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In this paper we present a coherent physical picture of the metal-nonmetal transition in metal-ammonia

solutions in the intermediate concentration range. %e propose that in Li-NH, and Na-NH3 solutions the

metallic propagation regime is separated from a nonmetallic regime by a microscopically inhomogeneous

regime in which the concentration fluctuates locally about either of two well-defined values Mo and M„
Mo & M„ the local concentration remaining near Mo or M, over radii approximately equal to the Debye short

correlation length b for concentration fluctuations. Provided that the concentration-fluctuation decay length is

much smaller than b, we can define a percolation problem in which a volume fraction C of the material is

occupied by metallic regions of concentration Mo, the remainder containing the low concentration M, of
dissociated electron-cation complexes. Mo and M, constitute the upper and the lower bounds of the

inhomogeneous regime, respectively, while C exhibits a linear dependence on M. This physical picture is borne

out by concentration-fluctuation determinations based on chemical-potential measurements in Li and Na

solutions and by small-angle x-ray and neutron scattering in Li solutions. Assuming that the phase-coherence

length of the conduction electrons is shorter than b and having demonstrated that tunneling corrections are

neghgible, we can define local electronic structure and transport properties. The limits of the inhomogeneous

regime were determined from a combination of concentration-fluctuation measurements, electrical

conductivity, Hall effect, and paramagnetic susceptibility data to be M() = 9 mole percent metal (MPM) and

M, = 2(1/3) MPM, which yield the C scale, C = [M —2(1/3)]/6(2/3), for both Li-NH, at 223 K and for
Na-NH3 at 240'K. %'e have also established the consistency of our picture with the available magnetic data
for Na solutions. An analysis of the electronic and the thermal transport properties was carried out in terms

of an effective-medium theory, modified to account for scattering from the boundaries of the metallic clusters.

For low values of the conductivity ratio (- 10 ') between the nonmetallic and the metallic regions the

modified effective medium theory is valid for C & 0.4. In an attempt to mimic the features of continuous

percolation, we have carried out numerical simulations of the conductivity in a simple cubic lattice
incorporating correlation between metallic bonds. An excellent fit of the experimental conductivity data for Li
and Na with the results of the numerical simulations has been obtained over a three order of magnitude

variation of the conductivity throughout the entire inhomogeneous regime. A small systematic negative

deviation of the conductivity from the predictions of the effective-medium theory for C & 0.4 can be properly
accounted for in terms of boundary scattering corrections resulting in b 15 A for Li at 223 K and b 32
A. for Na at 240 K. The overall agreement of the experimental Hall effect, Hall mobility, thermal-

conductivity„and thermoelectric-power data with the effective-medium theory is good. The proposed
inhomogeneous regime in Li and Na solutions resembles a macroscopic mixed phase at a concentration inside

a coexistence curve but with mixing on a microscopic scale. The concentration fluctuations in the

inhomogeneous state have nothing to do with critical fluctuations; nevertheless, this state seems to be closely

associated with the occurrence of a phase separation.

I. INTRODUCTION

The wealth of information available on metal-
ammonia solutions' ' (MAS) has resulted in a
fairly complete understanding of the physical
properties of this system in the extreme concen-
tration limits. Most dilute solutions (10 —10
MPM) exhibit the features of electrolytes con-
taining localized solvated electrons~ and solvated
cations. Ionic association involving the forma-
tion of solvated electron-cation pairs, and sub-
sequent spin pairing occurs in dilute (10 —5

x 10 MPM) solutions without gross modifications
of the structure of the solvated electron. ' {„on-
centrated solutions (10 MPM to saturation) con-

sist of solvated cations, unbound ammonia mole-
cules, and overlapping solvated electrons, "con-
stituting a homogeneous amorphous system whose
local structure resembles that of a molten salt.
Extended electronic states within such an arrange-
ment of electron centers can be described either
in terms of the tight-binding approximation or the
nearly-free-electron approximation depending on
concentration. Near 10 MPM, the separation of
the electron centers somewhat exceeds the cavity
radius so that the tight-tHn(4ng approximation ls
appropriate. On the other hand, near saturation
the electron cavities overlap neighboring cavities
over most of their surface, so that the nearly-
free-electron approximation. is appropriate.
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FIG. l. Electronic transport data for Li-NH& and
Na-NH& solutions in the intermediate concentration range
taken from Refs. 12 and 15-17.

The pioneering studies of the electrical con-
ductivity of MAS performed by Kraus about 50
years ago have established the occurrence of a
metal-nonmetal transition induced by concentra-
tion changes in this two-component system in the
intermediate concentration range (1-10MPM).
There MAS exhibit a rapid variation with concen-
tration of many of their static and transport proper-
ties. ' ' The following noteworthy phenomena in
this transition region are specifically related to
the electronic structure and electron transport.
(a) The electrical conductivity' "v decreases
by almost four orders of magnitude (Fig. 1). (b)
The Hall coefficient4' ' R increases by a factor
of -6 in the range 10-2. 5 MPM (Fig. 1). R ex-
hibits positive deviations from the free-electron
value R„with R/R„= 1 at 10 MPM, R/R„= 1.2 at
5 MPM, and rising to R/ R„=2.0 at 3 MPM. (c)
The Hall mobility (p, =Ra) exhibits a decrease by
two orders of magnitude (Fig. 1) in the range 10-2
MPM. (d) The Knight shifts ' ' at the metal-ion
nucleus, K", and on the nitrogen nucleus, K", de-
crease with decreasing concentration in the range
10-1 MPM (Fig. 2) and become concentration in-
dependent at lower (1-10 MPM) concentrations.
(e) The paramagnetic susceptibility' ' exhibits
a minimum around 1 MPM and increases with con-
centration in the range 1-10 MPM. In Fig. 2 we
reproduce the best available data, recently ob-
tained by Lelieur, ' for the atomic susceptibility

y~ and for the paramagnetic susceptibility g~ per
unit volume of Na-NHq solutions. From these ex-
perimental results we conclude that y~ exhibits a
linear concentration dependence within the in-
termediate region (for M &3 MPM). (f) The ther-
mal conductivity'2 exhibits a gradual increase (by
a factor of -3) in the concentration range 1-9
MPM. The thermoelectric power~' $ is negative,
revealing a slow increase with decreasing M in
the range 9-5 MPM, followed by a break between
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FIG. 2. Concentration dependence of the magnetic
data for Na-NH& solutions at 240'K (Refs, 4, 13, and
20-22). K —Knight shift on the Na' nucleus; K —Knight
shift on the X nucleus; X&'-atomic paramagnetic sus-
ceptibility; x&

—paramagnetic susceptibility per unit
vol ume.

5-4 MPM, and showing a fast increase below 4
MPM.

In this paper we are concerned with developing
a coherent picture of the metal-nonmetal transi-
tion in MAS. Before exposing our ideas we shall
briefly review the current theoretical background
relevant to this problem.

Recent theoretical work on the electronic states
and electron transport in one-component systems,
such as expanded liquid metals and supercritical
metallic vapors, has considered two metallic
regimes of electronic conduction which may exist
in a disordered system. The propagation, or
weak-scattering, regime ' is described in terms
of a well-behaved convergent perturbation expan-
sion in powers of the potential. The mean free
path l exceeds the reciprocal Fermi wave number
k~', i.e. , k~l »1, and the transport properties
are properly accounted for by the weak-scattering
theory and by low-order corrections to the Born
approximation. The conductivity is weakly de-
pendent on the density of states at the Fermi en-
ergy E~, R is close to R„, and p. is dominated
by variations in the electrical conductivity. In
concentrated MAS (20-10 MPM), Lepoutre ' and
Thompson find that l = 70 A and kz= 0.49 A at
20 MPM decreasing to i =12 A and k+=0. 40 g
at 10 MPM, so that the basic condition for the
propagation of conducting electrons between scat-
tering events, k~l &1, is satisfied down to about
10 MPM. Thus for concentrated (10-20 MPM) MAS
solutions, the propagation regime applies. The
concentration dependence of o in the propagation
regime was quantitatively accounted for by Russak-
off and Aschroft ' and by Schroeder and Thomp-
son jn terms of Ziman's weak-scattering model,
where the electron scattering centers involve
solvated cations and unbound ammonia molecules.
The decrease of cr with dilution in the propagation
regime is primarily a consequence of the concen-
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o= 3 v(e'/ha)ZX',

R = (&qZ/Z')(n'/«)X ',
p = Ro = (2 vqZ/Z)(ea /h) X,

(l. la}

(l. lb)

(l. lc)

whex'e g 18 the number of neRx'est neighbors, Z ls
the number of triangular closed paths around each
lattice site, q —-', is a geometrical factor, a is the
intercavity separation, and the parameter

x= za'n(E, )

contains 8, the nearest-neighbor electxon-transfer
integral, and the density of states n(E~) at the
Fermi energy E~. Since all parameters except
X can be readily estimated in particular situa-
tions, it is more convenient to relate o. and p, to
R„/R. For the particular case of MAS„we would
have

whel'e Qo ls the intercavity separation at the elec-
tron number density No. Friedman has also re-
lated in a x ough manner the transpoxt coefficients
in the diffusion regime to Mott's ratio of the den-

sity of states n(Ez) at the Fermi energy to the
corresponding free-electron density of states

and obtained the following approximate xelations:

R/Rf, =&z

with A. = 0. 7- ~ 5 Rnd

(l. 6}

From the point of view of general methodology it
is important to notice that Friedman's basic
hypothesis that the amplitudes of the wave func-

tration dependence of the structure factors Rnd
the increase of the fraction of unbound ammonia
molecules. The Hall coefficient is R = Rf„
and the variation of p, is dominated by the changes
in 0 as expected for the propagation regime.

The second metallic conductivity regime in-
volves diffusion, a Brownian type of motion of the
conduction electx'ons. Vlhen the phase coherence
length of the conducting electrons is compax'able
to, or less than the spacing between scattering
centers, the electrons undergo strong scattering
and diffusive motion. Friedman has shown
that for electron transport in a crystal with a
tight-binding s band whexe the wave-function am-
plitudes are everywhere constant but the phases
are random on different sites, the transport proper-
ties are related in the following way:

tions are constant is equivalent to the assumption
of microscopic homogeneity. Together with Mott '
we assume33 5 that Friedman'8 results are of gen-
eral applicability for the diffusion regime j.n a
disordered material, provided that the system is
microscopically homogeneous with regard to elec-
tron transport. From the practical point of view
we should like to point out that rough estimates of
g, and consequently of n(Ez), can be obtained
from transport data via, Eqs. (1.6) and (l. 6), only
if the Frledman relations (l. 1) and (1~ 2) are valid.
The signature of the onset of the diffusion regime
is the positive deviation of R from Rf, [Eq. (l. 6)].
For MAS R/Rf, exceeds unity for concentrations
below 10-8 MpM. Qne could then argue together
with Acrivos and Mott 6'3' that the intermediate-
concentration region corresponds to the diffusion
regime. However, in the intermediate-concen-
tration regime, relations (l. 1) and (1.2) do not
hold. Whereas in the concentration range 10-3
MPM Rf, /R changes only from 1.0 to 0. 5, cr de-
creases by three orders of magnitude and p, by
two orders of magnitude. Acrlvos and Mott' at-
tempted to derive g from conductivity data. This
procedure is unjustified because of the weak con-
centration dependence of the Hall effect. Qne
could attempt to derive g instead from Knight-
shift g or paramagnetic-susceptibility X ~ data,
both being proportional to the density of states in
a homogeneous metallic regime. For the diffu-
sion regime to hold, the conductivity data must
be consistent with 0~ y ~. A log&0-logjo plot
of 0 vs y P displays a slope of 2. 3 and not 2, Fig.

Qne might argue that R slope of 2. 3 ls not so
diff erent from one of 2, even though this diff erence
becomes marked over the thx'ee-order-of-mag-
nitude variation of 0, but this still leaves the Hall
effect unexplained. A similar conclusion follows
from analysis of the Knight shift. In subsequent
work, Acrivos correlated electrical-conductivity
and Hall-effect data according 'to Eq. (3}. Un-

O. l =

0.05-

1 I0 l00 I 000

PIG. 3. Conductivity vs paramagnetic susceptibility
of Na-NH3 solutions in the intermediate concentration
range with the concentration 1—9 MPM being the implicit
variable. This log~o-log~o plot results in the empirical
relation 0 =A Q'
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fortunately, the old Hall-effect data of Kyser and
Thompson'6 used by Acrivos ~ were grossly modi-
fied in later work by Thompson and hi. s col-
leagues. ""We conclude that the physical proper-
ties of MAS in the intermediate region cannot be
accounted for in terms of a diffusion type of metal-
lic transport, and that the metal-nonmetal transi-
tion in this system is not preceded by a homo-
geneous diffusion transport regime as does happen
in liquid Hg.

On the basis of the foregoing discussion, we as-
sert that the intermediate- (1-10 MPM) concen-
tration region in MAS separates the metallic
propagation regime from the electrolyte regime.
The metal-nonmetal transition occurs within this
intermediate region. There have been several
conjectures concerning the nature of the metal-
nonmetal transition in this system. Older theo-
retical work ' ' suggested it to be a Mott tran-
sition and used Mott's argument' concerning the
effects of long-range screening, while subsequent
studies focused attention on a Mott transition within
a Hubbard band originating from correlation ef-
fects. Both approaches would have to be modi-
fied to include the effects of randomness of struc-
ture in order to account for the genexal change of
the physical properties over the transition region.
Recently, Mott and Acrivos'6 have attempted to
apply Mott's ideas concerning the formation of a
pseudogap, ' ' i..e. , a range of localized
states in MAS when~ '4~@ & g*= —,'. The boundaries
of the pseudogap are the mobility edges ' and
within it the mobility is low. The detailed analysis
of Acrivos and Mott'6 did not result in a coherent
picture as magnetic and transport properties re-
sulted in different sets of g values.

The role of structural modification and of con-
centration fluctuations in determining the features
of the metal-nonmetal transitions in. MAS was con-
sidered previously, Cohen and Thompson4 sug-
gested that while concentrated solutions are char-
acterized by a fused-salt structure, large isolated
clusters exist in 1-MPM solutions. The struc-
tural aspect of the metal-nonmetal tx"ansition was
ascribed to the breakup of the fused-salt struc-
ture. The idea of clustering in MAS was further
pux'sued by Slenko and Chleux much closer to the
critical point. They provided an estimate of the
mean cluster size (140 interacting neighbors)
from the exponent of the order parameter of the
coexistence curve. Lepoutre and I elieur have
proposed that in the intermediate- (1-10 MPM)
concentration range MAS are composed of a mix-
ture of metallic aggregates and the bulk dilute
solution. Qn the other hand in an attempt to pro-
vide a picture for transport in intermediate MAS,
Lelieur, Lepoutre, and Thompson '4 have pro-
posed a spatially homogeneous two-carrier model,

where two types of conduction electrons, chaxac-
terized by different mobilities, contribute to elec-
tronic transport. Such a model~~ is incompatible
with the idea of clustering in the intermediate
transition region.

We have proposed 5' that MAS in the inter me-
diate- (1-9 MPM) concentration range are mi-
croscopically inhomogeneous, ' with a volume
fraction of the material occupied by metallic
clusters of a mean concentration of - 9 MPM or
higher, the remainder consisting of a low con-
centration (-1 MPM) of small, solvated electron-
cation complexes. Leliuer46' has used that model
to account for the temperature and pressure coef-
ficients of the electrical conductivity. Kirk-
patrick4~ has also proposed a model of conduction
in MAS in this concentration range by percolation
through random, inhomogeneously distributed,
metallic regions, Here we present an extended
and improved version of our model togethex' with
applications to a variety of properties of MAS.

We begin by discussing (in Sec. II) the experi-
mental evidence for microscopic inhomogeneities
deriving from chemical-potential measurements,
x-ray scattering, and neutron scattering. Next,
we summarize in Sec. III cuxrent theories of elec-
tronic structure and transport in such inhomo-
geneous materials. A prerequisite to applying
these theories to MAS is establishing the concen-
tration limits of the inhomogeneous transport
regime, which is done in Sec. IP. We then es-
tablish the relation between concentration and
metallic volume fraction in Sec. p by analysis of
the magnetic data, ; a better lower limit to the in-
homogeneous regime also emerges. In Sec. pI
we carry out an analysis of the transport data and
show that the proposed pictuxe of MAS gives a
quantitatively accurate account of the data. Finally
in Sec. &'II we discuss the implication of our anal-
ysis for the thexmodynamics and phase diagram of
MAS, proposing simple explanations of the phase
separation and of the inhomogeneous phase above
the consolute point.

II. EVIDENCE FOR INHOMOGENEITIES

Ichika%'a and Thompson have found dixect evi-
dence for large concentration fluctuations in lithium
and sodium ammonia solutions, but not in cesium
solutions. They measure the dependence of the
chemical potential of the metal on metal concen-
tration and from it extract the mean square con-
centration fluctuation in the form ((hX„) ), where
4X~ is the fluctuation of the mole fraction. Their
results are shown in Figs. 4-6.

Li and Na solutions saturate at 20 and 16 MPM,
respectively'; the Cs solutions do not saturate. '
In Figs. 4-6 we compare the observed fluctuations
with those expected from an ideal mixture of NH3
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and M(NH, )„, with n = 4 for Li and 6 for Na and Cs:

{(aX„))g„„,=X„[1—(n+ 1)X„], (2. 1)

where X„ is the mole fraction of metal. The fol-
lowing features of the data are noteworthy: {i)
There are large peaks in the Li and Na data cen-
tered about 3.6 MpM for Li and a similar value
for Na. (ii) These peaks are superimposed on a
background similar to what is expected from (2. 1).
(iii) The background differs from (2. 1) in two

FIG. 6. Mean square of concentration fluctuations in
Cs-NH& solutions. Solid line: experimental data (Ref.
48); dashed l.ine: ideal mixture.

respects, being higher at low concentrations and
lower at high concentrations. (iv) Cs shows no
peak and its value of ((hX„) ) is similar to the
backgrounds for Li and Na for M &16 MPM. (v)
{(b,X~)~) for Cs above 20 MPM resembles what is
expected from (2. 1) for an ideal mixture of
Cs(NH~)6 and Cs.

Thompson and Lelieur have pointed out that
one can infer by a simple argument of Turner
from the excess peaks in ({zX„)')for Li and Na
the existence of large, high-concentration clusters
in those materials. Turner's model was designed
for clustering within a homogeneous phase field
around a compound composition within that phase
field, so that microscopic inhomogeneity vanishes
at the compound composition but is present on
both sides of it.

In relation to Turner's picture, we propose for
Li and Na a picture of the microscopically in-
homogeneous region of the phase diagram of MA3
in which (i) the concentration fluctuations are
bimodal, varying locally about either of two well-
defined values Mo and Mg, Mo)glfy, (ii) the con-
centration remains near )go of Mq over radii ap-
proximately equal to the Debye short correlation
length " for concentration fluctuations b; and (iii)
Mo is the upper and 3Ij the lower bound of the
microscopically inhomogeneous region. The con-
centration fluctuations associated with clusters
increase monotonically with cluster size. If the
Ornstein —Zernike fluctuation decay length ( is
much smaller than the Debye short correlation
length 5, the concentration would appear to fluctu-
ate abruptly and randomly from ~o to ~Qz or vice
versa. A percolation problem 5' is thereby de-
fined in which a continuous region of concentration
3~go is regarded as a, metallic cluster. It is a well-
known result of percolation theory that the cluster
size diverges at volume fraction C of such regions
equal to C*, the percolation probability. How-
ever, above C*, the regions of concentration Mo
which are infinitely extended do not contribute
anomalous concentration fluctuations; it is only
the bounded clusters which contribute. If ( is not
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much smaller than 5, the composition of inde-
pendent regions of the material of size b into the
clusters is not quite a percolation problem be-
cause of overlap. For these reasons, one expects
a peak in ((LX„)2)at the percolation threshold the
height of which increases as 5 increases relative
to $. We can infer from Figs. 4 and 5 that M&
= 2. 5 MPM, Mo —-9 MPM, and C*= 0. 17 corre-
sponds to —3.6 MPM for Li. The peak for Na is
too strong to make similar assignments, but is
not inconsistent with the same values. The value
of b/( is substantially larger in Na than in Li.

The asymmetry in the background relative to
Eq. (2. l) can also be straightforwardly understood
for Li and Na. Complexes containing more than
one metal atom have formed below 0. 1 MPM.
These enhance the concentration fluctuations. On

the other hand, above 10 MPM the fused-salt
structure imposes correlations on an electron cavi-
ty and solvated positive ion positions which impede
concentration fluctuations.

The over-all behavior of the Cs solutions can be
understood as follows. Instead of having satura-
tion at a composition M(NH3)„, with larger com-
positions unstable, the "compound" composition
and all higher compositions ax'e stable in Cs at
high enough temperatures. Small clusters of this
compound composition form in a roughly "ideal"
solution with NH3 for M & 16 and with pure Cs for
M»6 giving a minimum in ((aX„)') at M = l6, 8

which cox responds to n = 6. In other words, apart
from the absence of saturation, the behavior of
the Cs solution corresponds to the "background"
behavior of the Li and Na solutions. Support for
this view of the Cs solutions comes from two
sources. First, the nitrogen Knight shift K" is
constant ' for concentration above 20 MPM. This
can be understood if all of the ammonia mole-
cules are tied up in small clusters of the com-
pound composition Cs(CH, )8. Second, the liquidus
has a sharp tempex'ature minimum ' at 16 MPM.
This indicates maximum stability of Cs(NH, )6 in
the liquid phase field.

This percolation picture developed for Li and
Na solutions is borne out by x-ray'6 and neutron
small-angle scattering studies. ~ Schmidt's work56

on small angle x-ray scattering indicates a Debye
short correlation length of 32 A for Li solutions.
It is interesting to note that strong scattering oc-
curs' at very small angles at concentrations above
our assigned percolation threshold. Recent ex-
periments of Chieux' on small-angle neutron
scattering on 4-MPM Li-ND3 solutions were
analyzed in terms of the Qrnstein-Zernike picture
of concentration fluctuations. The resulting decay
length was 4. 7 [T,/(T —T,)] A at a temperature
T above the consolute temperature T, , which is
—58 C for Li-ND3. This decay length is unusually

large, - VO A at 1 'K above T, . The study was
conducted near the critical concentxation, where
the bimodal distribution may collapse into a uni-
modal distribution characteristic of critical fluctua-
tions. It is, however, improbable that critical
concentration fluctuations will prevail throughout
the whole concentration range 2. 3-9 MPM within
which the chemical potential data show large
fluctuations to exist. Nevertheless, we can use
Chieux's results to establish a distance scale
for the fluctuations at other concentrations. At
8 K above T, , where we analyze the Li-NH3 coIl-
ductivity data, the Qrnstein- Zernike decay length
is about 20 A. We can take this as a rough mea-
sure of b elsewhere. Thompson and Lelieur's
estimates of cluster size at 3 and 8 MPM are
consistent with a value of b of about 25 A.

In summary, there is strong experimental evi-
dence favoring microscopic inhomogeneity on a
scale of tens of angstroms in NH3 solutions of Li
and Na, but not of Cs. We defer attempts to un-
derstand the physical origin of the inhomogeneities
until after we have explored their consequence for
the electronic structure and transport properties
of these materials.

III. THEORY OF MICROSCOPICALLY
INHOMOGENEOUS MATERIALS

A. Electronic structure

In the preceding section we proposed a pictuxe
of Li and Na ammonia solutions in which the local
concentration M(r) in the neighborhood of the point
r randomly takes on values near 2. 5 MPM or near
9 MPM, as the average concentration varies from
2. 5 to 9 MPM. Homogeneous solutions of 9 MPM
or gx'eater are definitely metallic and in the propa-
gation regime. Solutions below 2. 5 MPM are
definitely nonmetallic, but only become clearly
electrolytic at still lower concentrations, as we
shall discuss in Sec. IV later. In our picture,
these MAS are undergoing a continuous metal-
nonmetal transition in the concentration range- 2. 5-9 MPM. Clearly, gross changes in local
electronic structure must be associated with the
local concentration fluctuations, changing from
metallic to nonmetallic locally. In order to ap-
prehend how such local nonuniformity of compo-
sition can affect the electronic structure or proper-
ties, we consider first the autocorrelation function
A(R) of the local concentration

A(R) = (M(r)M(r+ R)) —(M(r)) (M(r+ R)) . (3. l)
We know from the Qrnstein-Zernike theory of
fl uctuations that asymptotically

A(R)-e '" "/R,
where $ is the fluctuation decay length. Qn the
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other hand, M(r) varies significantly only over
distances greater than 5, the Debye short corre-
lation length, which must be at least of order an

interparticle separation a. The basic structural
requirements

n(E) =C(E)n, (E), (3 5)

where n, (E) is the density of states per unit volume
of a metallic region of macroscopic extent and

n(E) is the actual density of states of the micro-
scopically inhomogeneous material. Defined in
this way C(E) allows properly for penetration into
the excluded regions.

We shall consider now the nature of the elec-
tronic states in the metallic regions.
C(E) falls below the critical value C* for classical
percolation, percolation theory tells us that
a continuous extended path through metallic re-
gions does not exist. If we ignore tunneling through
the nonmetallic regions, the metallic wave func-
tions are localized at that energy. If this occurs
at the Fermi energy, the system is nonmetallic.
The condition for a metal-nonmetal transition in
the MAS is therefore

imply that the concentration fluctuations are
statistically independent when separated by more
than twice the correlation radius. Second, pro-
vided that the phase coherence length / is shorter
than 5, i.e. ,

(3.4)

the electronic structure can be treated semiclas-
sically insuring the validity of the concepts of
local electronic structure and local response func-
tions. '~ 6 If the electrons were in the dif-
fusion regime for MAS, the condition (3.4) would

be met. However, it will turn out that for MAS
(3.4) is not satisfied, and a boundary scattering
eorrection6 must be included in the transport
properties as discussed below. Having made that
correction, we can then consider the medium as
a submacroscopic i.nhomogeneous random mixture
of regions of radius b which can be treated clas-
sically as locally uniform. Accordingly, we can
define an allowed volume fraction C(E) of the
material actually allowed to electrons of energy
E. Now, the Weyl theorem64l plies that as long
as the de Broglie wavelength is sufficiently small
compared to the dimensions b of the allowed re-
gions, the density of states will be independent of
the geometry of the allowed regions and of the
boundary conditions and proportional to the al-
lowed volume. Thus we may take Bs an approxi-
mate definition ' of C(E)

&(Er)/&o(Ep) = C* .
This result is distinct from

g =n(E g)Inc. (Ep) = 3,

(3 6)

B. Modified effective-medium theory for electrical
transport

Within the semiclassical approximation, the
transport problem becomes equivalent to conduc-

as proposed by Mott "' '~ for a microscopically
homogeneous system. The principal difference
between (3.6) and {3.I) is that no(Er) need bear no
relation whatsoever to the free-electron density
of states. C* is not sufficiently different from —,',
which was only an estimate by Mott, to be con-
cerned with. As we shall see below, tunneling
corrections are unimportant for MAS.

The continuous site-percolation problem has not
yet been solved. Existing numerical studies" for
three-dimensional lattices give values of C* rang-
ing from C*=0.195 for fcc to 0. 30 for sc. Zallen
and Scher' suggest that for percolation in a con-
tinuous potential C~= 0. 1.5. Skal, Shklovskii, and
Efros find C*=0. 1V for a particular random po-
tential; we use that value and have quoted it above.

We are dealing with an inhomogeneous transport
regime in a disordered system, 0 &C & 1, where
we have set C=C(Ez). The inhomogeneous re-
gime can be subdivided into two parts: (a.) Pseudo-
metallic regime: 1 & C & C+. Above the percola-
tion limit the major contribution to transport
originates from the continuous extended metallic
paths. The transport properties will exhibit a
gradual change from those corresponding to the
lower limit of the homogeneous propagation re-
gime (- 9 MPM). (b) Pseudononmetallic regime:
0 & C & C*. Below the percolation limit extended
states do not exist, the solution contains isolated
finite metallic clusters. Over the pseudonon-
metallic regime, the transport properties will be
intermediate between the pseudometallic and the
nonmetallic regimes.

We have thus introduced the notion that the in-
termediate concentration region should be viewed
as an inhomogeneous transport regime where con-
centration fluctuations lead to localization and to
percolation. In the pseudometallic regime, in-
homogeneity results in a gradual change of the
transport properties and, in particular, a con-
tinuous decrease of the conductivity. Percolation
at the onset of the pseudononmetallic regime where
C =C* can be viewed as specifying the locus of the
metal-nonmetal transition on the phase diagram.
Localization in such a disordered system is a,

consequence of inhomogeneity and is amenable to
an appl oxlmate descrlptlon with the aid of semi-
classical percolation theory.
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tion in a macroscopically inhomogeneous medi-
um. Kirkpatrick~s has revived the effective-
medium theory (EMT) of Bruggeman, "Odalev-
skii, 7 and Landauer~ to treat this problem. We

have recently constructed~ an effective-medium
theory for the full magnetoconductivity tensor.
We shall now briefly outline the results of this
transport theory of a randomly inhomogeneous
conductor containing regions of two finite but
widely different values of the conductivity tensor.
The conductivity tensors are 00 in the metallic
region and o& in the nonmetallic region. These
assume the formv

(3. 8)

where o; is the electrical conductivity and is in-
dependent of the magnetic field H, while o„ is
antisymmetric and first degree in H. All con-
ductivity tensors will be treated as 3x 3 matrices.
The macroscopic conductivity tensor for the ran-
domly inhomogeneous conductor

o= o I+ 0',

is determined by the effective-medium condition,
namely

((oq —o) (of —-', o+ —,
' o ) ') = 0 . (3.10)

(2o+o;) )=0 (3.11)

after making use of Eq. (3.8) to first order in H.
When H= 0 one obtains the well-known effective-
medium equation for the conductivitye

Equation (3.10) implies that the fluctuations of the
field average to zero and gives the correct relation
between macroscopic current and fields. In Eq.
(3.10), the average is taken over all possible val-
ues of the local conductivities v; and 0;. Equation.

(3.10) takes the form

((o; —o)/(2o;+ o)) 1+ So ((o„—o)/

g(C, x, y, f)

=f 1— (2f+ 1)'(1 —C)(1 —xy)
(2f+1) (1 —C)+ (2f+x)~C

h(C, x, y, f) =g(C, x, y, f)/f(C, x),
in terms of the conductivity ratio

(3.18)

(3.19)

and the ratio of the Hall mobilit;ies

y= ps/po (3.21)

o (C)/oo= X(C)/f,

where l is the mean free path at C = 1, while X(C)
is the mean free path in the allowed volume frac-
tion C. The latter quantity is given by Eggarter
in the form

in the two regions.
The above theory of the low-field magnetocon-

ductivity tensor of an inhomogeneous system is
applicable in the inhomogeneous transport regime
provided that it is preceded by a homogeneous
diffusion regime, when the condition (3.4) is
automatically met. In the present case the trans-
port within extended metallic clusters corresponds
to the propagation case. That raises the distinct
possibility that the mean free path is comparable
to the sampling length t. , which is twice the Debye
short correlation length b. ' In that case,
scattering of metallic cluster boundaries reduces
the conductivity below the value oo at C = 1. The
reduction of the metallic conductivity below 00 i.s
concentration dependent because the mean cluster
size decreases with decreasing concentration. We
shall account for the consequent dependence of the
conductivity of the metallic region on C by a trivial
modification of Eggarter's theory for scattering
from the boundaries of the allowed regions. 6 The
two conductivities are related by

((o; —o)/(2o+ o )&
= 0 . (3.12)

X(C) =f X, /(f+ X,), (3. 23)
The antisymmetric part of the conductivity tensor
is obtained from Eq. (3.11) as

(o;,/(o;+2o)')
((o;+2(r) ') (3. 13)

rr =f(C, x) oo,

p =g(C, x, y, f) ~o,
R=b(C, x, y, f)R&,

(3.14)

(3. 15)

(3.16)

where the auxiliary functions f, g, and h are

f(C, x) =a+ (a~+ —,'x)'r2,

a = -'[(-'C —-')(1 —x)+ -'xl,
(3.1'7)

The electrical conductivity g, the Hall coefficient
A, and the Hall mobility p, can then be displayed
in the convenient forms

D(C) = oo(C)/oo= &/(1 —C+&),
where

(3.25)

z=2b/f . (3. 26)
We impose no corresponding correction to o& from
scattering from the boundaries of the nonmetallic
region because we expect any correlations among
the conducting entities there to decay over dis-
tances less than 2b. We should note in passing

where in our case the mean free path X, associated
with scattering by prohibited regions at the bound-
aries of the allowed regions is

&, = Q 2nb C" '(1 —C) = 2b(l —C) ' . (3. 24)
a=&

Thus from Eris. (3.22)-(3. 24) we get
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that when the metallic region corresponds to the
diffusion limit z ~ 2b/a, where a is the interatomic
spacing, so that z» 1 and D(C) -1 for all C.

The classical expression for the conductivity,
Eq. (3. 14), has now to be modified by accounting
for the dependence of op(C) on the fraction of al-
lowed volume, so that

v= fD(C) v, ,

where

f = f(C, x(C)),

(3. 27)

(3.28)

n =iD(C) po,

hRp

(3.31)

(3. 32)

where Eqs. (3. 14) and (3.15) are now modified as
follows:

i=g(C, x(C), y(C), f ),
I =Elf,
V(C) = (P z/Po)D(C)

(3. 33)

(3.34)

(3.35)

and x(C) is given by Eq. (3. 25).
Equations (3.25)-(3. 35) constitute a complete

modified effective-medium theory (EMTz) for the
material under consideration. The correction for
scattering from the boundaries of the metallic re-
gions modifies the transport equations in two ways.
First, v and p are proportional to D(C) while no

such correction enters for R. Second, the con-
ductivity ratio x(C) and the mobility ratio y(C)
which enter into f, g, and h, depend on C via
D(C) '. The transport coefficients exhibit the cor-
rect asymptotic behavior, i.e. , o -op p, p, p,
and R -Rp when C - 1, while o-o, , p. - p, z, and

R -R, for C-0. In the low-C (& 0. 2) region the

o values calculated from the EMT and from the
EMTz theory are practically identical, while R and

p, are still somewhat sensitive to the value of z.
A few comments on some limiting cases are now

in order. For the unphysical case of x= v, /vp= 0
the conductivity takes the form

v= v, (-', C- —,')D(C), (3. 36)

while p, and R are independent of y. Kirkpatrick

x(C) = vg/vpD(C) =x/D(C), (3.29)

and now x(C), Eq. (3.29), replaces x in Eq. (3. 17).
In a similar way, we can modify Eqs. (3.15) and

(3.16) for the Hall coefficient and for the Hall
mobility. We assume that the Hall mobility in
the metallic regions is affected by boundary scat-
tering in the same way as the "metallic" conductiv-
ity. This leads to the following relation:

P 0(C)/PO=D(C) ~ (3. 30)

Replacing vp and po in Eqs. (3. 15)-(3.21) by (3. 25)
and (3.30) we get

has shown that Eq. (3.36) [without the D(C) correc-
tion term] holds in the range 0. 4&C&1. We ex-
pect that in this limit the expressions for p, and R
are valid over the same range of C values. Kirk-
patrick's data and subsequent calculations have
demonstrated that for moderately high values of
x (~ 0.05) the effective-medium theory for the con-
ductivity is in good agreement with the results of
numerical calculations over the whole region of
C; we expect that in this case (3. 25)—(3. 35) are
valid for all C.

In the interpretation of transport in MAS we
shall be interested in moderately low values of
x (=10 ). Numerical calculations performed by
us demonstrate that in the range 0. 4 & C & 1, o,
p. , and R are very close (i. e. , within 2% at C
= 0. 4) to their x = 0 value, the two latter transport
properties being then independent of y. Further-
more, detailed calculations indicate a close agree-
ment between the EMT and numerical results for
conductivity in a sc random network. We conclude
that for low-x values the effective medium theory
and its modified version hold for C &0.4. How-

ever, the value of x is so low for MAS that the
EMT or the EMTz provides no more than a qualita-
tive guidance in the range 0& C &0.4. Accordingly,
we now turn to a numerical simulation of o in this
range, using the methods of Kirkpatrick.

C. Numerical simulation of continuous percolation

As noted above, Kirkpatrick' carried out a
numerical study of the conductivity of a simple-
cubic network of resistors in which each nearest-
neighbor bond was randomly assigned a resistance
~p with probability 1 —C, and v& with probability
1 —C, x=ro/r~. He found that effective-medium
theory was accurate for 1 & C & 0. 4 independent
of x but that serious deviations from the effective-
medium theory occurred for small x (~ 0. 05 ac-
cording to further calculations~ ). In the limit of
x= 0, the flow of current within the network be-
comes a bond-percolation process for which the
percolation threshold is C*= 0. 247, ' ' the con-
ductivity vanishing for C & C*. EMT gives
v/vp= pC —p, C )-', , and v= 0, C &-', , so that
Cg MT 3 ~ Thus EMT overestim ates the value of
the percolation threshold for x= 0 and can in gen-
eral be expected to give too low a value of o for
C &0. 4 and x+0.

It is clear from these results of Kirkpatrick
that either an improved formal theory has to be
developed for C &0. 4 and x &0. 05 or that numerical
simulation has to be carried out. Yonezawa and
Hori have given a formal treatment which im-
proves the EMT, and with Webman we have car-
ried out numerical simulations. We describe our
results briefly here; further details will be pub-
lished separately. First, we note that we are
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FEG. 7. Numerical results for numerical simulation
of continuous percolation. The conductivity of a simple
cubic network of conductances with correlated bonds
was calculated for a 18 &18 &&18 network. Values of the
conductances are 00 = 1 (with probability C) and 0&

=1.2 &&10 3 (with probability 1 —C). Curve 1, o EMT
x = 1.2 && 10"~; curve 2,iKirkpatrick's model with ran. —

domly assigned conductances; curve 3, o near-neighbor
bond correlation. curve 4, ~ "metallic clust;ers" involv-
ing nearest neighbors; curve S, a Spatial propagation of
bond correlation to second nearest neighbors.

dealing with a continuous site-percolation problem.
Any portion of the material can be randomly metal-
lic or nonmetallic. Second, we note that such a
continuum percolation problem has been regarded
as the limit of either a site or a bond percolation
problem ' on any lattice as the maximum al-
lowed bond length increases relative to the near-
est- neighbor separation. Alternatively, one can
impose correlations on neighboring bonds such
that if a bond is of one type all its neighbors out
to a given correlation distance must be of the same
type; the limit of bond percolation as the correla-
tion distance increases is then the continuum
percolation problem. As the latter process more
closely resembles what occurs in MAS, we have
done with Webman numerical simulation of cur-
rent flow through correlated bonds to evaluate 0
for small {.and x.

In doing so, we have used modifications of Kirk-
patrick's original programs which improved con-
vergence and added bond corx elation. The results
are shown in Fig. 7 for x = 1.2x 10 3. Curve 1 is
effective medium theory, curve 2 is Kirkpatrick's
calculation for no bond correlation; and curves 3-5
involve increasingly strong correlation among the
bonds. The bond correlation used for curve 3 was
constructed by assigning random numbers to each
bond, then the 6 bond numbers associated with
each vertex were averaged and ro or r~ assigned
to the bonds according to the resulting values of
the bond numbers. For curve 4, random numbers
were assigned to each vertex. Then all 6 bonds
leading into it were assigned r() or r, according to

the vertex number. Finally, for curve 5, the pro-
cess leading to average bond numbers for curve 3
was iterated once more before ro or r~ was as-
signed. This second averaging causes a spatial
propagation of the bond correlation.

Several features of these results should be noted.
For low C («0. I), the effective-medium theory
yields

o/a&= (I —3C) ' .
This can be rewritten

o/oi = (I —C/C*)

(3. 37)

(3.38)

As noted above, the EMT can be extended to
handle general xesponse functions in disordered
m aterials. An EMT for the thermal conductivity
~, a diagonal response function, was provided by
Odelevskii, 6 while Airapetiants attempted an ef-
fective-medium theory for the thermoelectric
power. The latter treatment can be criticized on
the grounds that it does not involve a self-con-
sistent configurational averaging procedure. We
have carried out an EMT for a system simul-
taneously subjected to gradients of temperature
and electric potential, obtaining explicit expres-
sions for the thermal transport properties of an
inhomogeneous material.

since C~= —,
' in the EMT. If we reinterpret (3. 38)

by replacing the EMT value of {."*by the actual
values'" 0. 1V, we find that it accurately fits the
numerical values of v of curve 5. In the transi-
tion region 0. 1& C &0. 4, the numerical results
show a systematic trend towards higher conductivi-
ty with increasing correlation. This can be most
readily understood by reference to the x-0 case,
the strict percolation problem. As we approach
continuum percolation by increasing the degree of
bond correlation, the percolation threshold de-
creases fxom 0*=0.24V for the uncorrelated case,
to {:*=0. 17. We also confirm Kirkpatrick's con-
clusion~ that EMT is accurate for C &0. 4, but
now under more general circumstances.

It is straightforward to carry out an effective
medium theory for any tensorial response func-
tion, e. g. , thermal transport coefficients, optical
constants, diffusion coefficients, etc. Such an
EMT case can be readily generalized into an ac-
curate numerical calculation of a random con-
tinuum property for a diagonal response function
by the method we have used for the electrical con-
ductivity. We have not yet found a way to carry
out a network simulation for the Hall coefficient
of a random continuum, a nondiagonal response
function. It is possible that the systematic pro-
cedure of Yonezawa and Horiv can yield an im-
provement over EMT for g.

D. Effective-medium theory for thermal transport
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%e start with the microscopic equations

J'= K' V T'+P'T' Vrp',

J'= o'Vy'+P'VT',
(3.39)

(3.40)

which hold locally within the inhomogeneous ma-
terial. Primed quantities indicate local values.
J' and j' are the heat and electric currents, re-
spectively, ~' and 0' are thermal and electrical
conductivity, respectively. P is the Peltier coef-
ficient, while y' and T' are the electrical poten-
tial and the temperature, respectively. The cor-
responding macroscopic equations are identical to
(3.39), but with unprimed quantities. The relation
between the macroscopic and microscopic fluxes
and forces is

K=KoD(C)f(K1/KoD(C) C) ~ (3.46)

ls
The operational definition of the I.orentz number

The above EMT for thermal transport properties
is valid provided that boundary scattering is negligi-
ble. Boundary scattering can be introduced as
before. The solution of (3.41) for K in the present
case, where v' takes on the value of Kowithprobabi-
lity C and && with probability 1 —C, is

K = Kof (K1/Ko ~ C) i

with f(x, C) given by Eq. (3.17). As K' is propor-
tional to the mean free path in the metallic region
and insensitive to boun. dary scattering in the non-

metallic regions, the EMTz for 0 can be taken over
directly for z,

~noae'.I = (3.47)

(3.41)

while for P we get ~

3Ko (P'/(K'+ 2K)(cr'+ 2o))
((KG +VK +2Ko —K 0 )/(K +2K)(o +20))

(3.42)
The thermoelectric power 5 can be obtained from
Eq. (3.42) by substituting

(3.43)

for primed and unprimed quantities in (3.42).
The measured thermal conductivity Vis given

byvs

K= I(.
" —5 OT . (3.44)

where the average can be taken equivalently over
all space or over all local configurations at a given
point.

To carry out an effective medium theory of the
xelation between the macroscopic transport coef-
ficients x, 0, and P and the corresponding mi-
croscopic quantities, we treat the system as though
it consisted of a sphere of radius b embedded
within a uniform effective medium characterized by
the coefficients ~, 0, and P. %'e use the conser-
vation conditions and Maxwell's equations together
with Eq. (3.39) to determine J', j ', T', and y'
inside the inclusion. Application of Eq. (3.40)
results in a consistency condition, the EMT con-
dition, which must be satisfied by ~, 0, and P,
determining them implicitly in terms of averages
over ~', 0 ', and P'. The result for 0 is the usual
EMT result, Eq. (3.12), that for K was obtained
by Qdelevskii before

where ~ and a are measured quantities and ~„„,
is an estimated nonelectronic contribution to the
thermal conductivity. For a uniform metallic sys-
tem, I is close to +0=2. 45xlo gfQ K . In the
inhomogeneous regime, there is no longer addi-
tivity in the conductivities and I can in principle
deviate considerably from I.o. Indeed, there is
no clear cut procedure for defining z„„,.

E. Tunneling corrections

From the analysis of Sec. III C, it is clear that
for values of x as low as those pertaining to MAS,
percolation effects play a prominent role in de-
termining the concentration variation of the elec-
trical conductivity and other transport properties,
especially for values of C below the percolation
threshold C*= 0. 17. If tunneling across the non-

metallic regions were important, 6 the local non-
metallic conductivity would be shorted out by
tunneling, transport would no longex be by percola-
tion, and the quantitative details of the present
theox"y would be wrong. Accordingly, we estimate
tunneling corrections in the present subsection.

Below C~, the metallic regions can be considered
isolated clusters of radius b embedded within the
nonmetal with average separation 2A, . The mean
free path in the metallic regions is about &2 A,

'
and we are just at the borderline between the propa-
gation and diffusion regions. %e choose to carry
out the tunneling calculation by ignoring phase in-
coherence; this should yield an upper limit to the
tunneling conductance per unit area between two
clusters, G. Standard tunneling theory then yields
the form

For MAS ' 2' '~ the second texm on the right-hand
side of Eq. (3.44) is of order 10 K acnadn be
safely neglected.

C=[o, /2(ft, -f )]~T ~', (3.48)
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oe = 3Ne &g/pr,

—,
'

X, = (h'/2m)'"(W-E )"'/W'
(3.49)

(3.50)

G, = /2o(R, —b) . (3. 52)

For tunneling corrections to be negligible, we re-
quire that

G/G~«1 .
Inserting (3.48), (3.49), and (3.52) into (3. 53)
gives for that condition

(3~, /Ix) (T ~'«I, (3. 54)

where we have used a nearly-free-electron ap-
proximation for ao,

is of the order the decay length of the wave func-
tion inside the barrier, of height W above the bot-
tom of the conduction band, and Pz is the Fermi
m omentum. Finally, in (3.48) the tunneling
probability across the barrier is

~T
~

= «p{- 2[2m(W-E, )/n']"'2(E, —b)}.
(3.51)

The electronic energy within the metallic clusters
is estimated via a simple model of the conduction
electron energies [Cohen, Jain, and Jortner (CJJ)
(unpublished)]. In that model, the energy of an
electron at the bottom of the conduction band is

Ee = Eo —&Eo —a e /Dr, +E~+ E, .
Here Eo= —2 eV is the lowest energy level of an
electron in an isolated cavity [Gaattou and Jortner
(GJ')]; —nEo is the Wigner-Seitz shift of that level
imposed by the vanishing of the radial derivative
of the corresponding eigenfunction midway between
the cavities. The next term is the Madelung energy
of a zinc-blende-like arrangement of ions (CJJ)
with a Madelung constant n of 1.64, an effective
dielectric constant D of 5. 5 (CJJ), and a separation
between neighboring positive ions and electron
cavities x, of 5. 5 A, yielding —0. 48 for the Made-
lung energy. E„is the change in the Coulomb
interactions between neighboring cavities caused
by metallic screening, and E, is the exchange and
that part of the correlation energy not already in-
cluded in the Madelung energy. CJJ have argued
that E„and E, are relatively small at 9 MPM, as
the electrons are rapidly approaching the tight-
binding limit (see Sec. I) with decreasing concen-
tration. For similar reasons, we also neglect
GEO. The barrier height W is given by

W= Vo —E
where Vo= —0. 25 eP (GJ) is the bottom of the con-
duction band in pure NH3, or W= 2. 23 eP. A

free-electron approximation gives 0. 58 eP for Ez
so that W- E~ is 1.7 eV or = 2 eV. G is to be
compared with the conductance associated with the
nonmetal

oo=Neol/pr, (3. 55)

N being the conduction-electron density. Making
use of the relation

Z, =tC '", (3. 56)

and choosing the smallest possible value of b in-
dicated by any of the data presented or still to be
presented in this paper for I,i or Ne, , b = 15 A, we
obtain an upper limit for )T ) of 10 for C =0. 1
and of 10 for C=0. 15. The values of W and
W —E~ cited above with l = 12 A, give

G/G, =10'iI i'. (3. 5V)

Condition (3. 53) is always satisfied, and tunneling
corrections are negligible in these systems. %e
conclude that we can proceed safely to the analysis
of the transport properties of MAS via semiclassi-
cal transport theory.

IV. LIMITS OF INHOMOGENEOUS REGIME

Fitting the theory to the experimental transport
properties of MA3 in the inhomogeneous regime
requires the following: (a) Identification of the
limits of the inhomogeneous transport regime. (b)
Determining the values of the transport coeffi-
cients at those limits, C = 0 and C = 1; and (c)
establishing the relationship between C and M.
We consider (a) and (b) in the present section; (c)
is carried out in 3ec. V.

Regarding the upper limit, C=1, we have al-
ready noted that the anomalously large concentra-
tion fluctuations~a disappear into the background
at M ='7-9 MPM in the Li and Na solutions, Figs.
4 and 5 It is interesting that the Hall constant'6 '
R for Li begins to exceed the free-electron value
R&, for M & 9 MPM. Furthermore, the conduc-

~~ there becomes of order 103 Q ~ cm ~

for Li and Na solutions and that kzl approaches '

the value of Azl =3 at 9 MPM for I.i and Na, while
in the case of expanded liquid Hg, ~ the propagation
regime does not apply only for k~l & 2. 3. These
three facts together indicated the termination of
the homogeneous propagation regime in MA3 at
9 MPM. The Hall-effect data for I.i together with
the conductivity data for Li and Na provide at
present the principal reason for choosing M = 9
MPM to constitute the lower limit of the homo-
geneous propagation regime; concentration fluctua-
tion data4 are consistent with this choice. Below
9 MPM the linear relationship (1.3) between &z and
[X/N(9)] It required in the diffusion regime
fails seriously. Accordingly, in Li and Na solu-
tions the termination of the propagation regime is
not associated simply with the onset of the diffu-
sion regime. Coupling these facts about the trans-
port properties with the evidence for inhomogeneity
exposed in Sec. II leads us to identify the upper
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limit of the inhomogeneous transport regime as C
= 1 at 9 MPM in Li and Na solutions.

Turning now to the lower limit, C = 0, the con-
centration fluctuations in Li solutions, Fig. 4,
suggest that the material becomes homogeneous
again at M =2. 5 MPM. On the other hand, an elec-
trolyte model is inconsistent with the transport
data' ' down to 1 MPM for Li and Na. At 1
MPM the equivalent conductance has already
reached a value as large as can possibly be ex-
pected from the electrolyte picture. It increases
further by an order of magnitude in the range 1-2.5

MPM, a change which cannot be encompassed
within an electrolyte model. We therefore have
previously considered4'1 MPM as the onset of the
inhomogeneous transport regime. That would
correspond to a value of x of 2x10, and the con-
ductivity would be given by (3. 38) for small C.
Equation (3. 38) implies an increase in o by 2. 5
for C= 0. 1 over its value oi, at C=0. That in
turn implies that C=0. 1 at 1.7 MPM. That such
a value for M for C = 0. 1 cannot be reconciled with
both the magnetic data and the conductivity at high
concentrations is implicit in the later sections of
this paper. Accordingly, we set M —2. 5 MPM as
the lowest limit, C =0, of the inhomogeneous re-
gime, and refine this value of M for C = 0 to 2. 3
MPM by analysis of the magnetic data in Sec. V.

We note in passing that this assignment of the
lower limit of the inhomogeneous regime at M = 2. 3
MPM requires a reinterpretation of the transport
properties of MAS in the concentration range 1-2.3
MPM. At 1 MPM the equivalent conductance is4
770 cm 0 mole, equal in value to the limiting
equivalent conductance which is the upper limit of
the conductivity in the electrolytic transport re-
gime. We recall that the paramagnetic suscep-
tibility of Na-NH3 solutions ' is close to zero at
1 MPM, whereupon complete spin pairing occurs.
In the concentration range 1-2.3 MPM the para-
magnetic susceptibility increases to 0. 08x10

cgs while the conductivity rises from 0. 15 to
1 (Oem), the low value of o implying nonmetallic
electronic transport in that concentration region.
We suggest that pseudointrinsic semiconducting
transport ' is operative in MAS in the concen-
tration region 1-2.3 MPM. The full valence band
and the empty conduction band correspond to su-
perposition of o~- and of o„-type orbitals of (doubly
occupied) electron cavity pairs, respectively. The
0~-O„splitting of a single cavity pair at low con-
centrations is 0. 6-0. 7 eV. Thermal excitation
occurs across the mobility gap. This transport
mechanism in MAS is analogous to that exhibited
in expanded liquid Hg in the semiconducting trans-
port regime at densities below 7. 8 g cm '.

The corresponding values of the parameters
needed as input data for the transport properties
are taken from experiment ' 4 ' ' and l jsted
in Table I for Li and Na solutions. They yield

x=1.2x10 ', Li-NH, 223 K,
x=2.4x10, Na-NH3 240'K,

y = 7.9x10, Li-NH3 223 'K,

i&i/vo= 0. 35, Na-NH3 240 'K,
S, /So= 20, Na-NH, 240'K .

(4. la)

(4. lb)

(4. lc)

(4. 1d)

Before we can use these parameters in the analysis
of the transport data, we require C vs M, a C
scale, also obtained in Sec. V.

V. ANALYSIS OF MAGNETK DATA AND C SCALE

Xp= 7 (M —2)X (5 1)

where y = lt~(9) is the volume susceptibility in the

The best available data for the spin susceptibili-
ty are shown in Fig. 8. For Na solutions X~ be-
comes appreciable above 1 MPM, increasing mono-
tonically with M. It is linear with M in the range
3&M &9 MPM, where it follows

TABLE I. Values of electronic and thermal transport coefficients associated with the inhomogeneous transport re-
gion in Li and Na MAS.

C M (MPM)

2. 33 1.5 3. 0

0 (O cm)-'
Li-NH, Na-NH3
223 K 240 K

R (cm3/C)
Li-NH3

2.23 'K

1.9 x10"

p (cm V 'sec )

Li-NH3
223 K

0. 031

S (AVK )

Na-NH3 Li-NH3
240 K 230'K

—49. 5

v (Wcm K )

Na-NH3
240 K

3. 8 x10

Remarks

Lower
limit

0. 17

0. 4

2. 0

3, 47

5. 00

9. 0

180

1210

190

1240

1.3x10 '

6. 6x10 4

3.1 x10+

0.26

1.15

3.9

—17

—7. 6

—2 ~ 8

—33

—4. 1

3.9x10 ~

9 4x10 3

Percolation
threshold

Onset of
val. idity of
EMT for 0

Upper limit
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iIf =9c+ (1- c)m, ,

Xp—- CX~+ (1 —C) Xt ~

Inserting (5. 1) for x~ in (5. 3), and defining

'r = XI/X

gives us

C = (M —Mg)/(9-MI)

(5. 2)

(5. 3)

(5.4)

(5. 5)

metallic regions. Below 3 MPM, the data are in-
sufficient to establish uniquely a dependence such
as (5. 1). They can be fitted either to a continua-
tion of (5. 1) to 2. 3 MPM plus another linear seg-
ment from 2. 3 to 1 MPM or to (5. 1) to 3 MPM
plus a quadratic segment from 3 to 1 MPM. It
should be noted that the relation (5. 1) continues
above M = 9 MPM, so that the magnetic data are
useless for establishing an upper limit to the in-
homogeneous regime. Instead, we shall use them
to establish a lower limit and a dependence of C
upon M within the inhomogeneous regime.

The model we use to interpret y~ is the same
we have used for the concentration fluctuations and
the transport properties. The material consists
of a random mixture of metallic regions of mean
concentration 9 MPM and nonmetallic regions of
mean concentration M& which is to be determined.
The metallic regions have volume susceptibility

, and the nonmetallic y&. Because local field
corrections are negligible in y~, effective medium
theory is unnecessary, and we can write

Mg ——2+ Vx (5.6)

between the two parameters M, and r.
Since y ~ is linear in M at least down to 3 MPM

and C is linear in M according to (5. 5), (5. 3),
plus (5. 6) imply that 2 & MI & 3 MPM. Accordingly
we have to introduce a fitting function for y ~ in
that range. We have considered two possibilities:
(i) two linear segments, Eq. (5. 1) for M &2—', MPM
and

x, = -', (~-1)'x. (5. 8)

for M & 3 MPM. Inserting MI into (5. 7) and (5. 8)
to give y& and ~ gives M&=2-,' and 3 MPM, respec-
tively, upon insertion of the resulting ~ values into
(5.6). That the value 3 MPM is well within the
inhomogeneous regime is indicated by the concen-
tration fluctuation data, which show anomalies
already at 2. 5 MPM in I,i. The peak fluctuation
occurs at about 3. 7 MPM while the values of M at
which C = C* are 3. 5 and 4. 0 MPM for the linear
and quadratic fits, respectively, favoring M, = 2—,

'
slightly. However, the most important basis for
selecting M& = 2—,

' as the lower limit to the inhomo-
geneous regime is that the fit to the conductivity
data is worse for M&= 3 MPM. Accordingly, we
choose our C scale as

(5. 7)

for M &23 MPM; (ii) a linear segment, Eq. (5. 1)
for M &3 MPM and a quadratic segment

for the C scale, and the relation c = (m —2-,')/6-,' (5. 9)

u) o.6—
C3

'0

K

Kl

o 04
UJ

CO

U)

(3

LIJ

(3

o.z
K

QEsR
~ Static

K=K.(x"./x", )C.K (x "/x",)(I —c), (5. 10)

where y" and y," are the nuclear volume susceptibi-
lities in the metallic and nonmetallic regions, re-
spectively. As each nuclear susceptibility is
proportional to the corresponding nuclear number
density, (5. 10) can be rewritten78

and show in Fig. 8 the corresponding fit of the two
linear segment function to the g~ data.

We now turn to the correlation between Knight
si&ift4' ' and volume susceptibility. We are deal-
ing with the limit of extreme motional narrowing for
the nuclear resonance. As a consequence, the
observed Knight shift is the mean of the Knight
shift in the metallic regions K, and that in the
nonmetallic regions K, weighted by the proportion
each region contributes to the nuclear volume sus-
ceptibility g ~

NK=K~N C+KiNi(1 —C), (5. 11)

M (MPM)

IO l5

FIG. 8. Fit of the two-linear-segment function Eqs.
(5. 1) and (5. 7), to the experimental paramagnetic sus-
ceptibility data (Ref. 21) for Na-NH3.

where N is the mean metal atom number density,
is that quantity in the metallic regions, and N&

the same in the nonmetallic regions. Comparing
(5. 11) with the corresponding relation for the
volume susceptibility X~, we see that our model
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0.200

ty, and raise the possibility that the onset of in-
homogeneity occurs at M = 1 instead of 2. 3 MPM as
proved Sec. P7. However, it is not possible to
make mutually consistent interpretations of the
conductivity and paramagnetic susceptibility on
that basis. The conductivity for low C is given by
Eti. (3. 38) with C*=0.1V; values of C derived
therefrom are shown in Table Q. The spin sus-
ceptibility in this region is given by Eg. (5. 7) below
M = 2—,', using the fit of g~ to two linear segments.
The inhomogeneous model then gives

C=- —,', (m —1), m&2-,', (5. 12)

0. I 00

IZ

0.050

0 O, l 0.2 0.5 0.

Xp (Io cgs)

FIG. 9. Paramagnetic susceptibility vs P'K of Na-
NH~ solutions (gefs, 20-22) with the concentration
(2-9 MPM) being an implicit variable.

predicts a linear relation between NK and X ~. A

plot of XR and X~ is displayed in Fig. 9, and a
linear relation is found to hold over the inhomo-
geneous regime and, indeed, outside of it. This
correlation between Ng and y~ can evidently not
be used to fix the limits of the inhomogeneous re-
gime since a similar relation is expected to hold
in the homogeneous metallic regime in any event.

The increase in y~ above its minimum value
actually starts at 1 MPM, and the equivalent con-
ductance there increases above the maximum that
could be expected from an electrolyte. Both facts
support an electronic contribution to the conductivi-

which is also shown in Table II. The two sets of
value of C differ drastically, confirming our pre-
vious conclusion that the inhomogeneous regime
starts at M = 2. 3 MPM.

Having established the consistency of our picture
of an inhomogeneous regime in Li and Na am-
monia solutions, we can now proceed to an analysis
of the transport data using the C scale thereby de-
fined.

Vl. ANALYSIS OF TRANSPORT DATA

A. Conductivity

Qur numerical simulations show that the EMT
holds accurately for 1 & C &Q. 5 or 935 & ~M & 5. 5

MPM. Moreover, the EMT reduces to its x= 0
form cr/oo = —,

' C ——,
' for values of x as small as we

are dealing; with here (see Table 1). Accordingly,
we have compared o/oo with -', C ——,

' for 11 and Na
for 9 &,'Q & 5. 5 MPM and show the results in Figs.
10 and 11. The data fall systematically below the

(:
05 06 07 08 0g I0~~~0 (-
j
——j——

)
—~ --- -I—--T----q

I.Q —„L NH ~23' K

TABLE II. Inconsistency of magnetic and conductivity
data in. the concentration range 1—2. 3 MPM wit;h the in-
homogeneous transport regime.

l.24
1.6
2. 0

~(~)i~(9)

1.8x10 '
2. 5 x10"4
4. 3x10 '
7. 8 x10

(from 0)

0. 046
0. 097
0. 128

(from gp)

0. 009
0. 025
0. 038

Calculated from C = -' [1 —(T(1)/(T(~")].
"Calculated from C = g/X~ or, alternatively, estimated

f C =,-', (I—1).

l i.
5 6 7

M(MPM)

FIG. 10. Analysis of the electrical conductivity data
of Li-NH& solutions, 5„5 .iI&- 9 MPM, at T --:"23oK

(Refs. 14-17) in t e rms of the modified effective-medium
theory (EMT z). The best fit is obtained for. m 2. 5. The
curves for z =-~ (EMT) and for z=-1 are shown for corn-
park son.
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b =15 A, Li-NH3, T= 223 K,
b = 32 A, Na —NH3, T= 240 oK

(6. l)

These results are quite remarkable in that rough,
quantitative, microscopic structural information
has been obtained from the electrical conductivity.
The numerical value of 15 A for Li is consistent
with the x-ray and neutron scattering data ' con-
sidering the uncertainty attached to the estimate
of the mean free path, etc. Moreover, the am-
plitude of the fluctuation peak scales with the cube
of b so that the factor of 2. 1 increase in b in going
from Li to Na is enough to account for the striking
increase in the peak height for concentration
fluctuations in Na over Li, as is evident from
Figs. 4 and 5.

EMT, more so for Li than for Na. We therefore
fitted the data to the EMTz, Eqs. (3. 27)-(3. 29)
adjusting the one parameter z to get a best fit.
The results are also shown in Figs. 10 and 11 for
the best fit of z = 2. 5 for Li while a least-square
analysis results in z = 5. 3+0.6 for Na. Also shown
is EMTz for z = 1 for comparison.

From these values of z a rough estimate of b

can be obtained. Using the weak scattering, nearly-
free-electron form for Oo, we estimate the mean
free path to be 12 Afor Li and Na. The corre-
sponding values of b from Eq. (3. 26) are

C (EF)
0.60 0.2 0.4

I
I

I
I

I

0.8 I.O

bo

b

-i
IO

I~/
I]

]/
tj

I.li
I/

I/
~ /j

~/.~ g/

io'
2 3 4

Li - NH T=223 K3

EMT

—-—N.N bond cerelation

--- second N.N bond

correlation

X I.2x IO

~ Experimental Data

M (MPM)

FIG. 12. Analysis of the electrical conductivity data
of Li-NH3 solutions at 223'K (Refs. 12—15 throughout
the entire inhomogeneous regime. C = 1 at 9 MPM and
C=0 at 2. 33 MPM. Solid Curve (C&0. 5): EMT; dotted-
dashed curve: numerical simulation with nearest-neigh-
bor bond correlation (x= l. 2 &10 3); dashed curve: nu-
merical simulation with second nearest-neighbor bond
correlation (x= 1.2 &10 3); circles represent experimental
data.

i.0—
0.5

I

0.6 0.7
I

0.8
I

0.9
1

I.O

0.8—

0.6—
bo

b

0.4—

0
0.2—

0
5 7

M {MPM)

FIG. 11. Analysis of the electrical conductivity data
of Na-NH3, 5. 5&M& 9 MPM, at T =249'K (Ref. 12) in
terms of the EMT z. The best fit is obtained for z=5. 3
+0. 6. Also shown are the curves for z=~ and z=1.

The fit to the EMT breaks down seriously at low
concentration and the EMTz is little different there.
Accordingly, we have compared the experimental
data with various numerical simulations in Figs.
12 and 13 for Li and for Na. One sees that as the
correlation is increased so that continuum percola-
tion is approached, the fit becomes excellent over
3 orders of magnitude of variation in 0. It should
be recognized that the theoretical curve is fixed
to the experimental data at the C = 0 and C = 1 end
points of the inhomogeneous range but that other-
wise there are no adjustable parameters. (We
have ignored the EMTz corrections in the present
context. ) The simulations should be regarded,
therefore, as interpolations between the end points
and they serve excellently as such. There should
be little doubt now as to the existence of an in-
homogeneous transport regime for 2. 3 M & M & 9
MPM.

On the basis of the preceding analysis we criti-
cize Lelieur's calculations of the temperature and
pressure coefficients of o on two points: (i) the
use of the limits 1-9 MPM for the inhomogeneous
regime instead of 2. 3-9 MPM and (ii) the use of
the EMT in the low-C range, C &0. 4, the region
of interest for the temperature and pressure coef-
ficients. We note in passing that the maximum in
the temperature coefficient of o (2. 0 MPM for Na—



1564 JOSHUA JORTNE R AND MORRE L H. COHEN I3

0.2 0.4 0.8 1.0

10

bo

b

-I
10

-2
10

10

-2

10
o LI-NH) 223'K

——-EMT x =1.2x10 y=8xlQ-
SBEMT IRIEMT) xcr(numertcajl

0 I 2 3 4 5 6 7 8 9
M (MpM)

FIG. 15. Analysis of the Hall-mobility data (Refs. 16
and 17) for Li-NH3 solution at 223'K in terms of the
effective-medium theory (dashed line) and the SBEMT
(solid line).

NHe and 2. 8 MPM for Li-NHS solutions) occurs
close to C=O, while the minimum in the pressure
coefficient (3. 5 MPM for Na-NH, solutions) is
exhibited near C = C*. In the absence of adequate
information on the temperature and pressure de-
pendence of the C scale we defer further analysis
of this problem.

RrR,

C

0 0.2 0.4 0.6 0.8 1.0
I I

Li- NH~

T=223'K —EMT

x= 1.2x 10

y= 8 x IO

I I I

0 2 4 6 8
M(MPMj

FIG; 14. Analysis of Hall-effect data (Refs. 18 and 19)
of Li-HN3 solutions at 223'K in terms of the EMT.

M (MPM)

FIG. 13. Analysis of the electrical conductivity data
of Na-NH3 solutions at 240'K (Ref. 12) throughout the
entire inhomogeneous regime. C=1 at 9 MPM and C =0
at 2. 33 MPM. Solid curve: EMT for C& 0. 5 and numeri-
cal simulations with second nearest-neighbor bond cor-
relation (x = 2. 4 & 10 ) for C & 0. 5; ci rcles represent ex-
perimental results.

B. Hall data

Since we have been unable to go beyond the EMT
for the galvanomagnetic properties, we have com-
pared the available Li Hall da,ta ' to the effec-
tive-medium theory. As we have noted in Sec. III
the boundary scattering corrections to R are negli-
gible for C &0. 4, while in the low-C range (0 & C
& 0.4) the EMT is inaccurate, and there is little
point to introduce the modified EMTz version of
the theory. In Fig. 14 we portray the available
Li Hall effect data together with the EMT curve
using the experimental data at C = 0 and C = 1 from
Table I. In the pseudometallic regime down to
C = 0. 4 the agreement between theory and experi-
ment is good, while for 0& C &0.4 the EMT curve
provides just an approximate interpolation formula.

In view of the quantitative agreement of 0. and R
with the predictions of the EMT (and EMTz) in the
range 0. 4 & C & 1 it is apparent that a good fit can
be obtained for the concentration dependence of
the Hall mobility p, in this range as is evident from
Fig. 15. The small negative deviations of p, from
the EMT curve in the concentration range 5 M & M
& 9 MpM can be readily accounted for in terms of
the EMTz; however, the experimental Hall-mobility
data are not accurate enough to warrant such an

analysis. In the lower concentration range C & o. 4
the experimental data exhibit a marked deviation
from the EMT curve. This is not surprising as
the EMT for 0 reveals deviations in that range.
In the absence of a numerical simulation scheme
for R and p, we have compromised by taking for
p, the product of R obtained from EMT and cr as
derived from the numerical simulation. The re-
sulting curve, labeled as SBEMT in Fig. 15 sub-
stantially improves the agreement with experi-
ment. This is not surprising, as the numerically
simulated 0. comes quite close to the experimental
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values. The deviation of p, (SBEMT) from the ex-
perimental data originates from the (relatively
small) deviation of the experimental R data from
EMT (Fig. 14). This last procedure should not be
taken too seriously; such hybridized theories can
be worse than the EMT, as is the case for the Hall
effect, when one substitutes the simulated value of

f into the EMT formula. 20

0.2
l

0.4
l

0,6
I

0.8
l

O Na

V Li

So =20

I.O

I.O—

C

0.5
1

I.O

I

C. Thermal-transport coefficients

We now turn to the analysis of the thermal con-
ductivity~~ and the thermoelectric power for Li
and Na solutions. The available thermal-con-
ductivity data for Na —NH, can be fitted by the EMT
equation (3.41) with x, /F0=0. 35-0.40. The avail-
able experimental data, ~ Fig. 16, are too sparse
and inaccurate to attempt a quantitative correction
for boundary scattering. The negative deviation
of the experimental ~ at 7. 1 MPM from the EMT
curve indicates that Z-3 in Eq. (3.46), a value not
inconsistent with the analysis of the electrical con-
ductivity data in the pseudometallic regime. Final-
ly, it is worthwhile to note that for this system the
high x~/xo ratio implies that the EMT for the ther-
mal conductivity is valid throughout the whole C
range.

The thermoelectric power data for Li and Na
solutions, Fig. 17, are in reasonable agreement
with the EMT curve calculated from Eqs. (3.40) and

(3.43) with the parameters K, /K 00. 35, Sq/So= 20
for both Li and Na. , g, /co= 1.2x 10 ' for Li, and

o, /go= 2. 4x10 for Na. We note in passing that
as the general EMT expression, Eqs. (3.43) and

(3.42) for S involves the local conductivity o;,
which exhibits a large fluctuation for this system,

EMT

~l/~&=I. 2 x I0

l5

IO

OO

M (MPM)

FIG. 17. Analysis of the thermoelectric power data
(Ref. 23) for Na-NH3 and for Li-NH3 solutions. The
solid EMT curve is drawn for S&/Sp =20 K~/Kp=0. 35, and
cr&/crp-— 1.2&&10 . Increasing x by a factor of 2 has a
small (-1~(;) effect in the range C &0.4 where the EMT
is inaccurate.

we do not expect the EMT for S to be as accurate
as for z for C &0. 4.

VII. DISCUSSION

0.5

Q Na-NH~

0
0

I

IO

M (MPM)

FIG. 16. Analysis of the available thermal-conductivity
data (Ref. 22) for Na-NH& solutions in terms of the EMT.

The inhomogeneous state we have proposed to
exist between 2. 3 and 9 MPM in Li and Na solutions
at 13 and 8. 5 C above the respective consolute
points has certain remarkable characteristics.
The local concentration has a bimodal distribu-
tion, fluctuating somewhat about two well separated
most probable values, 2. 3 and 9 MPM. The pro-
portion of each type of region changes linearly with

average concentration between 2. 3 and 9 MPM.
The radius for which the local concentration re-
mains constant before fluctuating randomly to an-
other value is 20 A from neutron evidence' for
Li-ND3 at T —T, = 13 C, and 15 A for Li-NH, at
T —T, = 13 'C, and 32 A for Na-NH, at T —T,
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= 8. 5'C from interpretation of the data for cr by
use of EMTz. None of these values is secure, but
they clearly indicate a fluctuation diameter of at

0
least 30 A for Li-NH3, corresponding to a cluster
containing at least 30 ion pairs. The fit to the
conductivity data would be far worse than it turned
out to be if the two most probable values of local
M shifted with mean 32 or if the distribution of
local M values differed significantly from a sharp
bimodal distribution. The proposed state there-
fore resembles a macroscopic mixed phase at a
concentration inside a coexistence curve but, with
the mixing on a microscopic scale. To our knowl-
edge this is the first time such a state of matter
has been proposed, and, while all the support for
the details of our proposal is indirect, the weight
of the evidence seems convincing.

It should be clear that the proposed state has
nothing to do with critical fluctuations. Neverthe-
less, the inhomogeneous state seems to be closely
associated with the occurrence of a phase separa-
tion. Evidence for inhomogeneity weakens at tem-
peratures further above the consolute point, al-
though there is little data available for quantita-
tive analysis. More to the point, Cs —NH3, which
does not have a phase separation, does not appear
to exhibit evidence of inhomogeneity, ' Figs. 4—6.

Three questions are raised implicitly by the
above analysis. First, what is the physical origin
of the inhomogeneous state? If there is indeed a
close association between the inhomogeneous state
and the phase separation it is unlikely that the
first question can be answered before the second:
what is the physical origin of the phase separation?
Finally, for Cs or for the other alkali metals at
temperatures above those at which the inhomo-
geneities are important, what is the nature of the
metal-nonmetal transition?

With regard to the first two questions, we have
demonstrated and will report separately that the
complexes present at lower concentrations have
substantially dissociated by 2. 3 MPM. This leads
to dominance of the free energy by a Madelung-
like Coulomb contribution, which gives rise to
instability at low enough temperatures, providing
the driving force for the phase separation. The
details of the interplay between the Coulomb in-
teraction and the short-range interactions allow for
a shift of the position of maximum instability away
from k=0 and provide a possible avenue of ex-
planation of the inhomogeneities.

With regard to the third question, we propose
that the metal-nonmetal transition is a Mott tran-

38~ 39y79y80sition ' ' ' in the absence of the inhomogeneities
we have proposed for Li and Na near and above
the region of phase separation. It should be noted,
however, that as the Mott transition is taking place
in a disordered material, there must be a region

~ cCp Li

p &~pgQ

0-
/

I- ( / INHOMOGENE~
22~ ——i- --~

T -2IO' ——~ ———~ —&—

LLI
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I
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I s

I 2
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FIG. 18. Sketch of the proposed phase diagram for
Li-NH& so].utions.
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of the phase diagram over which it is smeared out
by inhomogeneities associated with normal, uni-
modally distributed fluctuations.

We have put all of our proposals together in the
form of a phase diagram, Fig. 18. Substantiation
of the proposals will require considerable further
analysis.

Despite the fact that the MAS are the best studied
among systems of comparable level of complexity,
there are glaring gaps in our knowledge. We now

call attention to those which are most important
for confirmation and filling out of our ideas. We
have grouped Li and Na together as having an in-
homogeneous phase, while Cs does not. We do
not know whether Rb even has a phase separation.
Chemical potential and small-angle x-ray and
neutron scattering studies should be completed
in detail for all of the alkali metals. At that point
we shall be able to complete the grouping of the
remaining alkali metals K and Rb relative to Li
and Na and to Cs. K will probably be grouped with
Li and Na. We shall need detailed paramagnetic
susceptibility data to establish C scales for all of
the alkali metals showing inhomogeneities. Simi-
larly, conductivity and Hall-effect data are es-
sential, particularly for Cs to establish differ-
ences from Li and Na. Finally, a comparison of
optical data for Cs with that available for Na
will be of interest,
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