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Expressions are derived for the induced dipole of a spherical atom physically adsorbed on a solid, by the use
of perturbation theory. The theory applies to conducting as well as nonconducting solids. It is found that, in

all cases, the induced dipole points away from the solid. Various approximations are given and the results are
compared with those treated by the image method.

I. INTRODUCTION

Last year two papers appeared on dispersion-
induced dipoles. One of these, by Antoniewicz, '

treated an atom interacting with its electrostatic
image field in a classical metal. The other, by
Crowell, considered the moment induced in an
atom by the dispersion (van der Waals) interaction
with another atom. Both authors used a simple
variational procedure. Antoniewicz found that the
induced dipole points away from the surface',
Crowell's result predicted that the induced dipoles
of the two atoms point towards each other. The
work function of a metal appears to be correlated
with the direction of the dipole moment induced in
the adsorbed atom. '

In this paper we present a unified treatment of
the dipole induced in physical adsorption, appli-
cable both to conducting and dielectric solids. The
method is based on perturbation theory in which
both the atom and the solid are treated quantum
mechanically, although a classical analogy is used
to interpret the results.

II. DEVELOPMENT

A. Perturbation

Starting with the Raleigh-Schrodinger time-in-
dependent perturbation theory, we evaluate the
dipole moment of the adsorbed atom using wave
functions correct to second order. The first-or-
der term drops out because of electrical neutrality
of the unperturbed states of the atom and the solid.
The interaction is taken to be

VtZ)= d fdR [r —R —Z I

where p(r) and p(R) a.re, respectively, the charge
densities in the atom and in the solid. The center
of the atomic coordinate r is the center of the
atom. Zo is the vector from the center of the atom
to the nearest point on the surface; the latter point
is the origin of solid coordinate R. The common
Z axis points from the atom towards the solid
along the perpendicular. The induced dipole has
only a Z component by symmetry. It has the form
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where the i, k refer to the states of the atom; the K refer the states of the solid; the e and E are, respec-
tively, excitation energies of atom and solid. The prime on each g denotes that the corresponding ground
state is excluded from the summation.

In order to interpret the matrix elements for the solid in this expression we consider first the response
of the solid to a classical oscillating charge.

B. Response to classical oscillating charge

The potential due to an oscillating unit charge at the point r' oscillating with a frequency co is

(- -i '
~

— ' g' podR) p~o(R') p~o(R) po~(R')
I r —Zo —Ri Ir' —R' —Zoi „co—~„—ig ~+ ur„—ii, (3)

where u„=E„/h. This expression can be obtained
using first -order time -dependent perturbation the-
ory.

If we treat the solid as a macroscopic continuum,
then classical electromagnetic theory tells us that
this result must be due to an image charge at 2ZO+ r',
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where r' =X'i + F'j —Z'k.
From this we obtain

e(oo) —1 1

e(&u)+ 1 Ir -2Ko —r'I (4)

dr" dr' dr
i

x d)y, o r;r', —i$ X r;r', —j( (6)

The quantity X(r;r', s), which one might call the poten-
tial susceptibility, resembles closely the charge-den-
sity susceptibility as defined by Linder and Habenold. '
Our goal is to express Ij. in terms of Xand thereby in
terms of e, the dielectric constant of the solid.

C. p in terms of e

We define a transition charge-density suscepti-
bility )f,.o(r; r', 4o) by the relation

which may be verified using the relation

2 "
&u)f"(r; r', &o)

QP+ (
which relates the susceptibility y( —i$) along the
imaginary axis to he imaginary part of the sus-
ceptibility, y"(&u), along the real axis. The latter
is defined as

Xlo(r' rl ~) =
@g [-poa(r') pa;(r)6(4o —~,)

This is a generalization of the ordinary charge-
density susceptibility y(r; r, m) as defined by Eq.
(ll) of Ref. S. We now write Eq. (2) in the form

+ p;„(r)p~o(r')6(&o+ ~4) ] . (7)

Similar considerations hold for X. In this develop-
ment we take the wave functions to be real. Ac-
cordingly p and X are both real along the imagi-
nary frequency axis. Combining (6) and (4) yields

OO
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This expression is generally valid for an arbitrary molecule and arbitrary solid within the macroscopic
continuum approximation. Deviations can be expected for small Zo values owing to the structure of the
surface.

To proceed, we expand the Coulomb potential ~ r —2ZO —r'
I 'ina Taylor series in r and r'. For an atom

the first surviving term is

x(z z'+ 2zxx'+ 2xz'x' —x z'+ zz' —zx' ) .

At this point we will use the independent-par-
ticle approximation for the electrons in the atom.
Then, in closure,

(10)
where e is the magnitude of the electronic charge,
n designates a.n expectation value over the nth
ground-state orbital, and (d, is the effective excita-
tion frequency of the atom. It is apparent that the
sign of p, will depend only on the sign of the dielec-
tric function.

l

where a and b are constants. For a crystalline
solid made up of harmonic oscillators g = 2pXo
x no(0)&uo and b = ruo+ —, a, where No is the number
of oscillators per unit volume, 4ro(0) is the polar-
izability at zero frequency, and mo the natural fre-
quency of an isolated oscillator. For a metal,
within random-phase approximation, a= b =

& uP~,

where ~, is the plasma frequency. 4 The form of
Eq. (11) permits ready integration of Eq. (10),
and yields

(i2)

III. SEMIEMPIRICAL RESULTS

The dielectric function can be roughly approxi-
mated by the expression

e(- ig) —i a
e(-i$)+ 1 b + $

The sign here indicates that the dipole points away
from the surface. Even if a more realistic model
were used for the dielectric solid the sign would be
the same, as will be seen in Sec. IV.

For atoms
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1 n, (0)CK(), a
8 eZ', b((d. + b)

The polarizability is related to g„(z }„by

(13)

Z +Z „= Z ~

n n

We wish to relate g„(z )„to the atomic polarizabil-
ity n, (0). To do this we write

p(*).=c(p(*).) .

For atomic hydrogen, C=~., using Slater orbitals
we find that C =~ for He, and for the other rare
gases it is 2, approximately. In this approximation

n(- i ])/(d', = n(0)/((d'. + g'),
and obtain from Eq. (10)

(17)

The known plasma frequencies of metals range
from 3. 3 eV for Cs to 25. 8 eV for Au. For the
case of H on Cs metal, formula (13}would give a
value which is 15% of the value predicted by Eq.
(16) (the electrostatic image method). For H on

Au metal the corresponding reduction factor is
0. 57; similar reductions would apply to other at-
oms.

One can also express the result in terms of the
dispersion interaction energy W of the atom with
the solid. Within the closure approximation we

can write

2)
1 8(u, n, (0)
2 e'

n

(14) 1 n.(0)ca
d

~(-i~) -1
4v eZ0 0

' e(- ig}+ 1

If we take the limit in which the natural frequen-
cy of the occillators in the dielectric solid is much
greater than the excitation frequency of the atom,
i. e. , if (d, » (()„ then Eq. (13) reduces to

1 n, (0) e(0) —1
(15)

8 eZO '&0+1
as is implied by Eq. (11) and the definitions of a
and b below Eq. (11). This is the form one would

expect by replacing in the Hamiltonian the effect
of the dielectric solid by the electrostatic image
of the atom determined by classical electromag-
netic theory.

If we consider the metallic limit where the plas-
ma frequency (dp is much greater than (d„ then we

get the same expression as given by Eq. (15) ex-
cept that here (c —1)(e+ 1) ' = 1 in view of the fact
that a = b . This expression

1 n, (0)Clf(d,
8 eZ',

(16}

should correspond to Antoniewicz's result. Anton-
iewicz calculated the induced moment for atomic
hydrogen adsorbed on a metal. He obtained a di-
pole moment that pointed away from the surface,
of magnitude 4. 5eaoZo, where ao is the Bohr ra-
dius. Our treatment, with C= a for H, n, (0)
= 4. 5a~, and A(d, =

& e ao', predicts a value of
5. 7eaoZo [had we used n, (0) =4a(), which is con-
sistent with S~, =

& e go, the result would have
been identical with that of Antoniewiczj.

If we take the other extreme in which (d, » (dp

and (d, » (do, then formulas (15) and (16) are re-
duced approximately by a, factor of (d~/((), M or
1. 1(do/(d„whichever the case may be. This ex-
treme applies reasonably well to He on an alkali
metal. Otherwise none of the extreme formulas
apply to real cases.

The natural frequencies of typical dielectric sol-
ids are generally comparable to those of the atoms.

p, = n, (0)CW/eZO,

where we have used McLachlan's formula for W.

IV. ATOM INTERACTING WITH WEAKLY COUPLED SOLID

We have also obtained an expression for )L(, using
time-independent perturbation theory without re-
course to images. This was accomplished by
treating the interactions among all the atoms—
both the external atom and those in the solid —on
the same footing. The calculation is rather te-
dious and we will only give the final results. Us-
ing the Raleigh-Schrodinger wave function to third
order and closure, we get

n.(O}Ca
dg n,(- i$) Non, (- ig)2eZ~

—Ã0 n,(- i$)+ .. . (20)
2 COOy 277 2 2

(d~+ 2COO 3

where n, is the polarizability of one of the isolated
atoms comprising the solid; y is a parameter
which enters in averaging the inverse distance and

orientation factors; Z+ is defined by

4 12 ~ IZ„l
Nog , R ,

where R„ is the vector between the outside atom
a and an atom s of the solid, and Z„ is its com-
ponent perpendicular to the surface.

When Z* is large, formula (20) should corre-
spond to the expression given by Eq. (18). To re-
late the series in n to the dielectric function we
use a generalization of the Mazur and Mandel equa-
tion for the dielectric constant

e((d)+ 1
= 2vXO n((())[1 ——',vt(('On((d)+51'], (21)

where S' corrects for the effect on the polarizabil-
ities of the intermolecular interactions.

Using Eqs. (18), (20), and (21) gives
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Z4 Z~ I »&0 I 2~0 fd«, (-i$)n', (-i() ~w& fdgn. ( -i()n.(
3 2~0+~. fd&n.(-i]) n,(-i() 3 ' fd&n, (-i()n,(-g])

153"

(22)

~e estimate that in the worse case ~0 and ~g diffe»y ~%
Only when the atom is replaced by a classical (thermal) oscillator will the Zo be identical with Z . In-

deed, in this limit the atom and the solid are decoupled to all orders and the electrostatic image method is
exact.

V. SUMMARY A~0 CONCI. USloXS

Various approximate expressions have been derived by the use of perturbation theory for the induced mo-
ment in a spherical atom near the surface of a solid. The continuum method has been used except that a
discrete expression is also given for the dielectric medium of weakly coupled atoms. The validity of the
results is limited by the neglect of overlap, retardation, and exchange. %'e find that in all cases the in-
duced dipole moment points away from the surface.
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