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Effect of isolated i»omogeneities on the galvanomagnetic properties of solids'
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A general expression is obtained for the magnetoresistance tensor of a solid containing a small number of
macroscopic inhomogeneities. The result is used to show that a wide variety of inclusions will generate a
linear transverse magnetoresistance in a free-electron metal at high fields. Voids or other nonconducting
defects are found to produce a linear longitudinal as well as a linear transverse magnetoresistance. The

apphcability of the theory to the properties of real metals is briefly discussed.

I. INTRODUCI'ION

It has long been known that the presence of
macroscopic sample inhomogeneities may seri-
ously perturb the galvanomagnetic properties of
metals and semiconductors. Such defects may be
defined as spatial regions where the local con-
ductivity tensor differs from that of the bulk of the
sample. A number of inhomogeneities commonly
occurring in solids can be, or have been, repre-
sented in this fashion-we mention, as examples,
contraction voids or regions of localized strain. If
these defects have linear dimensions larger than a
characteristic mean free path, then they must be
treated by the methods of continuum physics. Thus
their effects are different from those of impuri-
ties and vacancies, which would normally be
treated by scattering-theoretic techniques.

The first extensive treatment of such inhomo-
geneities (in the context of the galvanomagnetic
problem) was caxried out by Herring, ' using a
perturbative technique valid when spatial fluctua-
tions in the elements of the conductivity tensor are
small relative to the conductivity itself. %hen the
fluctuations are not small, an exact treatment is
no longer possible, but the galvanomagnetic prop-
erties of the system can still be approximately
calculated by means of an effective medium or sel.f-
consistent-field approach. '3 Such methods have
been developed by Cohen and Jortner to treat the
low-field Hall coefficient of inhomogeneous con-
ductors, and have been generalized so as to allow
calculation of the magnetoresistance by Stachowiak
and by Stroud. 6 None of these authors (except for
Herring in a brief Appendix) has explicitly con-
sidered the particularly common limiting case in
which the inhomogeneities consist of a few isolated
inclusions surrounded by host material. In this
paper we develop a method for calculating the in-
fluence of such inclusions upon the galvanomag-
netic properties of solids. Our results thus sup-
plement and complete those of several earlier
workers, 7 who have considered the change in low-
field Hall coefficient due to these defects. In or-
der to illustrate the utility of the method we shall

also carry out several model calculations that il-
lustrate the effect of inhomogeneities on the high-
field transport properties of a free-electron metal,
and we discuss the possible relation of these cal-
culations to the measured properties of such met™
als.

II. FORMALISM

We consider a solid of volume V, bounded by
surface S, characterized by a resistivity tensor
p; and containing a volume fraction fof identical,
ellipsoidal inclusions of resistivity tensor p' (see
Fig. l). Our goal is to calculate the effective re-
sistivity tensor p,~, of this system. If the mean
free path ~ characteristic of a current carrier is
small compared to a typical linear dimension d of
an inclusion, and if d is in turn small compared to
a linear dimension, say I, of the sample itself,
then p,« is uniquely defined and may be determined
by a classical calculation. If instead»& d (the
more familiar situation), then p,« is more appro-
priately determined by a microscopic approach,

FIG. 1. Schematic of a solid of resistivity tensor p
containing a few inhomogeneities of resistivity tensor p.
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(E) =p ~r(J) (2. 2)

where the brackets denote a volume average.
Because of the boundary condition (2. 1), the ith

Cartesian component of (J) satisfies

=y g]J pgdag=p &)xJO ~ Qd &: Jo
(2.2)

~here we have used V ~ J =0. Hence (J) =Jo and
the calculation of p,«reduces to the problem of
determining (E).

We now specialize to the case where the volume
fraction f occupied by the inclusion is very small.
By this we mean the inclusions are so well sepa-
rated that the current and field distortions gener-
ated by one inclusion do not overlap those of near-
by defects. In this regime p,«can be found exact-
ly. The problem reduces in essence to that of a
single defect of resistivity p' immersed in a uni-
form medium of resistivity J. Far from each de-
fect J(x)- Jo and E(x)- p J,. Inside each defect
E and J are both uniform, provided only that the
defect is ellipsoidal, and independent of the sym-
metry properties of p and p' or of the orientation
of the principal axes of the ellipsoid relative to
those of p and p'. ~ As is shown in the Appendix,
the interior electric field E„is given by

E„=[7-r ~o]-'. E„ (2. 4)

br =a' —7(, o'=(p')', o=(p)',
SG(x')l )~

—— plyd x
ge 8X~

(2 5)

and G(x) is an electrostatic Green's function satis-
fying

~ ~ o' ~G(x —x') = —~(x —x ) (2.6)

with the boundary condition G(x —x')-0 as Ix —x'I
In Eq. (2. 4) Eo = p Jo is the field far from

e. g. , via solution of the Boltzmann equation, as
noted in the Introduction. If X& d but d= l, then
the results of measurements cannot be described
by intensive transport coefficients such as p,«
but will instead depend on sample shape, lead
placement, and similar factors specific to the ex-
perirnental arrangement. Thus we consider only
the reg™~~ ~~l.

To define p,«we will find it convenient to im-
pose a boundary condition on the current density J:

n J(x)=n J (2. 1)

for x on S. Here n is a unit normal outward from
8 and J, is a constant vector. p,« is then defined
by

the inhomogeneity and 1 denotes the 3x 3 unit ma-
trix, while in Eq. (2. 5) S' represents the surface
of a defect centered at the origin and n& is a Carte-
sian component of a unit normal directed outward
from S'.

Given E„, p,«can immediately be determined.
We have

(E)=v't p(x)i(ir)~'*,

where p(x} is defined by

p', xwithina defect,
p, otherwise,

Introducing 6p(x) = p(x) —p, we obtain

(E) = p Jo+f(p' p) o—'E„
=[p-f p~~(I-r ~~)- p]J„

upon using (2. 4). It follows from the definition
(2. 2) and from (S) = Jo that

p„, =p fp 0o(7--rV')- p. (2. 7)

III. MODEL CALCULATIONS

In order to illustrate the utility of the formalism
just developed, we now use Eq. (2. 7) to study the
effects of spherical inhomogeneities on the mag-
netoresistance tensor of a free-electron metal.

Using Eq. (2. 7), one may calculate the effect of
ellipsoidal inc lusions on the galvanomagnetic
properties of many materials. Note that p,«can
be found without the necessity of explicitly evaluat-
ing the highly anisotropic fields outside the in-
homogeneity. The effects of these fields are in-
cluded indirectly in the tensor I'. I" depends on
the shape of the inclusion and on o =(p) ', but can
normally be evaluated without difficulty. Thus we
expect Eq. (2. 7) to be useful in the analysis of
measurements on various materials containing
macroscopic imperfection.

Several other aspects of the result (2. 7) de-
serve mention. First, the equation is essentially
analogous to typical microscopic calculations for
the contribution of impurities to the resistivity of
a solid. Just as in that problem, the presence of
the factor f in the result is a feature of the low-
concentration or noninteracting limit; the exis-
tence of interactions between defects would lead to
a more complicated concentration dependence.
Note also that (2. 7), while it depends on the shape
of the defects, does not depend on their size so
long as they are small compared to the sample
size, but only on the total volume fraction they
occupy. Finally, if more than one kind of defect
is present in the sample, then their contributions
to the total resistivity tensor are simply additive
in the low-concentration limit (this may be viewed
as a macroscopic "Mathiessen's rule" ).
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For this case, taking the magnetic field to be in
the z direction, we have '

o„„=0'y~ = (To/[1 + ((der) ) q

o„,= —a,„=o,(u, r/[I + ((u, r)~], (S. 1)

0'gg = O'O.

The other components of o vanish. In (3.1) ~,
= eH/mc is the free-electron cyclotron frequency
and 7 is a relaxation time characteristic of the
metal. Equation (2. 6) can be solved for G via a
scale transformation and the integral (2. 5) for I'
can be evaluat;ed. 1" proves to be diagonal with
components

r„=—(1 —v' I —e sin 'v e/We)/(o„e),

I'„„=I'„=——,
'

(rgg+ sin '0 e/o'e(7, „0g },g
(3. 2)

I.0 I 0

1.005

CL

with e =1 —o /o„.
We have used Eqs. (S. 1) and (3.2) to determine

p,« for a free-electron metal containing a volume
fraction f of spherical voids (a '=0). The compo-
nents of p,«which are of greatest experimental
concern are the transverse magnetoresistance
4p„„, the longitudinal magnetoresistance hp„, and
the Hall coefficient RH. These are defined by

ap„„(H) = [P„",'(H) —P„'„"(0)]/P,"„'(0),

np..(H) =[P:."(H) —p .'(0}]/p:."(0),

H. = [p,'(H) —p.",'(- H)]/(2H).

The results for these three coefficients are plotted
in Fig. 2 for f =0.01. In the high-field regime,
both bp and Ap„vary linearly with field. The
asymptotic slopes may be calculated from Eqs.
(2. 7), (3. 1), and (3. 2), with the results

(3.4a)

with

n = —' v/[ I + (—
'

v) ] = 0. 49,

o' = 2/v = 0. 64.
(3.4b)

ftH/R» —1 + f, (S. 5)

which is in agreement to first order in f with the
lom-field calculations of Juretschke et al. and of
Cohen and Jortner. 4

If the defects consist of regions of infinite con-
ductivity —that is, if the components of the defect
conductivity tensor v' are so large that &v(T
—I'&0) = —1" —then one finds that hp„„continues
to increase linearly with field at high magnetic
fields, but 4p„saturates. The asymptotic slope
of hp is given by Eq. (3.4a), with n =4/sr=1. 27.
It is rather amusing that inhomogeneities of high
conductivity lead to a larger magnetoresistance
than do zero-conductivity defects.

it can be shown from Eq. (S.2) that any spheri-
cal defect will produce a linear transverse mag-
netoresistance provided either (a) 6o„,= (&u,r} in
the high-field regime or (b) 6o„„and 5cr» are field
independent at large fields. A linear longitudinal
magnetoresistance will be generated, however,
only by imperfections of strictly zero conductivity.
The reason for this is that only nonconducting de-
fects can force a current moving parallel to the
H field to flow locally in the direction of much low-
er conductivity perpendicular to H. Spherica, l de-
fects of scalar conductivity v'«0 can be shown,
from (2. 7), (3.1), and (3.2), to generate at high
fields (&u,r»1) a longitudinal magnetoresistance
of the form

These results are in agreement with those obtained
by Sampsell and Garland via a direct integration
of the power dissipated in the vicinity of the voids.
The Hall constant, on the other hand, is very
nearly field independent and approximately equal
to its free-electron value 8„'. In the low-field
limit (&u,r«1}, we find

np..(H) = //[~'/oo+kv(-~, r) ']. (3. 6)

0
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FIG. 2. Transverse magnetoresistance ~, longi-
tudinal magnetoresistance ~«, and Hall coefficient RH
for a free-electron. metal containing 1% by volume non-
overlapping spherical voids. (dp is a dimensionless mea-
sure of magnetic field strength, and Rg is the field-in-
dependent Hall coefficient of the pure free-electron metal.
~~ and ~«both vary quadratically with H at small (dp',
although this behavior is masked by the plots.

Thus in the case hp„ is linear in H for &u,r«ao/o'',
but departures from linearity and eventual satura-
tion mill occur at stronger fields.

To learn the effects of imperfection shape on
p,«, me have also computed that tensor for a free-
electron metal containing very long cylindrical
voids parallel to the y axis. Equation (2. 7) con-
tinues to be applic3ble in this case since a cylinder
is a limiting case of a highly elongated ellipsoid.
I' is again found to be diagonal, with components

1 „=(v'1 —e- I)/(a„e),
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with e =1 —o,„/o„. Combining (3.1) and (3.7) with
(2. 7) leads to expressions for Sn„, and ap„. In
the high-field regime both are found to vary linear-
ly with H. The slopes are given by Eq. (3.4a),
with 0. = a' =1. Thus the existence of a linear
magnetoresfstance is insensitive to the shape of
the inclusion.

IV. DISCUSSION

The original motivation for this work was to
examine the hypothesis'3 that the anomalous high-
field transport properties of potassium and other
nearly-free-electron metals could be accounted
for by the presence of inhomogeneities. We now

turn to a discussion of this hypothesis in the model
calculations just described.

The salient experimental features in potassium
are as follows: Both the transverse and the longi-
tudinal magnetoresistance are observed to increase
linearly with magnetic field in the regime ~,7

»1. The dimensionless slopes ("Kohler slopes" )
d(Ap„, )/d(&u, r} and d(Ap„)/d(&u, r) vary widely from
sample to sample but generally fall in the range
10 -10 '. The ratio of slopes [d(hp„ )/d(&u, r)j/
[d(&p„,)/d(u, T)] is reported by Lass' to be relatively
sample independent and to average about 1. 3. The
Kohler slopes are not strongly correlated with mea-
sures of impurity content such as the residual resistiv-
ity ratio (i. e. , the ratio of the room-temperature
zero-field resistivity to the resistivity at O'KI. '
Nor do they depend on temperature. The Hall co-
efficient differs by no more than a few percent
from its free-electron value, and appears to satu-
rate at high fields. '6'~~

The explanation of these data on the basis of in-
homogeneities would thus require the presence of
(0. 01-1)/o voids or other nonconducting (or very
poorly conducting) imperfections. There are,
however, two major objections to consider. First,
no explicit quantitative experiment has been car-
ried out to our knowledge which has demonstrated
the presence of such defects in a carefully pre-
pared single-crystal specimen of potassium.
Clearly such a measurement would be necessary
before the defect theory could be accepted. (Con-
versely, it would be very desirable if nonconduct-
ing defects could be introduced into potassium or
another free-electron metal in controlled quan-
tites in order to verify the effects calculated in
Sec. III. } The second objection concerns the size
of the defects. For the theory of Sec. II to be
strictly applicable, the defects must be large com-
pared to a mean free path. In a high-purity sam-
ple of potassium at cryogenic temperatures the

mean free path may exceed 0. 1 mm. Inhomo-
geneities greatly exceeding this size would appear
unlikely. It could be argued that in strong mag-
netic field the appropriate "mean free path" is
actually the cyclotron radius, which is smaller
than & by a factor of (&u,r) ', but even defects of
this size would extend for thousands of angstroms
in a good potassium sample. It may be that the
effects predicted in Sec. III for large defects would
occur even for defects small compared to ~ and
large compared to an interatomic separation, but
the present paper cannot shed additional light on
this possibility. Thus the applicability of the
present formalism to potassium must remain an
open question. There would appear to be little
doubt, however, that at least some of the unex-
plained linear magnetoresistances reported in
free-electron metals' can be attributed to in-
homogeneities.

We consider finally the possibility that the pres-
ent results will be altered by interactions between
defects. In strong magnetic fields, a defect of
diameter d will generate in the surrounding med-
ium a current distortion which propagates a dis-
tance of order d(~, r) parallel to H. ~ At fields
such that f (&o,r) &1, these distortions have a sub-
stantial probability of overlapping neighboring de-
fects; interaction effects will then start to influence
p,«by producing departures from a strictly linear
magnetoresistance dependence. Approximate cal-
culations of these interaction effects will be re-
ported in a subsequent publication.
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= cr otherwise. (A2)

With the introduction of the free-space Green's
function defined by (2. 6), Eq. (Al) may be re-
written as an integral equation:

APPENDIX: DERIVATION OF EQ. (2.4)

We consider an isolated ellipsoidal inhomogene-
ity of conductivity tensor (T' embedded in an in-
finite uniform conductor of conductivity tensor 0.
Far from the inhomogeneity the electric field E(x)
approaches a constant Eo and the current density
J (x} approaches g E,. The electrostatic equations
are & ~ T=O, &x E =0; these combined with the
boundary condition on E imply that the electro-
static potential C'(x) satisfies

V ~ 7r(: ) VC:(x) = 0,

C(x) ——Eo ~ x as x —~,
where o(x} is defined by

v (x ) =IT'' for x inside the inclusion,
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@(x)= —E, ~ x

+ 6 x-x' &' ~ 6o x' &'@ x' d x' AS

where 5o(x') = o (x') —a and the integral runs over
all space. Since the bracketed quantity is con-
stant within the inclusion and zero outside, the last
term in (AS) can be converted to a surface inte-
gral with the help of a parts integration and an ap-
plication of the divergence theorem. The result is

C'(x) = —Es ~ x

+ G x-x' o'' —o)E, '
rg d x', A4)

where 8' is as before the surface of the defect and
n an outward normal from it. Taking the negative
gradient of each side, setting x=O, and using
G(- x ') = G(x') then yields

E& =Es+I'(o' —o) ~ E (A 5)

from which (2. 4) follows immediately. (Note that
this derivation depends strongly on the uniformity
of E) within the inhomogeneity. )
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