. Note the weak field-induced
peaks associated with the n =1 exciton [in Figs.
6(a) and 6(b)]. The applied field mixes some "p"
wave function into the ls state giving it a finite os-
cillator strength for "forbidden" transitions. Note
also that the forbidden 1s exciton peaks occur at
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FIG. 5. Allowed excitonic two-dimernsional spectrum
for larger fields. As the field increases, the ls peak be-
comes more ionized (broadened) and shifts to higher
energies.

different energies than the corresponding allowed
peaks [Figs. 2(a} and 2(b)].

For light polarized perpendicular to the applied
field the fieM-induced change in the absorption
spectrum is small; therefore ore have plotted the
(unbroadened) difference between finite-field and
zero-field absorption for this case (Figs. 8 and 9}.

The results for three-dimensional forbidden
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» I I
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Fol'b l d de A

0.08—
bJ
cn 0.06-
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E

FIG. 7. Franz-Keldysh effect (4= 0) f or forbidden.
transitions with & llF for (a) d=2 and (b) d=3 with f=o,
1~ and 3
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FIG. 6. Computed absorption l ~U(0) l 28+') for "for-
bidden" transitions with photon polarization, & parallel
to the electric field F. (a) for d=2 and (b) for d=3 and
reduced fields f=O, 1, and 3. The bound exciton positions
are denoted by arrows. Note the remnant of the n =1
exciton, which becomes allowed in the applied field.

Q Q4 f I I I I j

-5 -4 -3 -2 -l Q
E

FIG. 8. Plot of 4&&/Co —= (&2(u, F) —&2(~, 0) I/Co for'
forbidden transitions with &&F (a) for d=2 and (b) for
d=3 with f=o, 1, and 3. The arrows show the relative
oscillator strengths of absorption by the & function bound
states,
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FIG. 9. Plot of g&& for J'=0 (Franz-Keldysh) for for-
biddentransitions vyith& &F for (a) d=2 and (b) d= 3, with
f=0, 1, and 3.

Coa m (5. 2)

The finite-field electroabsorption has been com-
puted for f= 3 and so nearly equals the zero-field
absorption that we show the differential absorption
he~=e2(g, f) —e~(g, 0) in Fig. 11. It is noteworthy
that Kamimura et a/. have interpreted GaSe data
in terms of an indirect transition model; hence,
under appropriate (difficult) experimental condi-
tions, electroabsorption data and the theory of
Fig. 11 could be used to test this interpretation
and to determine band parameters of such materi-
als in the manner of earlier three-dimensional ex-
clton work

VI. INTERPOLATION OF THEORETICAL CURVES

In most experiments, one measures the direct
allowed differential absorption b, e,(&u, E)= e, (~, E)—
—&z(~, 0) and easily determines the positions of
spectral nodes and antinodes for A~&E„„as func-
tions of applied field strength. To facilitate com-
parison with such data, we exhibit in Fig. 12 the
calculated positions of these nodes and antinodes

transitions constitute a set of predictions for the
strong-field electroabsorption spectrum of Cu~Q.

C. Indirect transitions

Thd principle of momentum conservation de-
mands that an annihilated photon transfer all its
momentum to the excitation it creates leaving an
excitation with virturally zero wave vector K= 2m/
~= 0. For direct transitions, the light excites only
electronic states. For indirect transitions, both
the lattice and the electrons are excited, the com-
bined excited state having zero momentum (hK=O).
However, in general, a range of nonzero center-
of-mass electronic momenta —kQ is possible with
the lattice recoiling to produce net zero momen-
tum for the total excitation. The opening of this
center-of-mass channel brings in the center-of-
mass density of states. Thus the indirect absorp-
tion is to be obtained by convolving the Elliott the-
ory of direct transitions with the density of center-
of-mass states2~.

3.0—

CA
CU 20-

C3

l5-
Ld
CL

C3

I.O—

d=2
f =0
Indirect

+$

az(g) = &2(x) dx . (5. 1)
I I I I

-2 -I 0 I 2 3

Here we have g =5~ —E,~+AQg, where hag is
the energy of the phonon responsible for the indi-
rect transition. For two-dimensional excitons in
zero field this yields a series of step functions for 8
&0 (see Fig 10).

FIG. 10. Zero-field indirect electroabsorption for
d =2. The series of step functions for Sce —Eg~- SQ@
—= b &0 result from the convolution of the bound-state &

functions with the center-of-mass density of states [see
Eq. (5.2)l.
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as functions of f. If we define E(n, f), the position
of the nth node or antinode, then an adequate ap-
proximation to the curves in Fig. 12 is

l4
cv

&]

c3 I2

—I =0
I I I

IO

KL

I I I

-8 0 4 12

FIG. 11. Computed differential absorption && (6' f)/2

Cp2 plotted vs b for f=3, d=2 allowed indirect tr t 0

FIG. 13. Computed absolute values of &2/Cp at the
maxima (long dashed) and minima (short dashed) for
d=2 plotted vs logtpf, The solid lines are calculated
from Eq, (6. 3) and Table II.

5 5

E(»f)=f"'2 2 Ei(losisn)' '(»g f)' '
(6. 1)

where the coefficients I3;, are listed in Table I. In
(6q. & . &, n = 1, 3, 5 corresponds to the first, sec-

ond, and third nodes (for E&0), n=2, 6, 10 corre-
spond the minima in 6&2 and n=4, 8, 12 correpond
to maxima.

These results are appropriate for weak I,orentz-
ian broadening: I'«R, I'« fR; corresponding
results for larger values of I' are available else-
where. s For f )1 and Iftu&E, », the structure in
des(tu, f) is normally dominated by the zero-field
(broadened) excitons, because es(tu, E) is a smooth
function of A, having only a broad peak reminis-
cent of the bound 1s exciton state.

The function

fO

LLJ

g(tu} = n&, (tu, F) =A(tu, E) cos8(&u, F) (6. 2)

oscillates as a function of photon energy Pi~; the
absolute value of the envelope function A(tu, F}os-
cillations is given in Fig. 13. An approximation
to the curves in Fig. 13 is

C2

CL 0 0 .2
i i i i

6 .8 I.O !.2 I.4 I.6 I.8
Log f

TABLE I. Fitting coefficients for Eq. (6. 1) for
approximating the positions of nodes and antinodes of
al, lowed electroabsorption. See Fig. 12.

FIG. 12. Computed position (E/f ) of nodes (solid
lines), relative maxima (long dashed lines), and relative
minima. (short dashed lines) of Q&2:—&2(u, f') -&24, 0) for
d =2 allowed absorption plotted vs log«f. The 1s exciton
peak moves into the continuum for f' & 35, (i. e. , logtp f'

& 1.55) and is denoted by a dotted line.

i=1
f =2
i=3
i=4
i —5

—l. 9399
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0, 0090

)=2

4. 8579
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j= 3
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—0. 0508
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—0. 0438
0.1234

—0. 0837

—O. OOO1

—0. 0841
0. 5945

—l. 0770
0. 5724

0 ~ 0019
0. 0886

—0 ~ 5872
1.0341

—0. 5430

—0. 0003
—0. 0248

0. 1587
—0. 2774

0. 1454

5 5

X(Z(s, /), /) = g P &;;(»g„as)' '(»goof)'
j=i

(6. 8}
where the coefficients A, ~ axe listed in Table II and
are the same as in Eq. (6. 1).

VII. SUMMARY

A principal obstacle to a complete theory of
electroabsorption in anisotropic semiconductors
has been removed; it is now possible to compute
elec troabsorption line shapes for two-dimensional
excitons. These solutions can be combined with
the adiabatic approximation37 to generate approxi-
mate line shapes for electroabsorption by aniso-
tropic three-dimensional semiconductors (large,
but finite mass M,).

APPENDIX

TABLE II. Fitting coefficients for Eq. (6.3) for allowed
electroabsorption amplitude AtE(n„f),f]. See Fig. 13.

x
l
zr(o) l's(z), (DR4. 7)

l
rr(D)l's(&)= ~g Q(&*w'f" xt.„(oF'A),

n

(DR4. 8)

( +1 [1 t$/(m+1)+ O($ )],
d'r = ,'(f-/5+ (Ik) d5 di;,

] r 'sa rL3

x.'(g) dg =1
~0

(DRA1)

(DRA4)

~ x a(&; t., &')xo(&; t., &') ~'

sic o
0 (DRA8)

ea 2 g 1/2

m'cg'(&u)oi g 2f

~ x, (&; t., E')x.(&; t., E') ~'

0"0

(DRA11)

X'(') d((2L, ) "~',
4-0

(DHA 7)

„(l')= l' '" [1+(1 —t)i:/(m+1)+ O(l'o}],
(DRAB}

g l v„(o) l'6(s-s„)

( —Vo, —2/p+ fx) U„(x, y) =E„U„(x,y),
&=o —x, x=a(t —l'),

y=~t'&, p =a(&+0),

L( p) = X,($)Xo(&)/(«)'",

(DH4. 1)

(DR4. 2)

(DR4. 4)

A„=(2ge /m cg'&u) l(cko. ~~ Bail e ' p I cko, Rai) I

In two dimensions, the following equations re-
place the corresponding equations of Sec. IV and
the Appendix of Hef. 11. (The equation numbers
of this latter reference appear in the margin pre-
ceded by DH. )

(DRA12)

~

v(ol~ s(z~= + p(& y'I

""
Xa-ee(&; ta& E}d&&'(ta, &)

(DHA18)
We hereby correct the following typographical

errors in Hef. 11: Eq. (2. 6) should read (d/dt)lk(t)
=eF; the line below Eq. (2. 7) should have Xo

=2ma' 1 el'/5'; and Eq. (Alo) should read p(E')
=dn/dE' = n' 'v'L /2f.

Rese arch supported by NSF under Grant Nos. DMR-
7203026, GH-33750, and GH-39132.

~Present address: General Electric Corporate Re-
search and Development Center, Schenectady, N. Y.
12301.

F. R. Gamble, J. H. Osiecki, M. Cais R Pisharody,
F. J. DiSalvo, and T. H. Geballe, Science 174, 493
(1971).

2A. W. Overhauser, Phys. Rev. 167, 691 (1968).
~S. -K. Chan and V. Heine, J. Phys. F 3, 795 (1973).
4J. A. Wilson, F. J. DiSalvo, and S. Mahajan, Phys.

Rev. Lett. 32, 882 (1974).
H. Kamimura, K. Nakao, and Y. Nishina, Phys. Rev.
Lett. 22, 1379 (1969).

J. Bordas and E. A. Davis, Sol.id State Commun. 12,
717 O. 973).

7G. Harbeke and E. Tosatti, Phys. Rev. Lett. 28, 1567
0.972).

D. F. Blossey, Phys. Rev. B 3, 1382 (1971).
H. I. Ralph, J. Phys. C 1, 378 (1968).
OB. Y. Iao, J. D. Dow, and F. C. Weinstein, phys.
Rev. B 4, 4424 (1971).
'J. D. Dow and D. Redfield, Phys. Rev. B 1, 3358
(1970).

' W. Andxeoni and R. Del Sole, report (unpublished).
13G. Wexler and B. Ricco, report (unpublished).
4R. J. Elliott, Phys. Rev. 108, 1384 (1957).

' G. A. Korn and T. M. Korn, Mathematica/ Handbook
for Scientists and Engineers (McGraw-HiQ, New York,
1968), p. 178.
The limit of vanishing electron-hole interaction is
achieved by setting 4=0.



1642 FRANK L . L EDERMAN AND JOHN D. DOW 13

'D. E. Aspnes, Phys. Rev. 147, 554 (1966).
M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matical Functions (Dover, New York, 1968), p. 775.

~M. Shinada and S. Sugano, J. Phys. Soc. Jpn. 21,
1936 (1966).
S. Fliigge and H. Marschall, Reichenmethoden der
quantentheorie (Springer-Verlag, Berlin, 1965), p. 80.
K. Tharmalingam, Phys. Rev. 130, 2204 (1963).
We note an interesting feature of two-dimensional.
exciton theory: namely, if conduction. and valence bands
are parallel but not flat, the reduced mass is infinite,
but the total mass is zero. Hence, it is possible to

have two-dimensional indirect transitions where the
convoluting function is three dimensional rather than
two dimensional.
P. Handler, S. Jasperson, and S. Koeppen, Phys.
Rev. Lett. 23, 1387 (1969).
S. F, Pond, Ph. D. thesis (University of Illinois, 1971)
(unpublished) .
&e&(E, I") = f"„B(E-E,I')gc&(E ') re ', where B(A, I')
= (r/~) (r'+&')-'.
F. L. Lederman, Ph. D. thesis, Ch. 3 (University of
Illinois, 1975) (unpublished).
'E. O. Kane, Phys. Rev. 180, 852 (1969).


