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A set of functions called Fermi-surface harmonics (FSH's) are defined to be polynomials of the Cartesian

components of the electronic velocity orthonormalized on the Fermi surface. These functions have many

desirable properties, such as cell periodicity and a simple correspondence to spherical harmonics. However,

there are many more linearly independent polynomials on a general surface than occur on a sphere. It is

shown that this set is complete for simple Fermi surfaces; on general surfaces the mathematical question is not
resolved but seems unlikely to cause physical difficulties. In the FSH representation, many problems take a
particularly simple form. In particular the Boltzmann and Eliashberg equations are studied. By truncating at
first-order polynomials, a slightly improved version of the usual variational solution for -dc electrical
conductivity is found. A convenient definition of Landau Fermi-liquid coefficients for anisotropic metals is

suggested.

I. INTRODUCTION

Consider a property P)) (such as a (Iuasiparticie
scattering rate I/r, or the superconducting ener-
gy gap A~} which depends on the electron state with
label k (shorthand for wave vector k, band n, and

spin) and energy e„. If the material is a metal it
is often convenient to study separately the depen-
dence of p on energy z near the Fermi energy and

position k on the Fermi surface. The reason for
the desirability of separating energy and surface
variables is the common occurrence of an energy
such as ks T (temperature), hQ (phonon energy),
or external potential which is very much smaller
than 1 eV, the scale on which electron energy is
measured. When k-space sums are required,
energy integrals are simple to carry out, leaving
complicated surface integrals. For a disem-
bodied electron gas (or a metal like sodium) the
Fermi surface is spherical and the angular vari-
ables 8 and Q provide convenient coordinates for
locating surface points. Functions like pk have
expansions gz, (t)z(c) YI,(k) in the spherical harmon-
ics Yz (where L is shorthand for fm). Matrix
elements of spherically symmetric operators are
diagonal in this representation (and depend only
on I).

For certain solids (such as noble metals) the
Fermi surface is still fairly simple, and can be
specified by a "radius" kr(8, Q) which is a single-
valued function. The spherical harmonics are often
still used to parameterize the behavior, for ex-
ample, of scattering rates 1/7(8, P}. However, for
Fermi surfaces such as Cu, there is no reason to
suppose that I/r converges rapidly in spherical
harmonics. The spherical harmonics have the ad-
vantages of being familiar and complete, but there
are disadvantages: for example, they are not
orthonormal when integrated over the Fermi sur-

face with any simple weight function. Worse prob-
lems arise in metals such as Mo where parts of
the Fermi surface have "knobs" which makes
kz(8, P) a multiple-valued function. It is difficult
(but not impossible} to see how to construct a
mapping between points on the surface and vari-
ables (8, P). Another difficulty is that a physical
property Qk must be cell periodic in reciprocal
space, and this is difficult to achieve with a non-
periodic basis set such as Yz, (k). These problems
lead to frequent difficulties in such problems as
the solution of Boltzmann equations. These diffi-
culties have until now been solved only in a case-
by-ease fashion. This paper aims to remove all
the above difficulties by describing a simple, in-
finite, orthonormal, and cell periodic basis set.
These functions are given the name Fermi-surface
harmonics (FSH's} and are labeled gz. This set
must necessarily be different not only for each
crystal structure, but also for each band struc-
ture and for each constant energy surface of each
band structure. Nevertheless, the functions are
simple enough that they can be described and
formally exhibited in a single nearly universal
form.

The method consists simply of constructing all
polynomials of the three Cartesian components of
the velocity vt, = V),e„/S, and then orthonormaliz-
ing them on the constant energy surface. That is,
we construct for each integer N ~ 0, all functions
of the form (v,„)'(v») (v~, )", (with all exponents l,
m, n non-negative and I+ m+ n = N) and proceeding
from N=O on upwards, orthonormalize them ac-
cording to the rule

-' ( ())(', (&)/ -', P)
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where L is a convenient set of labels, which in-
cludes possibly a spin variable, and 6 is the Dirac
6 function. For an energy surface of one sheet
(such as the Fermi surface of Na or Cu) there will
be one such function for each set of integers (I,
m, n), while for a two-sheeted surface there will
be two, and so on. The functions g~ are cell
periodic because the velocity is cell periodic.
This is the principal reason for using v„ instead
of k to construct the polynomials. Completeness
is a more difficult question which is discussed
(but not laid to rest) in the Appendix. The princi-
pal conclusions are that polynomials in the wave
vector components k„, k„k, are surely complete.
The same arguments extend to the velocity poly-
nomials for simple surfaces, but the situation for
complicated surfaces is not obvious. In the bulk
of this paper, completeness will be assumed, al-
though it may not in fact always be true.

There still remains arbitrariness in the specific
form of the functions p~. Much of this arbitrari-
ness is removed by choosing g~ to transform as
basis functions for the irreducible representations
1& of the point group of the crystal. For spherical
symmetry, i.e. , c„oc k', the spherical harmonics
immediately evolve from these specifications.
However, for nonspherical symmetry the functions

Pz, are more numerous [there are 2(N+1) (N+ 2)
independent polynomials of order N but only 2N+1
spherical harmonics]. Such properties are most
easily explained by example, and this will be done
in Sec. II.

It is interesting to note that these specifications
are not restricted to Fermi-surface problems.
The procedure is equally applicable to an arbitrary
surface in a space of dimension v provided the sur-
face is defined by a formula p(x„x„.. . , x„)
= const. Polynomials can then be generated either
from the spatial variables x; or from the gradients
dp/dx, . The generalization of Eq. (1) is obvious.
It seems possible that the procedure described
here has been used elsewhere in the literature of
applied mathematics, but a complete search has
not been attempted. In the literature on Fermi-
surface problems, several authors have used
methods which have features in common with the
present method, but are less general. In particu-
lar, Eagan and Flerov' choose a mixed basis set
of polynomiaLs in the wave-vector k with essential-
ly the orthogonality relation (1). In order to have
cell periodicity the first-order polynomials are
made piecewise continuous over sheets which
intersect zone boundaries. Aoi and Swihart have
discussed a possible expansion set orthonormal-
ized on the Fermi surface, but failed to find a
convenient explicit realization. Many other auth-
ors have described schemes for improving on the
spherical-harmonic basis set. Extensive formal

work for the Boltzmann equation has been done by
Bross, his functions being related to the well-
known cubic harmonics defined by Von der Lage
and Bethe. The cubic harmonics are equal in
number to the spherical harmonics and are ortho-
normal on a sphere. The present choice of ortho-
normality [Eq. (1)] drastically alters the proper-
ties of the functions.

The plan of the paper is to exhibit the functions
in Sec. II, describe their properties in Sec. III,
and to demonstrate their application to the Boltz-
mann and Eliashberg equations in Secs. IV and V,
respectively. Section VI serves as a summary and
presents a brief discussion of Landau Fermi-liq-
uid theory of anisotropic metals. The Appendix
is devoted to the questions of completeness.

II. EXPLICIT FUNCTIONS FOR CUBIC SYMMETRY

A. Single sheet

The high symmetry of cubic crystals makes
construction of orthogonal polynomials for small
N very easy. For larger N or lower symmetry
the problem becomes more tedious but no more
difficult in principle. The polynomials are ex-
hibited in Table I for polynomials up to order N=3.
The first nine entries are entirely straightforward.
They are the familiar cubic harmonics with the
velocity instead of position or wave vector. The
normalization of Eq. (1) leads to the particularly
simple choice $0=1 for the N =0 function. The
Kramers symmetry between (k 0) and (-k 0) is
sufficient to guarantee that v„„ is orthogonal to 1
(provided the system is nonmagnetic; otherwise
inversion symmetry is needed). Orthorhombic
symmetry is necessary to have v» orthogonal to
v~„; in lower symmetry the Schmidt procedure can
be used to orthogonalize v» to v~„. The function
v~, is normalized by dividing by &v~&' or 3(v )
the root-mean-square Fermi velocity. Bracket
notation is used with the meanings

(2)

The irreducible representations are labeled in the
convention of Bouchaert, Smoluchowski, and Wig-
ner. ' Functions belonging to different representa-
tions (or different rows of the same representa-
tion) are automatically orthogonal. The only sur-
prising feature in Table I is the appearance of a
I"0 function in second order and an extra set of I ys
functions in third order. The necessity for these
"extra" polynomials can be seen in the following
way. There are —,'(N+2) (N+1) polynomials of x,
y, z of order N. [ This result can be t'ound by
counting the number of inequivalent terms in the
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TABLE I. Fermi-surface harmonics for cubic symmetry, single sheet. For
order 3, the labels of all ten functions are given but the explicit form of the func-
tions is complicated and therefore omitted.

Order of Irreducible
polynomial representation

Label of
function

Explicit form
for cubic symmetry

v~4'&v. )
2)i/2

2)1/2

v)tfx'Ay/ &v H' y)
2 2S/2

2 2 1/2
va vw/&v v )

va vaJ &v gvx)
2 2 1/2

r2,

P„2 „2

&3.2 r'

&.( ~ )*2 2

and 2 similar

&.(y.g ).
and 2 similar

$„3,
and 2 similar

( 2 2 }/ &(
2 2}2)1/2

(3v 2 v 2}/&(3v 2 v 2}2) i/2

(v ~- &v')}/&(v~ —&v')}')"'

v~v~vw/&v„v v2 2 2 1/2

expansion of (x+y+ s)".] On the surface of a
sphere, r = x + y'+ z is constant and therefore pro-
portional to $0: similarly xr is proportional to

Thus certain polynomials disappear in spheri-
cal symmetry. However, on the Fermi surface
v~ is not constant. The only constants are func-
tions of && which in general cannot be expressed
as a finite polynomial of v~. Therefore on a gener-
al surface, all distinct polynomials are linearly
independent. The occurrence of extra polynomials
of low order is actually quite advantageous for nu-
merical applications. Consider the energy gap
A~ of a cubic superconductor. This function has
full cubic symmetry (in the usual s-wave Cooper
pairing). To represent cubic anisotropy using
cubic harmonics requires polynomials of minimum
order 4, i.e. , x +y +z . However, using FSH's
there is a completely symmetric function P„a of
order 2 which has as many nodes as the Fermi
surface has bulges. This is illustrated schemat-
ically in Fig. 1. The capability of parameterizing
complicated anisotropy with a low-order poly-
nomial is an obvious advantage.

B. Two sheets

The results given so far are easily generalized
to Fermi surfaces of more than one sheet. A brief
discussion is given here of a two-sheeted example.

sheet a, b

&.,~(«)= p t(«. —«), (3

where N, +N, =N (the total density of states), we
can write out orthonormalized functions in either
re pre sen'tatlon

disjointed P~ = [tv(«)/x. («)]"'t ...
representation p~ = [iV(«)/iV~(«)]'~2g

symmetric

representation g,„=[X,(«)&„—tV, («)]f,J
[x,(«) iv, («)] "',

Et is assumed that the sheets are not related by
symmetry. The indices a and b are used to denote
the two surfaces (which may belong to different
bands or to the same band). There are two differ-
ent ways to construct polynomials gL, for this case,
each of which has advantages. We can construct
one set of functions for each sheet (the "disjointed"
representation), the functions $1,, vanishing on
sheet 5 and conversely for 4». Then the functions
g~, and Pl& are automatically orthogonal to each
other. Alternatively we can construct two sets
gz, ~ and Pt, „where (g, u) stand for (even, odd) and

$0~ has the value l on both sheets (the "symmetric"
representation). Using the partial densities of
s~ates
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FIG. 1. Hypothetical Fermi surface in two dimensions
with square symmetry illustrating the many nodes avail-
able in the surface harmonic $„2CC v&- (v ). Four nodal
lines are drawn which separate the positive from the
negative regions. The bulges are regions of lower ve-
locity than average while the depressions have higher
velocity. In three dimensions the analogous surface is
a distorted octahedron (such as the hole surface of Nb,

ref. 6) with six negative bulges and eight positive de-
pressions, separated by complicated nodal surfaces.
Similar behavior on a sphere is exhibited by the cubic
harmonic of order 4, gr —x —y —z .3 4 4 4 4

where 6„, is unity if k is on sheet a and zero other-
wise. The disjointed representation is algebra-
ically simpler, but the symmetric representation
will clearly be better for describing properties
which are nearly constant on the Fermi surface.

C. Multiple sheets related by symmetry

Frequently closed sheets of Fermi surface oc-
cur in multiples which are related to each other
by the symmetry operations of the crystal. The
most familiar examples occur in conduction bands
of semiconductors, such as degenerate n-type Si
which has six ellipsoidal surfaces located along
the (100) directions in the Brillouin zone, or Ge
which has eight half ell'psoids or four whole ones
located around the (2v/ a)(—,', —,', —,') points. Other ex-
amples among cubic materials are Nb, where the
Fermi level intersects two bands which give rise
to two centrosymmetric surfaces and one set of six
ellipsoids, or Cr, Mo, and W, where three bands
give rise to a total of fourteen distinct pieces of
Fermi surface. In all these cases the multiplicity
of linearly independent polynomials increases in
proportion to the number of distinct pieces of Fer-
mi surface, as can easily be seen by construction.
However, the complexity of the mathematics can
be greatly reduced by the use of group theory.

The simplest construction of orthonormal poly-
nomials is again the disjoint representation with a
distinct set of functions for each distinct piece of
surface. However, in general these will be basis
functions for a reducible representation of the
group, if several pieces are related by symmetry.
It is a standard exercise to transform to a repre-
sentation which is irreducible. The resulting
FSH's are linear combinations of simple polynom-
ials on each surface with amplitudes and phases
determined by group theory. The resulting choice
of FSH's is not the symmetric representation of
Sec. II B (which involves even and odd combinations
of functions on two unrelated surfaces). It is more
properly regarded as a special degenerate case of
a single sheet which forms a proper starting point
for either symmetric or disjoint representations
when other unrelated sheets also occur.

Among the various basis functions which occur
for multiple sheets, one in particular is worth
mention. Namely, there always occurs in each
order a set of functions of exactly the same form
and symmetry as would occur for a single sheet.
For example, in first order, the function defined
as v,„/(v, 2) on all symmetry-related pieces is
the logical choice for one of three I'» partners (in
cubic symmetry). However, there are many other
distinct first-order functions. For example, on
the silicon [100]ellipsoid, v~„ is invariant under
the subgroup that leaves the ellipsoid invariant.
Therefore a I'0 basis function can be constructed
by applying to v,„ the six operations that transform
the ellipsoids into each other, and adding the re-
sults in phase. This function looks like + v~„on the
[+100] ellipsoids, s v» on the [py lp] ellipsoids,
and so forth.

III. GENERAL PROPERTIES

In this section rules are given for expanding
functions in Fermi-surface harmonics, and the
Clebsch-Gordan coefficients are defined and dis-
cussed. First consider functions h~ or A» of one
or two variables which are defined for wave vec-
tor k, k' in the first Brillouin zone and possibly
individually for electron bands n, n', and spin
orientations o, o'. (For example, A». may be a
scattering matrix element squared. ) Actually the
functions h and A need only be defined over a lim-
ited energy range within the Brillouin zone. We
assume we can expand these functions in Fermi-
surface harmonics

h, = Q h~(e) g~(k),

LL'

The inverse relations are easily found from the
orthonormality relation (1):
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&,(«)= g 5(«~-«)4()~)f. Z 5(«~-«),
(8)

&EL («, «') = r, 5(«C - «) 5(«C - «') 4(~) 4 (~')&kC

(AIx)=g 0 («)x («).

To illustrate how Brillouin-zone sums are handled,
we use Eq. (5) to rewrite a simple inhomogeneous
linear integral equation

~a= Z Acr~ . (8)

It is convenient to introduce on the right:-hand side
of (8) a factor 1 = fA'5(«; —«') which separates the
k' sum into energy and surface parts. The using
Eqs. (1) and (5) we easily find that Eq. (8) is
equivalent to

~]

x 2 5(». —«) 5(«' —«')
kkc

Group theory can be used to obvious advantage to
simplify the coefficients A». . For example, if
Akk. is invariant under simultaneous operations of
the group on both k and k', then AI.I.. has no off-
dlagonal elements eonnectiHg different lrx educible
representations or different partners in the same
representation. An explicit proof is given by Aoi
and Swihart for the Landau f function. Using the
expansions (5), Brillouin-zone sums can be easily
converted to energy integrals and discrete angu-
lar sums. For example, in Eq. (2) an inner prod-
uct (Ply) is defined as the normalized Fermi-sur-
face integral of the functions pk and Xk. If we ex-
pand in FSH's according to Eq. (5), the inner prod-
uct gets transformed from the k representation (2)
into the I. representation:

Some simple properties ean easily be verified

Coor, = &I.o Co~~ = &~~

c„,„.=o unless Ix, —&, I &," xi++, ,

where Nz is the order of the polynomial P~. 3bght
ambiguities arise when applying these relations to
multisheeted surfaces, but these are easily re-
solved by inspection. For example, in the dis-
jointed representation the relations (11) are in-
dividually true on each sheet, and the coefficients
all vanish unless all three functions are on the
same sheet. In the symmetric representation the
notation go must be taken to mean go, . The last
of the relations (11) follows by observing that
|t)L, )I,. is a po].ynomial of order +I + +I, , and by
the completeness of the polynomials this can be
expanded in polynomials of order X~+ N~. or less.
This proves the upper bound on XI". The lower
bound follows because two other upper bound re-
lations symmetric in I.I.'I."also hold. Group
theory can be used to find additional symmetry-
induced selection rules on the coefficients C.

IV. BOLTZMANN EQUATION

%e examine only the problem of electrical con-
ductivity of a metal in a homogeneous dc external
electric field E assumed for definiteness to be
directed along the x axis. The distribution func-
tion F~ is written in the usual form as f~+ p~ (sf/
9«„), where f» is the Fermi factor (ec'~+1) ' and
the zero of energy is taken at the chemical poten-
tial. The current is given by

N6) v

h~(«) = d«'N(«') P A», («, «')g~, (»'). (8')

As a final example of transforming from k to L
space, suppose we wish to expand the product
function gkkk in FSH's. This ean be done in terms
of Clebsh-Gordan coefficients Cl I,,J.",

aa&. = 2 c~i ~"g~(«) ~~.(«) 4"(f ),

where the coefficient C is defined by

'4(~ ) '4' (")= 2 ~l,r:r "'4"(~) ~

&~~ ~" = Q 5(«a —«) 4g (&) 41. (&) 4r,"(&)

These coefflelents are real numbers& and com-
pletely symmetric in the indices I., I.', I".

where the inner-product notation (2) has been
used to express the surface integral. The Boltz-
mann equation has the form

~f—«&k. Qkk'~kc s

1
+kk" +kkc p

kcc

where Qkk is the scattering operator which is
decomposed into scattering in and scattering out
components. This form is quite general provided
the phonons or other dynamical scatterers are
assumed in thermal equilibrium, and requires
only minor modification to deal with electron-
electron Coulomb scattering. The factor I'kk is
the equilibrium transition probability. For elas-
tic impurity scattering I'kkc has the form

f'~"'=(»«~@)
I
T.a I'5(«c —«~)fc(1-fa ), (14)
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where T is the T matrix for impurity scattering
and n& is the impurity density. If we expand
P~™in FSH's, the result can be written

g„, —q g~k pl. k' l51

&(~) zr, ~ ))5)

2
Q ~ ~}

The left-hand side of the Boltzmann equation (13)
is proportional to g„~ = v~, /&v~)~~ . Then com-
bining Eqs. (13)-(15)and transforming to the FSH
representation, the Boltzmann equation becomes

5z..= Z Qrz &i
2 1/2

(16)

where the scattering in term involves Clebsch-
Gordan coefficients while the scattering out term
does not. There is a well-known variational pro-
cedure for solving Eq (16}which relies on the
fact that Q«. is symmetric and positive definite.
This method bears repeating as there are some
slightly unfamiliar results that ean be derived from
it. The procedure is to find a trial vector $1,
which does not necessarily solve (16) but which
contains free parameters that ean be so varied
as to approach the true solution (It)L, . A theorem
exists that provided (~ satisfies

(17}

[in particular P satisfies this because of Eq (16)], .
then

(18)

The version (7) of the inner-product definition (2)
has been used here. The right-hand side of (18}
is proportional to &P I v) which according to (12}
measures the contribution to the current from
electrons with energy e. Thus a solution to (17)
gives a lower bound on the cux rent. Qne unfamil-
iar feature of this analysis is that we are maxi-
mizing the current at each energy rather than the
total current as is more often done. Clearly for
otherwise equivalent trial solutions, me get higher
current (lower resistance} than is found in the
usual method. The second less familiar observa-
tion is that if we truncate Eq. (16) at polynomials
of some order N, the resulting exact solution
Pz of the truncated equations also satisfies Eq. (17)
and so gives a lower bound on the current.

Let us now solve Eq. (16}approximately by
tx'uneating at ox der 1 polynomials. In order to
simplify the algebra we assume a single-sheeted
Fermi surface. The generalization to more com-

plicated cases or larger N ~ is straightforward
but tedious. First note that the elements Q~o
= Q«of the scattering operator vanish for all I.
because of the second relation (11) and the sym-
metry of vl.z. in I. and L,'. Now write out explicit-
ly the component E. =x of Eq. (16), truncating at
first-order polynomials

«&v x)' = Qxx(t'. + Qxy4'~+ Q.s&. ~

We nom assume cubic symmetry to further sim-
plify the algebra. This makes Q diagonal in the
indices (x, y, z). The solution is

y„=«&v', &"'r,

where the definition (10) of the Clebsch-Gordan
coefficients has been used in the last line. Final-
ly, it is easy to show that Eq. (20) can be re-
mritten

1 1~ 22m
(vt va }r(e)

-1a,
(

„5' ((5a a)5(a. ,. —a)(g '5(a, —a)

(21)
which has the form of the standard lowest-order
variational solution. This illuminates somewhat
the nature of the usual solution by showing that
it is an exact solution for velocity polynomials up
to order 1. This result mould be very hard to
obtain by truncated solution using any basis set
not beginning with functions like v~. The specific
elements of 1/rzz. which enter for cubic sym-
metry are

(22)

As already noted, $„2 has many nodes, corre-
sponding in spherical harmonics to terms at least
of f =4. Equation (22) expresses quite economical-
ly exactly which information about the scattering
matrix elements j T». ) is contained in the ap-
proximate dc electrical conductivity. A some-
what different. combination of the eoeffieients
1/r~z, will determine the thermal conductivity.

The final result for the conductivity o =j /E is

5(5')=5' faa (- —aa(a)( ',) (a).
86

Recently there have been theoretical claims '
that fine structure in the electronic density of
states N(e) can be manifested as an unusual T de-
pendence of the electrical resistance. In this con-
text it is interesting to compare (23) with the
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more standard form of the variational solution
"2

o„(T)= e deN(&) ——(v,),2 af

x d&N& —— v„ (24)

-1
x de N(e)

8%
(23)

which implies a'„(T) & o„(0}. The conclusion to be
drawn is that a correct analysis of higher-order
T dependence requires a careful solution for the

energy dependence of )t),. Apparently if N(e) is
structured, )j),(e) can adjust itself to account for
this and maximize the current. Therefore results
such as those of Refs. 9 and 10 should be re-
examined. This last conclusion does not specifi-
cally rely on the FSH representation and could
equally well have been derived by other methods.

These results retain much of their validity for
multi-sheeted Fermi surfaces. However, we no

longer have an exact treatment for polynomials
up to order one, having effectively truncated away
all noneven polynomials of zeroth and first order.

V. ELIASHBERG EQUATIONS

There has been much interest, both experi-
mental and theoretical, in discovering the degree
of anisotropy that the superconducting energy gap
4, will manifest as k varies on the Fermi surface. '
It is known that anisotropy in b& will cause the
transition temperature T, to be higher than in an
isotropic superconductor with & ={&))). The most
widely studied model is the "two-band" model'
where it is assumed that A~ is separately con-
stant on two sheets of Fermi surface but 4, is
not assumed equal to 4, . The technique of FSH's
allows a unified discussion of two-band effects
and single- (or multi-} band anisotropy. The
simplest question is the influence of anisotropy

At T =0 only a very narrow energy interval of
electrons are involved and the two formulas are
equivalent. At higher temperatures these formu-
las differ in the fashion in which electrons of
energy e are regarded as contributing to the cur-
rent. Both formulas give rigorous lower bounds
on o; but Eq (23) must give a higher (and there-
fore better} estimate as each energy has had its
current separately maximized. Indeed the Schwartz
inequality can be used to show that (23) gives a
higher o at finite T than does (24). If the assump-
tions are made that v„and T». vary slowly with &

as compared with the variation of N(c}, then Eq.
(21) implies I/7(e) - N(e) and (23) implies o(T)
=o(0), while Eq. (24) would predict

o„(T) sf
o„(0)

de N(g)
8&

Z(k, iu„) = —— g t
dg' f)(e~ —g')

P

x V(k, k' n, n'}73G(k', i&u„.)~r. (28)

In this equation, G is the Green's function given by
-1

(ku„ 1 —c, r,—Z), V includes all the interactions
between electrons k and k', i~„ is a Matsubara
frequency iv(2n+I}/p, p is (keT) ', v, are the
Pauli matrices, and 8 =1. The energy integral
over 5(c', —e') has been inserted to separate sur-
face from energy variables. The only rapid de-
pendence on &' comes from the energy explicitly
occurring in the denominator of G. All other de-
pendence on &' is weak in comparison to ~'„or Z
which are small energies. Therefore 5(e, —&')
can be replaced by 5(ef,) = 5(c', —c~) when the k'

summation is done, except for keeping the energy
correctly in the denominator of G. This allows

the &' integration to be performed. If we decom-
pose Z into diagonal and off-diagonal components
(to define the renormalization Z and pair field )f))

2 = [I —Z(k, i)v„)] i(u„ 1 + P(k, iu)„) q-~,

the resulting equation is

(2'I)

(1 —Z)i(o„l+)t)r, = —~ ~(e,.)
&7T

n

L(d~g 1 —Cjf) 7
3""""" "'

))
"'~ )*-~')"')'

(28)
This equation is accurate to order (m/M)' for
electron-phonon mechanisms as shown by Migdal's
analysis, '7 and forms a starting point for virtually
any microscopic examination of superconductivity.
At T= T„ the pair field Q' becomes infinitesimal
and can be dropped from the denominator of (28).
Writing out the diagonal part of (28) explicitly we
find

on T„and this is the only one specifically ad-
dressed in this paper. At T„ the BCS' or
Eliashberg" integral equations become linear
equations for 6„. At lower temperatures, the
nonlinearity of the theory will cause the anisotropy
effects to be much harder to handle exactly. How-
ever, unless the coupling is very strong, the non-
linearity is only weakly coupled to the anisotropy,
and the anisotropic part of the equations can be
approximately linearized as first discussed by
Anderson and Morel. Thus although only the
linear theory at T = T, is explicitly discussed here,
the approximate nonlinear theory for T& T, will
have the same structure.

A completely general starting point is the formu-
la for the self-energy Z in the Nambu tensor nota-
tion, where the off-diagonal part of Z is the "anom-
alous" or "pairing" self-energy:
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j~„Z=icu„-—g 5(c,, ) V{k, k'; n, n.') &u„. /~ ~„.~,
P k'n'

(29)
which is the normal-state mass renormalization
and self -energy function. The off-diagonal part
of (28) is a homogeneous linear integral equation
for the pair field Q. It is standard to define the
gap function 6 as Q/Z, but more convenient, fol-
lowing Bergmann and Bainer, to modify this to
n = P/I &u„ I Z. Then using Eq. (29) we get an inte-
gral equation for E:

" Z(kn) =P 5(a ) V(k k' n n')
m 0' n'

x [sgnn' n(kn) Z(k—'n')] . (30)

I.et us now specialize to the case where t/'includes
only electron-phonon interactions. The Coulomb
interaction as well as other effects such as im-
purity scattering can easily be added in, but make
the resulting equations too cumbersome to dis-
play explicitly. The Eliashberg form of the elec-
tron-phonon interaction is I M». I D(k —k'; iv„
—i{d„.), where M is the electron-phonon matrix
element and B is the phonon Green's function.
Using the phonon spectral function B, this can be
written

V,~(k, k '; n, n'}

=
i M».

i
dQB(k —k', Q) . . )2

(31)
It has already been assumed that the interaction

V varies slowly as k or k' moves away from the
Fermi surface. Therefore Eqs. (29) and (30) de-
scribe the variation of Z and 6 as k varies on the
Fermi surface; the variation as &~ departs from
&z is weak and is being neglected. Therefore,
when we expand these equations in FSH's, we
need only do so directly at the Fermi energy.
The expRnslon for 6 ls written

n(kn) = g b, ~„g~(k},

Q 5(e,)n(kn) g~(k) .

A similar pair of equations relate Z(kn) to ZI„.
l,et us write out explicitly the expansion of the
Ebashberg interaction (31)~

0) Z 5(&a) 5(&~ }
II
~» II'

x B(k —k ', A) g~(k) g~, (k'),

~V( kknn'} = — Q &~~ (n —n') $1,.(k) $1,.(k'),eP y ~(0} I L' I
(34)

2Q
XII e (s s ) = dQ agL E(Q) 2 g (35)

M 0 A + (d„—(d„.)

The isotropic components (L =0, L' =0) of a~~. E
and &~&.(n —n') are the functions a~E and A(n —n')
of the usual isotropic strong-coupling theory, and
go(0) is the usual coupling constant and mass en-
hancement parameter X. In terms of these defi-
nitions (32)-(35), the integral Eq. {30)becomes a
matrix equation

~
2n+ 1

~

b,~„= Q X~~.(n —n') —5~.
I, 'n'

x F c . ..x .. ( -n")sgnn")6 .„..
gl tn14

(86)
This equation ls now ln R form which permits
rapid computer calculations to find T,'. Such cal-
culations have been done by several authors'8
in the isotropic approximation, which is equivalent
'to assumlBg ~I I' (l1 21 } ~(PE s }405l ~ 0 (in the
"symmetric" representation}. If the isotropic ap-
proximation is made, Eq. {36)becomes equivalent
to Eq. (7}of Bergmann and Hainer, "Eqs. (1) and
(2) of Owen and Scalapino, '9 or Eqs. (14) and (15)
of Allen and Dynes.

The most familiar solutions for T, are those of
McMillan ' who used an altogether different repre-
sentation of the same equations, namely one where
the gap function 6 had been analytically continued
from the imaginary Matsubara frequencies to the
real (and physical) frequencies &u. McMillan's
starting equations can easily be derived by the
standard procedure of analytically continuing Eq.
(28) and then taking the limit as T- T,. The re-
sulting equations can be written in the FSH repre-
sentation as

[Z(N)6((0)]g = g Cr gal ei Zgi ((d) nr I ~ ((d)

dA agr, .E(A)

x He[A&, .(&u'}]K(v, &o', Q), (37)
CO

I'd[5I0 —Zz, (&u)] =
i

du)' dA az, 0E(Q) K(&u, v', Q),

(88)
where the function K is defined as

f(~')+iV(A) f(- ~')+h7(A)
K (dq &d

q
A

(d —(d +Q (d —(d —AI + f

and f and N are the Fermi and Bose functions. In
the isotropic approximation these equations re-
duce to Eq. (2) of McMillan's paper. At tempera-
tures below T„Eq. (37) is modified by replacing
He[A&, (~')]/&u' by the I.' component of the function
He[&(m')/(&u' —n' )

~ ]. The combination of non-
linear and anisotropic effects in this expression is
hard to handle numerically. Fortunately in most
cases it is adequately accurate to approximate this
by He[&& (~')/(&o' —no }' ] which effectively de-
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couples nonlinear from anisotropic effects.
The Eqs. (33)-(39) set out here form a simple

and rigorous basis for the discussion of anisotropy
in superconductors. The explicit solution of these
equations for T, is reserved for a future publica-
tion.

VI. SUMMARY

A new basis set of polynomials orthogonalized
on the Fermi surface has been described in this
paper. These polynomials (FSH's) have some
desirable properties such as cell periodicity, and

a simple relationship with spherical harmonics.
However, some important questions have not been
adequately answered. There is the difficult
mathematical question of completeness, discussed
in the Appendix. There is also a related question
which is best answered by experience, namely
whether physically significant properties can be
adequately represented by a few low-order FSH's.
In this regard it is encouraging to observe that most
workdone to date on the problem of dc conductivity
can be reproduced by truncating the Boltzmanequa-
tionat FSH's of order 1. The important unanswered
question is whether extension to order 2 gives a ma-
jor reduction of the error committed by truncating at
order 1. If the answer turns out to beyes, then we
have a powerful tool for handling many previously
messy problems. For example, Landau Fermi-
liquid theory has proved to be a powerful method
for summarizing the results of many experiments
in a small number of empirical parameters. In
spherical symmetry (as in 'He or Na) these param-
eters are the coefficients f, of a spherical har-
monic expansion of the Landau f-function f». .
There has been relatively little extension of this
work to anisotropic metals, partly because of the
lack of a simple set of theoretically defined param-
eters to serve as guidelines. It seems likely that
the FSH basis set described here will give the best
possible such set of parameters, namely the ma-
trix elements fz, z;. For a single-sheeted Fermi
surface of cubic symmetry these parameters will
be only twice as great in number as in spherical
symmetry. Specifically, in spherical symmetry
the parameters are fo, f„f~ (with higher than f = 2

parameters ignored out of ignorance or conve-
nience spin symmetric, and antisymmetric com--

ponents are implied for each l. ) In cubicsymmetry
the analogous set of parameters is six in number,
five being diagonal elements (namely f~ „f, „
f„,„„f~ g, „a,2, f 2 „a)and one off-diagonal(f0. .2), or
twelve counting the spin degree of freedom. For
multisheeted Fermi surfaces the number increases
rapidly because there will be additional off-diag-
onal terms as well as additional diagonal ones.
However, it is likely that most of these parameters
will be irrelevant for most experiments. Hope-

fully, many experiments will probe only one or a
few parameters. For example, the inverse of the
optical mass (or the Drude plasma frequency
squared) is altered by a factor 1+A, where the
Silin parameter ' A is given by

&-E f . &(~ )&(a, )/p ', &(a,). (4o)

In cubic symmetry this is simply the spin-sym-
metric parameter f„„,a result that remains true
even for multisheeted Fermi surfaces if P„ is the
symmetric function equal to v„/(v„)' on all
sheets; in spherical symmetry this becomes f, .

In summary it appears that many anisotropic
problems take a particularly simple form when
expressed in the basis set of Fermi-surface har-
monics described here. Although it has not been
proved, one can be optimistic that a rapidly con-
vergent expansion in FSH's will occur for most
physical variables and will greatly assist the solu-
tion of problems in anisotropic Fermi systems.
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APPENDIX

We wish to examine the question of complete-
ness. The specific literature on orthogonal func-
tions in more than one dimension is sparse. '6

First a suitable definition is needed. %e define a
sp~ce f 2(I Ve(k) I ', 3) as all functions f such that
the integral

,' (

I
f(k&l'

exists and is finite. The surface 8 is defined by
e(k) =ez and k in the first Brillouin zone. The
property of completeness is often called in the
mathematical literature "closure in f. (IV@I ', S)."
A set of functions P~ is complete if for every f
in 2 (I V& I ', 8) and every e & 0, there exists a
function of the form

n

4, = Q &r. kl.
I

with n finite such that

If this property holds for some nonorthogonal set
g~, then it remains after orthogonalization.

A very powerful result, known as the Stone-
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%eierstrass theorem, is helpful in demonstrat-
ing the property (Al). We first need to establish
that the velocity polynomials are an algebra.
First we define C(S) as the set of continuous real
valued functions on the space S (which we will take
to be the Fermi surface). An "algebra A in C(S}"
is a set of functions such that if f and g are in A,
and a and b are any real numbers, then af+ bg and

fg are both also in A. It is clear that polynomials
form an algebra in C(S}, whether they are poly-
nomials in the wave vector (k„k„k~}, in the ve-
locity [v„(k), v, (k), v (k)], or in any functions of
k. The Stone™%eierstrass theorem says that if A
is an algebra in C(S) and (i} S is a compact space,
(ii) A contains the constant functions, and (iii) A
"separates the points of S," then A is a dense sub-
set of C(S). This means that for any function f in
C(S), and any z & 0, there exists a function g in A
such that for all points k in S

lg(k) -f(k)
I
«. (A2)

The property (A2) is called uniform approxima-
tion, and is stronger than the property (Al), called
approximation in the mean. It is easy to show that
(Al) holds provided (A2) holds and the integral
over S of fdS/I Ve( is finite, i.e. , the density of
states at the Fermi energy should not diverge.

Thus it remains to show that the velocity poly-
nomials satisfy the requirements (i), (ii), and
(iii) of the Stone-Weierstrass theorem. Proper-
ties (i) and (ii) are trivially satisfied but condi-
tion (iii) generally is not. A family of functions
A on S is said to "separate the points of S" if
given any two distinct points k, and kz of S, there
exists a function f in Asuchthat f(k, )e f(km). This
property is clearly manifested by the coordinates
k„, k„k,. Thus a complete set of polynomials
orthogonal on the Fermi surface can be constructed
from the wave-vector components. However, for
many Fermi surfaces there are pairs of points where
v(k, ) = v(k2) so the velocity does not in general
separate the points of S. Thus the velocity can-
not be used to specify a coordinate system for all
Fermi surfaces. If a function gk) has the proper-
ty P(k, ) v P(k2) for points k, and k2 where v(k, }
= v(k~), then it is obvious that a uniform approxi-
mation (A2) to P cannot be made with a polynomi-
al P(v(k)). This does not necessarily imply that
an approximation in the mean (Al) fails, but it
does destroy the proof. Qn the other hand, there
are many simple Fermi surfaces where v(k) does
separate the points of S and therefore on these
surfaces the FSH's are complete. A general
proof (or disproof} of completeness remains to be
found.

Let us analyze in more detail the possible oc-
currence of points where the velocity vectors are
identical. Vfe consider only a single-sheeted sur-

face. It is only necessary for v(k} to separate
points on each sheet separately. If we consider
an arbitrary point k, on S, there may in general
exist one or more arbitrary isolated points k~

where v(k2) =v(k, ). Since k, was arbitrarily chosen
on S, it is highly improbable that k2 also lies on S.
Generally v(R) is smooth and differentiable (except
on isolated lines in the zone where degeneracies
occur; these will have undefined velocities but
these lines intersect the Fermi surface only in
points which will cause no problem). If we con-
sider points k~ near k~ with velocities v(k', )
= v(k~) + [(k, —k, ) ~ V'] v(k, ), then in general there is
a one-to-one mapping to other points k~ near k2

with velocity v(k,') =v(k2). This result holds pro-
vided the effective-mass tensors I '~(k, }= s V, (k, )/
skz and mo~(k2) have nonvanishing determinants.
(Otherwise the one-to-one mapping occurs only
from a two-dimensional manifold near k, to one
near k,. ) If we consider a two-dimensional
neighborhood on S near k» this maps into a two-
dimensional. neighborhood near k~ on which part-
ner points of equal velocity are found. This sec-
ond surface can possibly intersect S on a line.
Thus there may occur isolated lines I., and 1.~ on
S where for each point on I.„apartner point on
1.& occurs wi. th equal velocity. We do not expect
to find areas a» az with partner points. Thus the
failure of v(k) to separate points on S is restricted
to isolated lines. Since these constitute a set of
measure zero, the possibility of approximating in
the mean [Eq. (Al)] is not ruled out.

In spherical symmetry, the velocities v(k) on S
all have the same length but two points on S never
have parallel velocity. For general surfa. ces two
or more points with parallel velocity can be found

over finite fractions of the surface, but usually the
lengths are not equal. Two cases can be distin-
guished: accidental equality and symmetry-related
equality. The former case is not prevented on
isolated lines but seems unlikely to occur on an
arbitrary given surface, whereas the latter case
occurs more commonly. Let us take Cu as an
example. The Fermi surface is known from many
experiments to be a single sheet which intersects
zone boundaries in the (ill) directions. One can
identify regions of parallel velocities by finding
magnetic field directions in which more than one
cyclotron orbit is observed. For example both a
neck and a belly orbit are seen when the field is
along (111). Thus there is a line on the neck with
v(k) perpendicular to (ill) and a similar line
around the belly. For each point on one line, a
corresponding point on the other line has a paral-
lel velocity. Then one could expect that some-
where along these lines occur points where the
magnitudes of v are (accidentally) equal. How-
ever it is known 8 that the neck velocities are
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=ky

FIG. 2. k, =0 slice of a hypothetical Fermi surface
reminiscent of copper. Velocity vectors are shown for
five points A, A', B, C, C'. The points A and A' are
symmetry related and have identical velocity vectors.

smaller in magnitude than the belly velocities, so
accidental equality of v between neck and belly
points does not occur. It seems that accidental
equalities of v do not occur at all in Cu.

However, symmetry-related equality does occur
in Cu. For example, on the k, =Oplane the Fermi
surface points are describedby their wave vectors
(k„k„,0) and have velocities (v„v„,0). There are cor-
responding points (k„—k„, 0) obtainedby ref lection in
the k„=0plane forwhich v =(v„, —v„0). There is al-
so a special point where v„vanishes (accidentally).
The corresponding point has an identical velocity.
This is illustrated somewhat schematically in

Fig. 2, where the pair of symmetry related points
is labeled A, A'. A point B is also shown where
v is parallel but larger in magnitude. The points
A and A' lie on lines L, L' which are the loci of
points for which v„=0. These symmetry related
lines contain corresponding pairs of points for
which v=v'. There are no other pairs of points in
the k, =0 plane (except for other points obtained
from A, A' by rotations) for which v=v'. For
example the points C, C' have parallel but unequal
velocities.

In general points k may occur where the vector
v has (accidentally) higher symmetry than R has.
Whenever this occurs, there will be other points
obtained from k by symmetry operations which
leave v invariant. It is worth mentioning that
functions like 1/r, and h, which have the full sym-
metry of the crystal take the same value at sym-
metry relatedpoints. Inorder to have uniform ap-
proximations (A2) to such functions, it is only
necessary for v(k) to separate points in the irre-
ducible wedge of the Brillouin zone. This appar-
ently holds in Cu and quite likely also for most
Fermi surfaces. Even in the dc conductivity
problem where the distribution function Q, has
lower symmetry, errors do not seem to arise
from symmetry-related equality of v's. For ex-
ample the lines L, L' in Cu will have equal value
of Q, at corresponding points if the field is in the
xor z direction. Only if the field is in the y di-
rection will Q, be different on corresponding points.
However, v„vanishes on L and L' so these points
do not contribute any current if E points in the y
direc tion.

In conclusion, although a general proof of com-
pleteness is lacking, it is also not ruled out. Even
if completeness fails on many Fermi surfaces,
this may not present real difficulties for most
physical problems and most Fermi surfaces.

*Alfred P. Sloan Foundation Fellow. Supported in part
by NSF Grant No. DMR73-07578A01.

Yu. Eagan and V. N. Flerov, Zh. Fksp. Teor. Fiz. 66,
1374 (1974). [Sov. Phys. JETP 39, 673 (1974)).

K. Aoi and J. C. Swihart, Phys. Rev. B 7, 1240 (1973).
3H. Bross, Z. Phys. 193, 185 (1966); Z. Naturforsch. .A

15, 859 (1960).
F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71,
612 (1947).
L. P. Bouchaert, R. Smoluchowski, and E. Wigner,
Phys. Rev. 50, 58 (1936).

6L. F. Mattheiss, Phys. Rev. B 1, 373 (1970).
L. F. Mattheiss, Phys. Rev. 139, A1893 (1965).
J. M. Ziman, Electrons and Phonons (Oxford U. P. ,
New York, 1960), p. 275 ff.

R. W. Cohen, G. D. Cody, and J. J. Halloran, Phys.
Rev. Lett. 19, 840 (1967).

' F. Y. Fradin, Phys. Rev. Lett. 33, 158 (1974).
'See for example C. R. Leavens, and J. P. Carbotte,

Ann. Phys. (N. Y. ) 70, 338 (1972).
D. Markowitz and L. P. Kadanoff, Phys. Rev. 131,
563 (1963).

' H. Suhl, B. T. Matthias, and L. R. Walker, Phys.
Rev. Lett. 3, 552 (1959).

'4J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
Rev. 108, 1175 (1957).

'5D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins,
Phys. Rev. 148, 263 (1966).
P. W. Anderson and P. Morel, Physics (Utr. ) 26, 671
(1960)& Phys. Rev. 123, 1911 (1961).
A. B. Migdal, Zh. Eksp. Theor. Fiz. 34, 1438 (1958),
[,Sov. Phys. -JETP 34, 996 (1958)].

' G. Bergmann and D. Rainer, Z. Phys. 263, 59 (1973).
~SC. S. Owen and D. J. Scalapino, Physica (Utr. ) 55, 691

(1971).
P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905
(1975).. L. McMillan, Phys. Rev. 167, 331 (1968).



13 FERMI-SURFACE HARMONICS: A GENERAL METHOD FOR. . . 1427

P. B. Allen and R. C. Dynes (unpublished).
V. P. Silin, Zh. Eks. Teor. Riz. 33, 1282 (1957); 34
707 (1958) [Sov. Phys. -JETP 6, 985 (1958); 7, 486
(1958)].

2 V. Heine. Philos. Mag. 7, 775 (1962).
25W. E. Pickett and P. B. Allen, Phys. Rev. B 13, 1473

(1976).

A brief general discussion is given in Higher Trans-
cendental Functions (Bateman Manuscript Project,
McGraw-Hill, New York, 1953), Vol. II, Chap. 12.

~~See, for example, H. L. Royden, Real Analysis (Mc-
Millan, New York, 1968), p. 171 ff.

' M. R. Halse, Philos. Trans. R. Soc. Lond. A 265,
507 (1969).


