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Level quantization and broadening for band electrons in a magnetic field: Magneto-optics
throughout the band
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The problem of the electronic structure of a perfect tight-binding crystal under a constant magnetic field is

studied. Quantitative analysis based on a method of continuous fractions is developed. This method is

compatible with the magnetic translation group. Calculations are carried out for various fields and an

interpolation scheme, valid for fields up to 10' 6, is presented. In the two directions perpendicular to the
field, the density of electronic states consists of subbands —i.e., broadened levels —separated by gaps. The

broadening is negligible for most levels. It is, however, paramount in narrow energy ranges close to two-

dimensional saddle points, where for all practical purposes, the subbands merge into a single continuum. The
resulting electronic structure is applied to study the magneto-optical response of a hypothetical simple-cubic

crystal with an infinitely narrow core state. Wavelength and field modulations are discussed; excitonic effects
are not included.

I. INTRODUCTION

The energy spectrum of an electron in the si-
multaneous presence of an external magnetic field
H and a periodic crystal potential V(r) constitutes
a difficult and by now classical problem. It is
difficult because the effects of the potential V(r)
and the field H are quite different in nature. The
former causes the formation of energy bands while
the latter quantizes the electronic motion and
tends to form na.rrow levels. The problem is
further complicated by the fact that the two natural
"periods, " introduced by the field H and the poten-
tial V(r), respectively, are, for most values of
the field, incommensurable.

In general, for H along a symmetry —or any
rational index —direction z, the motion of the
electron along z is unaffected by the field H and

decouples completely from the remaining two di-
rections. This is why 5 k3, the z component of
the crystal momentum, remains a good quantum
number. The magnetic field, however, does af-
fect the transverse electronic motion (i.e. , mo-
tion in the x-y plane). In free space, the elec-
tronic levels for the transverse motion a,re dis-
crete and equivalent to those of a hypothetical
harmonic oscillator with cyclotron frequency as
its resonant frequency. ' Physically, these al-
lowed levels, the so-called Landau levels, con-
sist of only those cyclotron orbits enclosing an inte-
gral number of magnetic flux quanta. In fact, this is
the cornerstone of Onsager's semiclassical ap-
proach to the problem of band electrons in a mag-
netic field. In short, cyclotron orbits compatible
to the zero-field energy band, rather than the
free-space circular ones, are used in this method.
The Onsager quantization scheme ' thus partially
takes into account effects of the periodic potential.
Broadening effects, the other important conse-

quence of the crystal potential, are however total-
ly neglected in this approximation. Onsager's
approach, nonetheless, yields accurate results
whenever applied to situations where the energy
of the transverse motion is almost a maximum or
a minimum. That is, the transverse energy is in
the vicinity of two-dimensional (2D) critical points
TD (minimum) or T2 (maximum). Therefore, the
energy levels around three-dimensional (3D) Van
Hove singularities Mo (minimum) and M3 (maxi-
mum), regardless of the direction of the applied
field H, are well understood. On the other hand,
the semiclassical method breaks down completely
near 2D saddle points T, . There the broadening
effect is paramount. Hence, electronic behavior
around 3D saddle points M, and M2 is more com-
plicated. When the magnetic field is in the direc-
tion of that principal axis along which the effective
mass has a different sign, i. e. , when the 2D
singularity is either To or T2, Onsager's scheme
can still be applied. But, if the field is along any
of the other two principal axes, i. e. , the 2D sin-
gularity is of the T, type, broadening effects must
be taken into proper account.

Experimentally, Landau levels just about Mo
points can be observed by magneto-optical tran-
sitions. These transitions have been studied
thoroughly for almost 20 years. Similar transi-
tions at saddle points M„however, were observed
only recently. 5 In this case, the understanding of
the phenomenon is not quite complete. The mag-
neto-optical behavior above M, points was first
discussed theoretically by Bassani et al. ' Their
analysis is incomplete because of their assumed
quadratic energy band. Obviously, a quadratic
expansion is valid only in the immediate vicinity
in k space of one given M, saddle point. There-
fore, contributions from the rest of the band, in-
cluding points of the same energy and other degen-
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exate M~ points, have not been taken into account.
In order to treat the complete structure more
realistically, a better band picture has to be used.
We study, in this paper, the case of a magnetic
field along one of the cubic axes of a simple-cubic
crystal with an infinitely narrow core state and a
single s -like tight-binding conduction band. In

oux geometry, it is obvious that the situation
studied by Bassani eg al. 6'7 corresponds only to
the case of the M& saddle point along the z axis,
where the quantization of almost-circular orbits
perpendicular to z is still valid. The peaks above
the M& critical point in the magneto-optical ab-
sorption discussed by them are then due to these
quantized transverse-electron orbits. As far as
the topological prope'rties in the transverse plane
are concerned, such a point actually corresponds
to a 2D minimum (To). It is also obvious that
electrons with very small k3 components, which
move close to the other two M& singularities, can
a,iso contribute to the optical absorption. How-

ever, for electrons in such orbits, the crystal
potential broadening cannot be neglected. We thus
have to investigate in detail the bx"oadening of
Landau levels in a solid.

Physically, this broadening is related to the
periodicity in the reciprocal space, i. e. , a typical
solid-state effect. Harper ' first demonstrated
that the broadening is extremely small and negligi-
ble near the top (T2) and bottom (To) of the 2D
bulk band —i. e. , the band for constant k3. This
coxresponds to the case studied by Bassani et al. '7

In these regions, the center of gravity of each
level is just that given by the semiclassical On-
sager scheme, Harper also found that the broad-
ening effect is much more prominent near the
center of the 2D band; this is the case that we want

to study now. Yet, owing to the breakdown of his
%KB approximation, Harper was unable to calculate
the width of the levels there. Nor was he able to
show quantitatively where and when the broaden-
ing effect becomes important. Independently, Zil'-
berman employed essentially the method of linear
combination of atomic orbitals to the study of the
same phenomenon. However, his calculated elec-
tronic levels do not even agree with the semiclas-
sical ones in the appropriate limit. The disagree-
ment occurs in zeroth order and hence cannot be
attributed to the higher-order coxrections dis-
cussed by Both. The discrepancy actually stems
from his assumptions and approximations which

are, unfortunately, not all true, Since then, many
other calculations have been undex taken by dif-
ferent authors. All of them, however, are for
the extremely-high-field limit, typically for fields
larger than 106 G. For all practical purposes,
they are all beyond the range of present experi-
mental interest, In Sec. II, we study the problem

II. THEORY OF LEVEL QUANTIZATION AND BROADENING

A. Difference equation

According to the tight-binding model, the elec-
tronic band structure of an s band in a. simple-
cubic lattice, in the absence of a magnetic field,
is given by the following expression:

E(k) = —E,(cost,a+ cosk2a+ cosh, a), (2. 1)

with

k= (kq, kq, ks), (2. 2)

where a is the lattice constant and E, is the near-
est-neighbor energy-transfer integral. The px'op-

erties of this band structure are very well known.
It extends from —3Ey to 3Ey in energy and has a
total bandwidth of 6E~. The standard 3D Van Hove
singularities Mo, M» M» and M3 a.re found at en-
ergies of - 3E» —E„E„and3E„respectively.
In any plane normal to one of the cubic axes, say
z, the corresponding 2D band has a total width of
4E,. It ranges from —3E, to E, in energy in the

A3 = 0 plane; from —E, to 3E, at the top of the
zone, i.e. , 53=v/a; and from —2E, to 2E, in a
plane midway between the center and top of the
zone, i.e. , k, =v/2a. At the center of each 2D

band, there is a logarithmic T, singularity. This
is one of the standard 2D Van Hove critical points.
In principle, each 3D Van Hove singularity can be
obtained by combining the 2D density of states with
the appropriate 1D density of states (from the z
direction). For example, critical points M, arise
from the T, singularity of the 2D band in the A3 =0
plane together with the I.o singularity, i.e. , the
minimum of the 1D band from the z direction (con-
tributions from ky = 7//Qq kp =43 = 0 and from kp = &/

a, k, =k, =0), as well as from the To singularity in
the 2D band in the k, =+ v/a plane together with the
f,, (maximum) singularity of the 1D (z direction)
band (k~ = kq ——0, k~ = a w/a).

If we neglect interband transitions, and the Zee-
man effect, the Schrodinger equation describing
the behavior of a bulk electron in the presence of
a magnetic field IT is given by

E(~)U(r) = WU(r) (2. 2)

of level broadening based on a method of continued
fractions. An interpolation formula is found nu-
merically and applied to determine when the broad-
ening effect is important for magnetic fields in the
range of 0. 1 to 10 ko. A simplified but realistic
working model is then proposed. In Sec. III, we

apply the model developed in Sec. II to the study
of magneto-optical transitions. The absorption
coefficient and its modulation spectra are calcu-
lated. The modulation spectra are those with re-
spect to the frequency of the radiation field and to
the strength of the applied magnetic field. Our
calculations and discussions are given in Sec. IV.
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In the above equation, the Hamiltonian E(Tc) is ob-
tained from Eq. (2. 1) with Tc, a differential opera-
tor, defined by

x =y/s. (2. iS)

(iv) Definition of the differential operator p,

Iew-~=-is+ A(r).hc (2. 4)
8p=i —-
ex (2. 16)

This is the well-known effective-mass theory of
I.uttinger and Kohn. ' In Eqs. (2. 3) and (2. 4), the
position vector r is

30„,4'(x) = Xq (x),

with

(2. 17)

The effective Schrodinger equation so obtained is

A(r) = (0, Hr„0). (2. 6)

r= (2„r2,r2),

and W is the energy eigenvalue limited to the range
—3E, to 3E,. For the case of a uniform magnetic
field along z, one of the cubic axes, A(r) takes on
the simple form

Kqgg = cosEp+ cost'&

, (W/E, —+cosk2a).

As usual, ' the operator cos&p is defined by

costP 4'(x) = 2 [4'(x + t)+ 4(x e) ].

(2. 18)

(2. 19)

(2. 20)

P(r) f(y ) e&&&2r2&—2r2)

Substitution of (2. 7) into (2.3) yields

Wf(r, +a)+f(r, —a)+2 —+ cosk2a
1

I e !Ha+cos ~ rq+A2a f r, =0.
Sc

(2. 7)

(2. 8)

This is a difference equation which can be cast
into a more familiar form by a simple change of
variable,

(2. 9)

Thus, we obtain

f (n + 1)+f (n —1)—2q (n)f (n) = 0,

with

(2. 10)

q(n) = —[W/E, + cosk2a+ cos(ne'+k2a) ]. (2. 11)

The dimensionless quantity g appearing above is
defined as

e = I e I HQ /Kc. (2. 12)

It is simply the magnetic flux through a unit cell
measured in terms of Kc/ I eI. Equation (2. 10) is
known. as Harper's equation. 8 Further reduction
into a symmetric form, given below in (2. 17) and
(2. 18), can easily be achieved if we take the fol-
lowing steps:

(i) Fourier transformation

(2. 13)

(ii) Definition of a new function 4,

@(y)=&(v) e'""' .
(iii) Change of variable (simple sealing)

(2. 14)

With this gauge, k~ and k3 are both good quantum
numbers.

We can now apply the method of separation of
variables with the following choice of wave function:

What we have done so far is just to separate the
longitudinal motion, which is unaffected by the
magnetic field, from the transverse one. The 1D
Schrodinger equation given in (2. 17) and (2. 18)
then describes the electronic motion in any plane
normal to the field. The reduced energy eigen-
value A. , which is defined in a dimensionless form
according to (2. 19), has va, lues between —1 and 1.
It is important to emphasize that the longitudinal
motion, even though it is separated from the
transverse one, is being fully taken into account
by the reduced eigenvalue X. We have not made,
within the one-band approximation, any expansion
or any other approximation.

Equation (2. 17) can now be studied by standard
methods of band-structure theory. In the present
consideration, we are only interested in the width
of each subband and the energy gap between two
adjacent- levels, but not the detailed dispersion
relation within a given subband. Thus we can
simplify our calculation considerably by choosing
proper expansion wavefunctions. ' The method
that we employ (see the Appendix) is a simple ex-
tension of the analysis commonly used in the study
of Mathieu functions. ' It is also equivalent to the
Feenberg method of continued fractions, ' as well
as compatible with the theory of magnetic
groups,

B. Calculation and analysis

We calc-~late the energy subbands from Eqs.
(2. 1'7) and (2. 18) by the method of continued frac-
tions developed in the Appendix. For a magnetic
field H-10 kG and a lattice constant a-2. 5 A, &

is of the order of 10~ and hence N: 2v/e2, defined-
by Eq. (A4) of the Appendix, is very much larger
than 1. Naturally, the polynomials obtained in the
Appendix, such as (A14), cannot be solved a,nalyt-
ically. Instead, numerical methods have to be
used. In the present calculation, as explained in
the Appendix, we consider cases of integer N only.
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N=3
2Ei--

E--
1

9 11 13 The index I goes between 0 and N/2 —1 or (N —1)/
2; its origins are at the bottom (electrons) and at
the top (holes) of the 2D band and the maximum
values are achieved close to the middle (T, singu-
larity) of the band. In addition, for both types of
orbits, we define 67 as the width of the 1th subband
and I'7

& as the gap between the top of the (l —1)th
and the bottom of the lth subbands. The ener~-
gap-to-width ratio R, for the fth level (either elec-
tron or hole) is

(2. 21)

0——

E

—2Ei--

FIG. 1. Subbands (vertical lines) as calculated by the
method of continued fractions versus the discrete Onsager
levels (horizontal arrows).

Our results for a few cases of relatively small N,
i. e. , extremely large magnetic fields, are re-
ported in Fig. 1. For comparison, on the same
graph, energy levels as calculated from the On-

sager quantization rules~'3 are plotted side by side.
It is obvious that the broadening effect is indeed
small near the top and bottom of the 2D bulk band.
On the other hand, it is very large near the center.
It is also obvious that Roth's correction' to the
Onsager quantization is quite important here.
However, for larger values of N, the correction
is in general very small. In the range of experi-
mental interest such corrections can be neglected
altogether. Our results are similar to those ob-
tained by other authors. " ' It is also worth men-
tioning that each subband contains the same num-
ber of states. This number depends only on the
applied field H.

Let us call those orbits with negative eigenvalues
& electron orbits and those with positive X hole
orbits. The energy of the lth hole subband at its
center of gravity is denoted as E, (E, &0). Be-
cause of the electron-hole symmetry, the lth elec-
tron subband is characterized by the energy —E7.

Whence large R, (R, » 1) indicates isolated dis-
crete levels. On the other hand, R, -1 corre-
sponds to subbands that are somewhat widened and
closer to each other. Finally, a very small Rl
(R, « I) implies that the well-broadened levels are
so close that essentially they have merged, for all
practical purposes, into a single continuum. To
simplify the description, in the following we will
use the terms "discrete" and "continuum" in a
qualitative manner. They are to be understood,
respectively, as a narrow subband and a collec-
tion of wide subbands separated by vanishingly
small gaps.

In general, for each fixed value of N or, for
that matter, the magnetic field H [cf. definitions
(2. 12) a,nd (A4) ], we obtain the empirical result

e-B+A/ l
l (2.22)

p. =0.6962 (2. 24)

v = 0. 343 8. (2. 2S)

Analytic calculations can be carried out in the
semiclassical regions. It is easy to show that
there R, obeys an equation similar to (2. 23). No-
tice that Rl is nonanalytic in the limit of zero mag-
netic field.

The 2D densities of states for differend applied
fields H can now be calculated easily. For the
range that we are considering, i. e. , 0. 1 to 10 kG,
practically all of them look the same and some of
them are given in Fig. 4. Beyond doubt, the elec-
tronic levels are being converted into a continuum
at the center of the band. We have in fact just

whenever l is large. In (2. 22), both A and B are
functions of N but are independent of l. Typical
behavior is shown in Fig. 2. If A and B are plot-
ted as a function of N on a log-log scale, two
straight lines with slopes equal to 2 and 1, respec-
tively, are discovered (Fig. 3). We thus obtain
the interpolation formula

R = e-uN~NP/7 (2.23)

In the above equation, p, and p are two numerical
constants given by
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FIG. 4. Two-dimensional density-of-states plots in
a transverse plane (i.e. , a plane normal to the magnetic
field). The horizontal axis is energy, measured from
the bottom of the 2D band in units of E&. Only that por-
tion from 1.992E& to 2E& in energy is shown. The 2D
density of states is nonzero from 0 to 4E& and is sym-
metric with respect to 2E&. The transition from discrete
narrow Landau levels into a quasicontinuum near the cen-
ter takes place at 1.9922E&. Notice the transition is
very sharp and almost field independent for the cases
that we have calculated. The logarithmic singularity at
2E& is also visible.

FIG. 2. Typical behavior of the band-gap-to-width
ratio R& for the lth subband as a function of l ~.

20

18— ~ A

~ B
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0
C 10—
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4— 0

2
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log N
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FIG. 3. Behavior of the slope A and the intercept B as
functions of¹(2~Re/ 1 e [ Ha ).

demonstrated how the solid-state broadening can
reconcile the well-established existence of dis-
crete levels near the band edges (To and T,) but,
at the same time, the equally conspicuous absence
of any quantization near the center (T,). Notice
also how sharp the transition from discrete levels
to the continuum is, typically within only a few
levels. Similar, almost abrupt, transitions from
very narrow to much wider bands are also ob-
served in the behavior of Mathieu functions. In
the present case, the very sharp transition is di-
rectly related to the logarithmic T, singularity at
the center of the 2D band in the transverse plane.
Physically it simply means that a large number of
states around the center of the 2D band participate
coherently in the broadening process. They are
essentially free to wander from one well in recip-
rocal space to another. The other important con-
sequence of Eqs. (2. 23)-(2.25) is the magnetic-
field-independent nature of the transition for the
fields we have calculated. For this range, the
transition always takes place at an energy 0.0078E&
from the center of the 2D band. ' This is, some
99.6% of the band is occupied by discrete levels.
Only about 0.4% is in a continuum. The number
of subbands participating in this continuum is about
6 x 104 for a magnetic field of 0. 1 kG and 6 x10~
for 10 kG. The 3D density of states, in the pres-
ence of a magnetic field, can be understood by
superposition of suitable 2D ones as explained pre-
viously. The quasicontinuum discussed above then
leads to the usual (E, —E)'~ behavior below M,
critical points. It does not lead to any new struc-
ture above M, . However, owing to the small ex-
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tent of this strip of quasicontinuous states, it is
important to take into proper consideration those
discrete Landau levels just beyond the strip. Tak-
ing everything into consideration, we conclude that
nearly two-thirds of the 3D band, namely, from

3Ey to 1 0078Eg and from 1~ 0078E, to 3E„is
with discrete 2D levels. About 0.25% of the band,
from -1.0078E, to —E, and from E, to 1.0078E&,
is continuous. The remaining section, i. e. , from
—E& to E„is a superposition of noninteracting
discrete 2D levels and a continuum. In particular,
in the range from -0.9922E, to 0.9922Eg com-
plicated beat patterns due to the simultaneous
presence of both electron and hole orbits are ob-
servable. Meanwhile, such beat patterns disap-
pear in the range from —E, to -0.9922E, and also
from 0.9922E, to E,.

C. Step-function model

We have concluded that the broadening effect is
very small for most of the 2D band except near the
center. There, the effect of broadening complete-
ly overwhelms that of the field-induced quantiza-
tion. The level width is such that essentially there
is a continuum. In other words, level quantiza-
tion has been almost completely suppressed. The
electrons behave just as. if there were no applied
magnetic field. Physically, this is due to the very
large electron tunneling from one well in the re-
ciprocal space to another, as given by (2. 17) and

(2. 18). This is actually the quantum-mechanical
version of the vexy same singular orbit associated
semiclassically. with the 2D Van Hove critical
point T, . Similar behavior should take place for
crystals with other lattice geometries. It is, how-

ever, possible to have directions away from high-
symmetry directions, where closed but very ex-
tended semiclassical orbits exist. In this case,
the level quantization produces discrete but very
densely packed levels, and the broadening should
be studied there separately. The broadening, as
in our example, is due to the probability of tunnel-
ing between adjacent orbits.

In order to simplify the analysis of the magneto-
optical absorption of a simple-cubic crystal, we
develop a step-function approximation here. In
the energy range

e„(k)= —E„. (3. 1)

The conduction band e, (k) is given by (2. 1). The
positive constants E„andE, are such that

&3E &0 {3.2)

This last condition guarantees a conduction band of
energy higher than the valence band. In the pres-
ence of an external magnetic field along one of the
cubic axes, the valence ba.nd remains unchanged
but the conduction band is now subjected to the ef-
fects of both quantization and broadening. Follow-
ing the analysis given in Sec. II, we have

e,(k, H) =

where

—E, cosksn —E, , -2E, ~ —E$ ~ bE$ ~

Eg cosk, a + ul, —bE, ~ u) & bE»
—Ey cosk3cl+E, , bE~ ~E, - 2E,

(3. 3)

w = —E~ (coskqa+ cosk2a). (3.4)

further neglect the small energy interval in which
the transition from levels to continuum a.ctually
takes place. Instead, it is assumed that the tran-
sition occurs at, and is completed within, one
level (hence, the name step-function model). Be-
yond such a level, i.e. , for

(2. 27)

the electronic levels are those given by the zero-
field continuum. Of course, all phenomena due to
the transition region will be lost under our ap-
proximation. In principle, they can be studied by
using a gradual approximation, e. g. , an exponen-
tial cutoff, instead of the present abrupt step ap-
proximation. However, we have not carried out
such a calculation here as we are convinced that
it will only provide a small quantitative but not any
qualitative correction.

III. MAGNETO-OPTICAL PROPERTIES

A. Absorption coefficien t

For the sake of definiteness, we assume here
that the crystal has a narrow valence band. In

the absence of a magnetic field, we can approxi-
mate the valence band by

2E, &IEI &bE„ (2. 26)
For each integer l, the positive quantity E, is the
solution of the integral equation

where for the present calculation b is 0.0078, we
assume the levels to be completely discrete and

given by the simpler but accurate Qnsager quanti-
zation. That is, as a first approximation, we ne-
glect broadening effects in this region where they
are very small. In reality, the small but finite
level broadening causes a change in the line shape
of the absorption spectrum. This is then separ-
ately discussed for a typical absorption peak. We

1

K'(z) dz = —,'wz'(f i —,'),
Ei / (2Ey)

(3. 5)

where c is proportional to the magnetic field H as
defined in (2. 12) and K' is the associated complete
elliptic integra, l of the fixst kind.

The optical absorption coefficient n is propor-
tional to the matrix element of the electric dipole
moment. As usual, within the tight-binding ap-
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Z(ru, H}=g 5(5&v + z„(k,H) —z,(k, H)) . (s.8)

In (3.6), 5(x) is the Dirac 6 function and &u is the
frequency of the radiation field. For the present
case, z, (k, H) is a mere constant and only causes
a shift of the energy scale. As a consequence, J
is equivalent to the 3D density of states of the con-
duction band. As we have commented before, the
density of states can be written as the convolution
of the 1D density of states along the field direction

proximation, t is matrix element is a constant.
The absorption coefficient a is also proportional to
the joint density of states J defined by

with

z = E, cosk3a.

(3. 'I)

(s. 8)

In the absence of an external magnetic field H, it
is easy to show that

(3.8)

and in the presence of a field H,

and the 2D density of states Qz in a plane normal
to it. In functional form, this relationship is

1
J(&u, H') = — dz (E~ —zz) 'iz&z(hru —E„+z),

~g)

ez ~—~5(h(u —Ey+z+E, ), —2E~ & —E, & —bEq,

1 AM-E„+8K'
m El , —bE, & S~ —E„+z & b E»

~z(K~-E„+z)= ( —Z 5(K(u —E„+z-E,), bE, & Eg & 2Eg,
1

otherwise.

Finally, we have the following expression for the
absorption coefficient

o.((u, H) = (C/(o) J(~, H). (3.11}

In the preceding equation, C is a constant indepen-
dent of both (d and H. Except for the weighting
factor ~ ', the absorption spectrum measures the
density of states of the conduction band.

For the sake of clarity, we only report below
the absorption coefficient for two different cases.
Similar expressions for other frequency and mag-
netic field ranges can be obtained quite easily and
are not reported here.

(i) In the absence of a magnetic field and if

-3E, e~-E„«-E„
it is straightforward to show that

G=Q&+~ +Q, (3. IV)

ly I

ca p & (~z )
3+5+@

o. = dt'(1 —t'z) '~zK'
Eg(d P l,~~

(3.18)

(3.19)

C~2 4 - E P -1/2l

e,=, 1- ~-q (3.20)

In (3.18) and (3.20), the integers f,-l4 are sep-
arately determined by

—E, i &S(o —E„-E»&El (3.

whe re Gy arises from the quantized electron orbits,
f2, from the hole orbits, and ea from the contin-
uum. They are respectively given by

1

n= ~
dt'(1 —f, )

i H' (3 13)
'lT Eg4) 2

b El El2+1 r

E, Su —E E, E,l3 1 l 3-l

(3.22)

(3.23)

g= (h(u —E„)/E, (3.14)

t' = z/E, = cosh, a.

(ii) In the presence of a field H, and in the re-
gioF.

—Ej + bE) ~~ Sco —E„~El —b Eq,

it can be shown that n now consists of three terms,

(s. 24)E, j &bE~& Ell 4+j. 1 lg

Because of conditions (3.21) and (3.23), each term
in the series (3.18) and (3.20) is real. In other
frequency ranges, one or two of the three terms in
Eq. (3.17) may be missing. Consequently, pat-
terns of quite different shape are observed for dif-
ferent regions. Some of them are shown in Fig. 5.

Let us describe below the over-all character-
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0.37 Peaks, more precisely, singularities, which are
a consequence of the quantization effects of the ap-
plied field, appear almost everywhere. However,
effects of the solid-state broadening over those of
the quantization restore the system to the zero-
field behavior in the ranges

H=&O kG —(E~+ bEq)» K(u —E„»—Eq (s.25)

0.28—
i. E 4 i 4k' ENEkL

4

4p0

4.7

Q.

4A

5.500
2.000

L0
l I

1.9922
Q I

19927
1

2.001

Ej ~ 543 E„~~Eg + SEE. (3.2'I)

In particular, the absorption coefficient n exhibits
no peak whatsoever in these two regions, The
only singularities are the relatively mild one-sided
square-root-type at M& and Ma, respectively. In
the present calculation, the extent of each of these
regions, equal to bE„is insensitive to the value
of the applied fieM H. Qn the other hand, singu-
larities, similar to those discussed by Bassani
et aE. , are found just above M„

—E, » I&a —E„»-(E, —b E,),
and just below Ma,

E, -bE, ~ha-E„~E,. (3.29)

Typical behavior is shown in Fig. 5(b). Behavior
in the regions

—3E, &bar —E„&—(Ei+bE, ) (3.30)

~.~iLL' zl L
2.0079 2.0080 2.0081

('fl (d E g g p )/E ]

FIG. 5. Absorption coefficient: {a) at the transition
from 20 discrete levels into a quasicontinuurn; {b) at
critical points M&, and {c) at the onset of beat patterns.
In all three cases the energy is measured from the bot-
tom of the conduction band in units of E&. The energy
gap between the conduction and valence bands is denoted
by E and is equal to {E„—3E&).

istics of the absorption coefficient n. It is obvious
that n vanishes identically [cf. Eq. (3. 10)1 when-
ever

(a(o —E„i& 3E,.
The factor ~ ' is smooth and without structure in
the range of interest. Thus, all singularities (or
peaks) in the absorption spectra have to come from
the joint density of states J. Consequently, the
zero-field absorption coefficient, as a function of
the variable S~ —E„,is smooth except for discon-
tinuities in the derivative at the Van Hove critical
points Mo, M„M3,and M3 of the joint density of
states, In the presence of a field, the absorption
coefficient behaves in a very different manner.

E, +bE~ &(hm —E„)&3E, (s.sl)
is well knomn, Singularities in the fox mex" region
are from electron orbits, while the latter regions
consist of peaks from hole orbits. The behavior
just above the Mo threshold can be found in the
literatuxev and hence is not reproduced here. Qn
the other hand, the behavior near the transition
from 2D discrete subbands into a quasicontinuum
has not been reported before. Typical behavior is
shown in Fig. 5(a). In the middle energy range,
l, e. ,

—(E, —b E,)» 8~ —E„»E, —bE„
both electron and hole subbands as mell as the
continuum contribute. The formulas given in Eqs,
(3.17)-(3.20) are precisely for this range. The
absorption curve around the lower limit of the
range (3.32) is reported in Fig. 5(c). Owing to
the presence of both electronlike and holelike
resonances, the pattern is quite complicated. Also
notice hom the line shapes differ for the tmo types
of peaks. As S~ —E„moves towards the center,
beat patterns can also be observed. This is due to
the almost identical cyclotron frequencies for elec-
trons and holes. We emphasize that the processes
we are disucssing here are all one-photon transi-
tions. By no means should they be confused mith
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spectroscopy is of course its much higher sensi-
tivity. ' ~ Some of our numerically calculated
spectra are shown in Figs. 7 and 8.

It is obvious that the quantization effects now
manifest themselves as singularities of a stronger
form: (&a& —~, )

~ . Other new features are again
consequences of the quantization-suppression
mechanism discussed previously. Specifically, in
the presence of a magnetic field, the singularities
in the absorption coefficient a at M& and M2 are

1 2

Energy (units of 5)

FIG. 6. Absorption line shapes: solid curve neglects
the finite width of the narrow subband; dashed curve in-
cludes the width.

the two-photon processes discussed by Bassani
et &l. ' If we filter out all the field-dependent sin-
gularities we recover the smooth background. As
expected, it is just the zero-field continuum.

In order to investigate the change in the absorp-
tion line shape due to the small but finite width 6
of each subband, we replace in the 2D density of
states (3.10) the previously used 5 function by the
following normalized square well:

—8

I'I'lI'I'I'll'I'I'I'I

1.9922

H =10 I&G

1.9927

1/n, —(/2&x&(/2
f(x) =

~

~0, otherwise ~

Now, instead of the simple line shape

0, x&0'
go(x) =

~-«2 ~&0

(3.33)

(3.34)

ii —(b)

6—
U

0
C5 3 2

we have

a(x) =

x & —a/2,

x & a/2.

0,

(2/&)(x+~/2)'", —S/2 &x & a/2

(2/A) I. (x+ &/2)' "—(» —&/2)"'],
2.000

4 II
(c)

2.001
I

)»)))))))

They are plotted in Fig. 6. Of course, as b, dim-
inishes, g, (x) eventually goes over togo(») The
sharp cusp appearing at 6/2 ing, (x) is due to the
use of (3.33). Any other (smoother) function, such
as a Gaussian or Lorentzian, will remove this
cusp. The effects of these latter functions are
well discussed ' ' and will not be repeated here.

B.Modulated absorption spectra

0-

I I

2.0079 2.0080 2.0081

(fl (al E gop)/ E )
We have also calculated two modulation spectra

of the absorption coefficient n. They are the fre-
quency- and magnetic-field-modulation spectra,
respectively. Each of these is just the partial
derivative of a with respect to the modulating pa-
rameter. The major advantage of differential

FIG. 7. Frequency-modulated absorption coefficient:
(a) at the transition from 2D discrete levels into a quasi-
continuum; (b) at critical points M&, and (c) at the onset
of beat patterns. In all three cases, the energy is mea-
sured from the bottom of the conduction band in units of
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(b)

—l0

I' (~)

l.9922
t

2.000

h

H=10 kG

l.9927

I

2.001

Z3(x) = —I
~ g&(x), (3.3 V)

where the coefficient h, depends only on the level
number / and is independent of the field H. Thus

g3 is simply proportional to g2.
IV. CONCLUSIONS AND DISCUSSION

the frequency modulation is essentially similar to
the appropriate zero-field one. On the other hand,
the background for the magnetic field modulation
is identically zero. This last phenomenon can be
understood easily: The magnetic field only affects
the relative positions of the field-induced peaks in
the optical absorption spectra without changng the
over-all background itself.

We have also applied Eq. (3.35) to the study of
differential line shapes. For the case of frequency
modulation, the proper line shape is

0, x & —n/2,

g (x)= (1/n)(x+a/2) '~, —n/2&x&a/2, (3 36)
(I/~)[(x. ~/2) '"—(x- ~/2) "'],

x&4 2.
As commented before, the discontinuities at + n./2
are due to the square-well function (3.33) and can
be removed easily. It is slightly more compli-
cated for the case of magnetic field modulation.
In general, both x (= h~ —E, ) and the width a de-
pend on the applied field H, However, in the semiclas-
sical regime, the field dependence of E, dominates that
of the width. Thus, we obtain, in this limit

—2.

( 1 t

2.0079 2.0080 2.008l

(RQ7 Egop)/E]
FIG. 8. Modulation spectrum with respect to the

strength of the magnetic field: (a) at the transition from
2D discrete levels into a quasicontinuum; (b) at critical
points M&, and (c) at the onset of beat patterns. In all
three cases, the energy is measured from the bottom of
the conduction band in units of E&.

susceptible only to the frequency variation but not
at all to the magnetic field. Therefore, extra
peaks occur at both M, and M2 in the frequency
modulation spectra but none whatsoever for the
field-modulation spectra. Also notice the quite
different line shapes for the hole- and electron-
induced peaks in the two differential spectra as
shown in Figs. V(c) and 8(c).

As before, we have inspected the field-indepen-
dent background of both spectra by filtering out
all the field-induced peaks, The background for

We have developed in this paper a method based
on continued fractions to study the electronic levels
in the presence of a magnetic field. We find that
the solid-state phenomenon of level broadening is
ultimately responsible for transforming discr ete
Landau-like levels into a quasicontinuum. In gen-
eral, the nature of a given level (i.e. , whether it
is discrete or part of a quasicontinuum) is deter-
mined by the competition of field-induced quanti-
zation and solid-state broadening. For a simple-
cubic crystal with the magnetic field H along one
of the cubic axes, the transition is found to be very
sharp and essentially independent of the magnetic
field H for the values that we have calculated.
This leads to the suppression of field-induced
peaks below M, . We also show that frequency-
modulation spectra are quite different from mag-
netic-field-modulation ones. First of all, their
relative line shapes are quite different. Second,
for the frequency modulation, a satellite peak, or
a shoulder depending on the extent of excitonic
broadening, " "appears at M, and M, but none
whatsoever for the magnetic field modulation.

The Coulomb attraction between electrons and
holes from different bulk bands, the so-called ex-
citonic effects, 6'~~ has not been included in the
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present consideration. The major effects are (i)
to cause a shift as well as a broadening in the
resonant peaks and (ii) to enhance further or sup-
press each individual peak. ' ' 8 As a result,
quite different line shapes can occur. ' Effects of
a broad valence band can be taken into account by
including suitable selection rules. The present
formalism can also be applied to situations where
the magnetic fields are not along an axis of high

symmetry,
APPENDIX

In this appendix, the 1D effective Schrodinger
equation (2. 1'l)-(2. 18) is studied by the method
of continued fractions. This method is basically
an extension of the one used in the analysis of
Mathieu functions. '

We seek solutions of Eqs, (2. 17) and (2. 18) in
the form of either

4'„„(x)=Q A2g ~ cos[a(f +s/2)x]

G, (f+ 2) = V, —[1/G, (f)].

{iv) Odd s=1 case:

G, (3) = V, +1

(A10)

G, (l+ 2) = V, —[1/G, (f)]. {All)

For cases (3) and (4), l =3, 5, f, 9, . . . .
Continued fractions can readily be deduced

through Equations (A8)-(Al 1). For instance, Eq.
(A8) yields the following:

G.(f+ 2) = V, - [1/G.,{f)].
For both of the above cases, /=4, 6, 8, 10, . . . .

(iii) Even s = 1 case:

G, (3) = Vg- 1

or
40

q' dd(x) =Q Bag ~ sln[e(f +s/2)x],

and with

s=0, 1.
We further define the following quantities:

N = 2v/e, -

V, = 2[3.—cos(isa/2) ] =2[X- cos (lv/N) ],
G, (l) =A, /A, a,

(A3)

(A4)

(A5)

(AG)

G,(l+ 2) = V, —[1/G, (l)].

(ii) Odd s =0 case:

G, (4) = V2

G.(f) =a, /a, /a„„. (A7)

Substitution of either (Al) or (A2) into (2. 1'7) and

(2. 18) and application of (A4)-(A 7) yields four
sets of recursion relations,

(i) Even s =0 case;

G, (2) = Vo,

G, (4) = V, —[2/C, (2)],

(A12)

For the case of integral values of N, N is closely
related to the total number of subbands present in
the system. Nonintegral rational values of N lead
to the splitting of each Landau subband into clus-
ters of subbands. Azbel proved under quite gen-
eral conditions that the separation between these
sub-subbands is small. Numerical calculations
confirm his proof. ' For all practical purposes,
we can instead consider the coarse-grained prop-
erties of all clusters derived from a single Lan-
dau level. ' In reality, the fluctuation of the ap-
plied magnetic field as well as spatial inhomo-
geneity more than wipes out the tiny gaps among
the sub-subbands. Thus, nature has performed
the coarse-grained average for us already and the
question of whether X is rational or irrational be-
comes, more or less, academic. Without loss of
generality, we thus assume X to be an integer. It
is now straightforward to show that

~1+2' (A13)

In other words, the continued fractions are period-
ic and reducible to polynomials of finite orders.
For example, Eq, (A12) is equivalent to

{).—1) ' = 2(& —cos e')—

2(X —cos2e')—

2[).—cos(X —l)e'] —(1 —1) ' (A14)
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where Eqs. (A5) and (A13) have been used. Hence, we are able to calculate the bandwidth, level separa-
tion, and the density of states quantitatively.
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