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Intermolecnlar bonding and lattice dynamics of Se and Te
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Vibrationa1 modes of trigonal Se and Te are analyzed to determine the character of the interchain (secondary)
forces. The dispersion of low-frequency modes clearly demonstrates the directional (covalent) character of
these forces. The interference of secondary interactions with the intrachain (primary) bonding is evidenced by
the anomalous softening of the zone-center A, mode relative to other modes and to corresponding modes in
other molecular forms of these elements. The nature of and trends in the forces are consistent with electronic
calculations and may be interpreted as aspects of a metal-insulator transition.

I. INTRODUCTION

Understanding of chemical bonding is greatly
facilitated by construction of continuous scales
which characterize the gradual change of bonding
from one type to another. An example is ionicity, '
which quantifies the essentially continuous grada-
tion of binary compounds from purely covalent to
ionic bonding. In this paper we explore aspects of
chemical bonding associated with the existence of
identifiable "molecular" units in condensed matter.
The characteristic feature of a molecular material
is that groups of atoms are associated into units or
molecules with strong internal bonding and only
weaker bonding between atoms on different mole-
cules. We shall refer to intramolecular bonding
as primary and intermolecular bonding as second-
ary. Here we are interested in groups of materi-
als in which the ratio of the secondary to primary
bond strengths can be varied from near zero to
unity, at which point the distinction between pri-
mary and secondary is lost and the material has
no molecular character.

The examples considered in the present paper
are the various forms of Se and Te. Together with
S and Po, these elements from the sixth column
of the periodic table span the range from molecu-
lar to nonmolecular crystals. All forms of S, Se,
and Te under ordinary conditions are molecular in
nature, but, as we shall show, with varying degrees
of secondary interactions. The molecular units
are characterized by strong covalent primary in-
teractions. On the other hand, Se and Te at high
pressures ' and Po at zero pressure are stable
in metallic nonmolecular forms, which are simple
cubic or slight distortions from it. The structure
upon which we focus our attention is the trigonal
"chain" form of Se and Te, which can be viewedv'8

as a continuous distortion from the simple-cubic
structure. The distortion is one which makes two

of the six neighbors in a simple-cubic lattice closer
2nd the other four more distant. Thus this system
of elements having the trigonal or cubic structures
provides a possible realization of a continuous or
nearly continuous transition from covalent to metal-
lic bonding.

In this paper we study the primary and secondary
bonding in trigonal Se and Te by examining in de-
tail the lattice vibrational modes. The magnitudes
of various forces related to primary and secondary
bonding are determined principally by fitting the
measured phonon dispersion curves. '8 The na-
ture of the resulting forces and their variation be-
tween Se and Te are the basis for our description
of the covalent to metallic transition occurring in
the sequence from Se to Po. It is illuminating also
to compare the vibration frequencies in the tri-
gonal crystals with those in other phases in which
the secondary interactions are smaller.

The analysis is aided greatly by considering the
relation between the covalent and metallic struc-
tures as a displacive phase transition. ' The order
parameter of the transition is the trigonal distor-
tion which is the difference in the separation of the
two near neighbors from that of the four second
neighbors. One consequence is a "softening" of
the lattice vibrational mode associated with this
order parameter. The softening may be effected
either by compositional variation, e. g. , in com-
paring' Se and Te, or by pressure. Indeed, anom-
alous variation in the "soft" mode with pressure is
evident in the measurements of Richter et a/. The
use of the order parameter as the relevant variable
relates the compositional and pressure variations. '
Here we do not consider explicitly variations with
pressure. However, we require our force models
to be qualitatively consistent with the effects of
pressure and further considerations are given
els ewhere. ~'~2

In Sec. II we describe the various structures in



which Se and Te form. The primary and secondary
bonding and the valence-force-field (VFF) model
which describes the harmonic forces resulting
from the directional bonding is discussed in Sec.
III. A convenient method for numerical calcul. ation
of the vibrational. frequencies from complex VFF
models is described in Sec. IV along with a pro-
cedure for numerical calculation of algebraic ex-
pressions for phonon frequencies at high-symmetry
points. The resulting expressions and dispersion
curves for trigonal Se and Te are also given in
Sec. IV. We discuss the relative importance of
the different directional forces for particular vibra-
tional modes and the variations in these forces be-
tween Se and Te. Vibrational modes of different
forms of Se and Te are discussed in less detail in
Sec. V. Certain modes of rings and chains are
shown to be closely related and a comparison of
these modes is used to determine the interaction
constant needed in Sec. IV. Applications are dis-
cussed to amorphous Se and Te, which are approx-
imated by mol. ecular units with weak secondary
interactions.

II. STRUCTURES

The two "molecular" units from which the stable
low-pressure phasese'23 of Se and Te are formed
are the eight-member ring and the infinite spiral
chain shown in Fig. 1. The chain is periodic with

FIG. 1. Local coordinatio~ of atoms in the ring and
chain forms of Se. The chain form on the left is a helix
with a basis of three atoms. The bond length is x, bond
angl. e 6, and the dihedral angle between bonding planes
is g. The projection of the helix onto the basal plane is
shown above where v is the radius of the helix. The
eight-member ring is shown at right in a perspective to
emphasize the similarity to the chain.

TABLE I. Lattice parameters of crystall, ine Se and
Te taken from Ref. 23. The symbols are explained in
the text.

Se (a-mono)

-2.32 A

-105.9'
-101.0'

3.58+

Se (trig)

2. 373 A

103.1'
100.6'

4. 954
0. 984
4. 366
3.436
0.2254
1.135

Te (trig)

2. 835 A

103.2
100.7'

5. 929
1.174
4. 457
3.495
0. 2633
1.330

a three atom unit cell and has trigonal symmetry
about the chain axis. It is either right handed or
left handed~ depending upon the sense of the spiral.
Each atom has two near neighbors at distance x
with an angle 8 between the bond vectors. The
positions of all atoms are fixed by the symmetry
and these two parameters. Convenient other pa-
rameters uniquely related to these are the lattice
constant c, the radius of the spiral shown in the
figure as v, and the dihedral angle g between adja-
cent bonding planes. The parameters ' for chains
in trigonal Se and Te are given in Table I.

The eight-member puckered ring molecule is
also shown in Fig. 1 fI om a perspective that shows
the similarity to the chain. It is in essence a bent
chain in which the sign of the dihedral angle P al-
ternates. The magnitude of g is constrained as a
function of bond length x and angle 9 so that the
"bent chain" closes with eight atoms. Average
values of y, 6), and P for the slightly distorted
rings in n-monoclinic Se ' are given in Table I.
The similarity between bond lengths and angles and
even the dihedral. angle in rings and chains is evi-
dent; hence we expect the primary bonding (intra-
ring or intrachain) to be almost identical. In the
case of Te only the chain form is known and no ring
molecules have been identified.

A variety of different crystalss'~' are formed
from the ring molecules of Se. We shall not be
concerned with the complex packing in these crys-
tals except to note that packing of rings is ineffi-
cient compared to chains and hence secondary
(inter-ring) bonding is weaker. A typical inter-ring
distance is given in Table I. We note that in each
crystal known there is at least one shorter inter-
molecular distance, but none as short as in the
trigonal form. Because of the complexity of the
secondary interactions and the fact that they must
be weaker than in the trigonal case, we shall ignore
all secondary interactions in the ring-structured
forms ~

The modes of vibration of the eight-member ring
have been tabulated by Scott et aE. who give dia-
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FIG. 2, Schematic illustration of the trigonal. lattice
structure of Se and Te, Heavy l. ines denote the chains
which spiral about a vertical axis as shown for the chain
at the left. The hexagonal. packing of the chains is evi-
dent in the figure and n and c are the lattice constants.
The chain radius, denoted as v in I"ig. 1, is defined as
xa. Each atom has two first neighbors at distance r and
four second neighbors at distance R. The approximate
octahedral environment is shown for one atom.

grams for each displacement pattern. One of the

symmetric modes is discussed in Sec. V, where
we compare ring and chain vibration frequencies.

The trigonal crystalline form of Se and Te is an

array of parallel chains arranged on a two-dimen-
sional hexagonal lattice, 6*23 as is illustrated in Fig.
2. The packing of the chains is determined by the
1Rttlce constRnt g in the basRl pl. Rne relRtive to the
chain radius v. The ratio v/g=x is the usual iat-
tiee parameter used to specify the structure. The
heavy lines in Fig. 2 designate the primary bonds
in the chains. In the crystal each atom also has
four equivalent second neighbors at distance R, all
on other chains. The four neighbors for one atom
are indicated in Fig. 2. As is evident in the figure,
the four second neighbors roughly complete a dis-
torted octahedron, i. e. , there is one second neigh-
bor approximately opposite each first neighbor and
two second neighbors oriented approximately per-
pendiculRL to the plane formed by primary bond
vectors. The structural information for Se and Te
is listed in Table I.

In Table II we list the ratio P!~ for the
forms of Se and Te so far considered. We see

TABLE II. Relative distances in column-VI elements.
The ratio of second- to first-neighbor distances R/r is
a measure the molecular nature. In the trigonal crys-
tals it measures the trigonal distortion [Eq. (1)t. The
second and third columns list the deviations from ideal
covalent and van der Waals radii (taken from Ref. 1, pp.
255 and 260). The deviations are quite large in the tri-
gonal crystals indicating large secondary interactions.
Distances in the amorphous form are taken. from the x-
ray scattering data of Refs. 44 and 46.

e-mono. Se
Trig. Se
Trig. Te
amorph. Se
arnorph. Te
Po

- l. 54+
1.45
1.21
1.60
1.52
1.00

0. 99
1.01
1.03
1.0
1.0

a!2a„
0. 90
0. 86
0. 79
0. 9
1.05

that the ratio decreases significantly in going from
the ring to chain form of Se. The ratio decreases
even further for Te. We interpret this to imply
stronger secondary interactions in the chain form.
In fact, as suggested by von Hippel, it appears
that secondary interactions are responsible for the
increasing stability of the chain versus ring form
for the heavier elements. Unlike the ring, the
chain is not a stable isolated molecular species;
hence we conclude that secondary interactions are
essential for the existence of the chain. The tri-
gonal structure tends to stabilize the chain form
because it allows the four second neighbors at ap-
proximately octahedral sites. Later we shall dis-
cuss the bonding pictures which qualitatively de-
scribe the preference for this geometrical arrange-
ment.

Also given in Table II are the observed bond
lengths r aud R compared to normal covalent (2r,)
and van der Waals (2R„) interatomic distances. '
We see from these comparisons that secondary in-
teractions are increased, i.e. , bond lengths R are
decreased from those characteristic of van der
Waals bonding. Furthermore there are small in-
creases in the primary bond lengths z over the
normal covalent distances in the trigonal crystals.
Thus increasing secondary interactions are cou-
pled with decreased primar y bond strengths. This
is the principal structural evidence for the inter-
action between primary and secondary bonds dis-
cussed below' and used in our interpretation of lat-
tice vibrational properties in Secs. IV and V.

Let us now consider the trigonal structure as a,

function of the free lattice parameter x. The in-
teresting range of x is x ~ —,'. At x= —,

' the structure
ceases to be trigonal and is simple hexagonal. At
this point R =x and each atom has six equivalent
neighbors. Furthermore we note that for a partic-
uiar value of cja (v —, = l. 225) the hexagonal struc-
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ture becomes simple cubic with the e axis of the
hexagonal structure becoming the body diagonal in
the simple cubic. Thus the free parameters of the
trigonal structure x and c/a can be continuously
varied to give a hexagonal structure in which each
atom is sixfold coordinated, a special case of
which is the simple cubic. We note that the transi-
tion to sixfold coordination can be realized in prac-
tice by the application of pressure. ~'

The consequences of the existence of the phase
transition are most easily discussed using the
general properties near displacive transitions. '
The transition is describable in terms of an order
parameter which must be a linear combination of
x ——', and c/a —V —, , since these fully describe the
trigonal distortion. We choose as our parameter
R/r —1 because this is the dimensionless quantity
most closely related to chemical bonding —i. e. ,
distances between atoms —and because it is the ap-
propriate parameter at large distortions ~ Note
that for small values of the order parameter, R/r
—1 «1, we have

Thus to linear order, the chosen order parameter
is directly proportional to x ——, and is independent
of c/a —v —', . Our physically motivated choice of
the order parameter therefore is relevant for con-
sideration of the trigonal-hexagonal transition and

any subtleties associated with the purely elastic
hexagonal-cubic transition are ignored.

An immediate consequence of the identification of
the order parameter is that the dynamical mode
associated with the order parameter is predicted
to soften as the transition is approached. As dis-
cussed later in Sec. IV, it is the 1", optic mode
(termed 2, ) which is directly related to the order
parameter x ——,'; hence, this is the mode which is
expected to vary anomalously. Even far from the
transition (e. g. at zero pressure) we can expect
the A, frequency to be depressed. Anomalies in
the A, frequencies have already been pointed out
(i) by comparing'~ measured frequencies in Se and
Te and (ii) by observation of a rapid decrease in
the A, frequency under pressure. To analyze this
behavior we next consider models of the bonding,
which suggest driving forces for the "softening" of
the A, mode as well as related aspects of the direc-
tional forces. In Sec. IV we describe in detail the
relation of these forces to the A., optic mode fre-
quency.

We also note that other physical properties are
expected to be simply related to the order param-
eter. One is optical activity which may be nonzero
in the trigonal crystal but must vanish in the hex-
agonal one. ' The activity results from the "hand-
edness" of the chains, a property which clearly
vanishes as one approaches the symmetric hex-

agonal structure where the chains themselves lose
their identity. Another property is the quadrupole
field at each nucleus. This is exactly zero in the
cubic form but is nonzero in the hexagonal sym-
metry. At the hexagonal-trigonal transition, an
anisotropy in the field about each nucleus develops
in the basal plane. The magnitude of the quadru-
polar fields have been investigated in both Se and
Te 2 7

Finally, it is interesting to note that other sys-
tems have similar structural characteristics and
order parameters. An example is the elements in
column V of the periodic table. The elements have
a tendency toward threefold coordination, which
leads to stable structures that are continuous
distortions from the simple-cubic lattice.

III. RONDING AND THE FORCF MODEL

We now consider the bonding in these materials
and utilize an atomic-orbital picture of the va-
lence states for a qualitative description of the
forces. The relevant atomic states are the outer
s and p orbitals of each element, respectively, with
the eight states partially filled by six electrons.
The traditional picture of the primary bonding
within a ring or chain is illustrated in Fig. 3. It
is assumed that two hybridized orbitals h, and Iz2

FIG. 3. Bonding in trigonal Se and Te. The h orbit-
als are bonding orbitals hybridized from s and p atoinic
orbitals; the ~ orbitals are the p-like nonbonding states;
and the p orbital is the primarily s nonbonding state.
Also shown. are ~ orbitals on atoms on neighboring
chains which overlap bonding and antibonding states to
produce secondary (interchain) bonding. The notation
vf v2 ~ f 2 is used to denote the general vale rice force
field coordinates for any triad of atoms.
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are formed with lobes pointing toward the two near
neighbors shown shaded in Fig. 3. These combine
with like orbitals from the neighbors to form the
two bonding states about each atom. These states
require two electrons per atom. The remaining
four electrons fill nonbonding states, p and y, on
each atom. The v. state is simply the p state per-
pendicular to the bonding plane and is not mixed
with the other atomic states by the presence of the
nearest neighbors. The p nonbonding state is pri-
marily s-like and its mixing with bonding states is
determined by the nearest-neighbor interactions.
The v nonbonding pair state is highest in energy,
the bonding combination of the h states is inter-
mediate, and the s-like p nonbonding pair forms
the lowest energy valence states in the ring or
chain

The equilibrium values of the bond lengths y and
angles 8 are determined by maximizing the bonding
energies, i.e. , by optimizing the overlap of the h

bonding states which are hybridized combinations
of s, p, and possibly d atomic states. Deviations
from the equilibrium lengths or angles require re-
adjustment of the bonding functions causing both
angular and radial restoring forces. This is most
naturally described by writing the total energy of
the system in a valence-force-field (VFF) form as
a, function of the set of all bond lengths (yJ and an-
gles (gj. The VFF model is described below and
is identical to that used by others33 37 for the pri-
mary bonding.

Consider now the secondary (interchain) interac-
tions in the trigonal crystal, which we argue must
be treated in a way similar to the primary bonds.
We recall the second neighbors roughly complete
an octahedron about each atom (see Fig. 2). These
four neighbors are shown as open circles in Fig.
3 and relevant orbitals on them are shown. We
see that the trigonal crystal forms so that each
nonbonding z orbital overlaps the p and the back
lobes of the bonding orbitals on atoms on adjacent
chains. Krebs shows the overlap explicitly for
atomiclike functions, and suggests it is strong
enough to interfere with the primary bonding, i.e. ,
a resonance' or mesomerica interaction, It is the
overlap of filled states that provides the repulsion
that stabilizes the crystal, but at the same time
overlap of the 7 orbitals with unfilled anti50nding
states on different chains tends to interfere with
primary bonds. The interactions with unfilled
states always lowers the energy of the filled states,
in this case by forming secondary bonds at the ex-
pense of primary bonds. The mixing of primary
and secondary bonding shows that secondary bonds
(a) develop covalent character and (b) weaken pri-
mary bonds. In the limit R =y the two types of
bonds are indistinguishable and only partially filled,
i.e. , the crystal is a metal.

The pseudopotential-band-structure calculations
of Joannopoulos et aE. , which are fitted to empiri-
cal electronic density of states, show clearly the
effects of secondary interactions. Their calculated
charge densities as a function of separation be-
tween the chains show an increased secondary and
decreased primaxy bonding charge as the chains
are brought together. They have also fitted tight-
binding electronic parameters to the band structure
and find the largest secondary matrix elements to
be those between lone pair v and both bonding and
antibonding states on neighboring chains. The ra-
tios of the largest secondary to primary bonding
matrix elements is -0.2 and -0.5, respectively,
for Se and Te. These arguments together with the
structural information discussed in Sec. II shows
that secondary bonds should be treated in a way
comparable to that for primary bonds, i.e. , also
in a VFF model.

The resulting VFF expression for the lattice en-
ergy to harmonic order has the form

V= P I.'K„(~r)'-+ .'K, (r~e)—'+K„„,~r~r'

+ K,~Dr(yhe)+ pKs(AR) + 2KO[(rR)' &0]

+ K„~R[(rR)'"r8]+K„,r rm'f. (2)

The first four terms are the primary (intrachain)
interactions, where K„ is the central bond-stretch-
ing force constant, Ko is the angular constant, and

K„„.and K„o are cross terms that couple neighbor-
ing bond lengths and an angle with the length of each
constituent bond. The fifth term involving K~ is
the secondary (interchain) bond-stretching force
constant. A11. these five terms are exactly the
same as have been considered previously. " '7

The final three terms are the directional three-
body interchain forces which have not been con-
sidered in previous work. Here 9 denotes an angl. e
between a primary and a secondary bond vector as
illustrated in Fig. 2. The K» term couples an
angle with the length of second-neighbor bond that
joins a leg of the given angle. We have omitted the
hr[(rR)"~68] term in Eq. (2) because it can easily
be shown that it only makes negligible contributions
to the high-frequency modes. Simple considera-
tions show that K„. and K„o become meaningless
for 9-180', and we choose to consider only the
-90' angles (see Fig. 2) and to set Ko and K~o the
same for each of the six -90' angles 9 about each
atom although these constants are not strictly equiv-
alent by symmetry. Wendel ef, aE. have indepen-
dently used forces of a very similar form to de-
scribe the secondary forces in Se.

The final term involving K„e in Eq. (2) couples
primary and secondary bond lengths. The bonding
arguments above suggest that such a term results
from the competition of primary and secondary
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bonding mechanisms. For simplicity we treat all
K„z interactions as equal and the sum in (5) is over
all eight pairs of first and second neighbors about
each atom. If K„R is positive, it depresses the fre-
quency of any mode in which the average br is op-
posite in sign to the average ~. This is the driv-
ing force toward a, more symmetric (less distorted)
trigonal structure. We shall see explicitly in the
following section the lowering of the A., mode caused
by K„„&0.

For large secondary bonding there are addition-
al secondary terms such as the final one in Eq.
(2), where Kss, is the constant which couples the
two oppositely directed second-neighbor bonds
about each atom. This term is included in the
algebraic formulas of Sec IV, but its effect is
small in the cases considered and K~~. is omitted
in our calculations.

Also there are long-range forces which are en-
tirely neglected in the present work. Each Se or
Te has a dipole moment in the trigonal structure.
Displacement of and changes in the dipoles with
atomic displacements contribute to the restoring
forces. It is shown in Ref. 38 that such long range
forces can affect significantly the dispersion in the
upper optic modes. Also macroscopic electric
fields are generated for certain modes. We
omit all long-range forces and explore only the
short-range chemical bonding. Of course, we
therefore have no macroscopic electric fields and

consequently cannot describe the longitudinal-
transverse splittings and infrared activity allowed
in the trigonal crystal.

IV. CALCULATION OF PHONON DISPERSION CURVES

The dynamical matrix for the phonons of wave
vector q is defined by4~

1 1 ~ a'U
2N (MM)'", , . aR, ., 9R', „,)
xe jqO (R)lt R)tip)

D(q)A.„=w„X„, r = I, 3n . (4)

Here we have omitted the indices on the dynamical
matrix and eigenvectors X„ for simplicity.

The novel aspect of our approach is in dealing
with complicated sets of three-body forces in U,

e. g. , those in Eq. (2). Inclusion of many such
forces is tedious unless done in a general manner.
The complication is that each derivative 8 U/

&R, , BR, , in Eq. (3) may depend upon many three-
body interactions involving atoms l'i, f"j, and all
possible other atoms as the third atom. To carry
out the computations it is much more convenient to
reorder the summations needed in (3). We note
that U is a sum of three-body terms (ignoring two-
body terms for the moment)

v=gp v,'„",
irk SsS'

(5)

ss'where U", ~ denotes a three-body interaction in
which atom lk is the central atom and s and s' are
a compact notation for atoms l,k, and L,.k... two
different neighbors of atom Ik. Inserting Eq. (5)
in Eq. (3) and using translation invariance, we find

Here U is the internal energy, N is the number
of unit cells, n, P are Cartesian coordinate indices,
l' and $" label the unit cells, and i and j =1, . . . ,
n denote atoms in the unit cell of mass M; and Mz,
position R, , , and R,"~. The eigenvalues and eigen-
vectors of the dynamical matrix are the squared
phonon frequencies and the normal mode displace-
ments given by

~(q)— oa iq. (a, .;-a,"))

The advantage now is that the double sum in
brackets is readily carried out because Uo~ in-
volves only the positions of three atoms. The
three-body VFF terms for a triad of atoms with
bond lengths r& and r2 and include angle 8,2 can
be written in general

V = ,'K„,(r~e»)'-+ K„,„nr, (rd. 8»)

+K„e nrem(r68»)+K„, „&rg&r2.

An algebraic expression for the bracketed sum in
(6) in terms of the general set of three-body con-

stants in Eq. (7) can be given solely in terms of
the direction cosines that relate Cartesian displace-
ments to angles and lengths.

We have written a computer program which car-
ries out the sum in (6) over atoms in the unit cell
0 and the double sum over neighbors s and s'. The
program finds and orders the neighbors of each
atom Ok. It is then straightforward to define cri-
teria which insert the proper three-body constants
into the general expressions for each relevant pair
of neighbors. Consider the case described by Eq.
(2). When s and s' are the two first neighbors,

8y2 8'
s a first neighbor and s' a second neighbor oriented
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at approximately 90', K„„=K„„, K„,~, =0, K„~
=K„e, and K~ =Ko. For s a fixst neighbor and s'

&»a

a second neighbor oriented at approximately 180',
K„„=K„„.K„8 =K„a = K, =0. These completely
specify all the three-b~ody contributions to the dy-
namical matr!x. The two-body eentx'al forces are
easily treated4' and are added to the three-body
contributions to complete the dynamical matrix.

The adjusted dispersion curves are presented
later in this section. The direct numerical results,
however, are of limited usefulness and we first de-
rive the algebraic forms for the frequencies of cer-
tain high symmetry modes. Consider a case in
which the modes of a given symmetry are denoted
by y = 1,p. The eigenvectors and eigenvalues in
general are functions of the values of the force con-
stants, however, the eigenveetors X„, x=1,p, for
any set of force constants form a complete set for
this symmetry. They may be used to project out
the relevant p&p part of a general dynamical matrix,
and the eigenvalues are the solutions of

(8)

FIG. 4. Brillouin zone in trigonal Se and Te with the
high-symmetry points.

two interesting 2~2 cases. In the former case the
frequency is given by

and in the latter by

The general form of the dynamical matrix is lin-
ear in the force constants K so the matxix ele-
ments in Eq. (8) may be written

KA„„..

Here D and A are 3n& 3n matrices with the indices
omitted for brevity. ln genexal M is the mass ma-
trix (M,M,)"'& ~, which in the present case is the
scalar atomic mass. The dimensionless matrix
A may be viewed as the dynamical matrix for unit
mass and VFF force constant K =1, with all other
force constants equal to zero. Each matrix A. is
independent of the masses and values of the force
constants and depends only upon the structure and
the definition of the neth constant in the VFF model.

In the present case of trigonal Se and Te there
are four points in the Brillouin zone at which the
matrix simplifies greatly. These are the center
of the zone I" and the three zone-boundary points
Z, 8, and M shown in Fig. 4. At each point the
dynamical matrix can be block diagonalized into
one 1 && 1, one 2 &2, and two 3 & 3 submatrices, 1»,
I Qp I 3j Z»p Zpp Z3 etc. The two 3 && 3 matrices are
degenerate in each case and we need not distinguish
between them. Furthermore, at I three modes
(one I'z and one I", pair) are zero by translation in-
variance; hence the nonzero I"~ frequency is given
by a single equation, and the two nonzero I'~ fre-
quencies are given by a 2&2 matrix equation.

The dimensionless coefficients A „„.are given
-'n Table IQ for both Se and Te for each 1~1 and

Of course, the 2~2 matrices are not unique and
we have chosen as basis vectors the actual eigen-
vectors in Se and Te, respectively, to show clearly
the nature of each mode.

The differences in the coefficients for Se and Te
result from geometrical factors, i.e. , the differ-
ences in c/a and bond angle 8. Since 8 is essen-
tially the same in the two materials, the coeffi-
cients in Table III may be approximated as a func-
tion of c/a. Expressions for the phonon frequen-
cies at different c/a (for example, under pressure)
can be derived by interpolation using the coeffi-
cients in Table III.

The nature of each mode considered can be di-
rectly extracted from Table III. Consider the
modes at I' for which diagrams of the motion are
given in Fig. 5. The I"2 mode (A2) is a chain rota-
tion mode which is independent of all forces inter-
nal to the chains. The I', mode (A, ) is the chain
expansion mode in which each atom moves in the
basal plane. It has contributions from both K„and
K~ and since dr and hR are opposite, this mode is
decreased by K„z. The fact that K„z has maximum
effect on I", is evident in Table III. The I'3(E)
modes separate into predominantly bond-bending
and bond-stx etching types with larger admixture
in Te. The comparison of 1"» and 8» modes is in-
teresting. The only difference is that at I all
chains expand in phase, and at 8 neighboring
chains have different phases. This leads to the



TABLE III. Expansion of dynamical matrices for Se and Te for high-symmetry modes. For the five
modes fixed by symmetry (it t I'&, B&, Zt, Mt) the frequencies are given by MuP=g~A~K where the co-
efficients A~ are given in the Table. For the other modes, such as I'3 and B2 given in the Table, the fre-
quencies are the solutions of the 2&2 determinant, Eq. (11).

Te

Fi
F2

F3 22
12
Bf

8, I22

Z$

M)

Fi
F2

Bj.

8, 122
12

K„

1.55
0
0

2. 23
—0.05

l. 55
0
0
0
0
0

1.54
0

0.11
2. 12
0.49
1.54

0
0
0
0
0

3, 10
0
0

2 ~ 23
0. 05
3.10

0
0
0
0
0

3.08
0

—0. 11
-2.12
—0.49

3, 08
0
0
0
0
0

K„e

—9.23
0

0.14
—l.37
—3.23
—9.23

0
0
0
0
0

—9.24
0

—l. 50
0.28

—3.20
—9.24

0
0
0
0
0

Ke

3.44
0

4. 75
0.21
1.00
3.44

0
0
0

1.63
1.63

3.46
0

4. 95
0. 01

—0.21
3.46

0
0
0

l. 63
1.63

Kz

2. 19
2. 42
3.16
0. 54
0. 12
1.15
0, 10
2.43

—0, 51
0. 81
1.84

1.64
2. 44
2, 92
1.03

—0. 83
1.02
0. 06
2, 88

—0, 40
0, 81
l.43

2. 19
—2.42
—3.16

0. 54
-0.14

1.15
—0.10
—2.43

0. 51
0.Sl
1.84

l. 64
—2. 44
—2. 85

0.36
1.15
1.02

—0. 06
—2. 88

0.40
0. 81
1.43

Kze

3.42
—24. 96
—21.16
—3.93

2. 95
—1.95

0.89
—12.10
-0.94
—3.11

3.19

5.25
-22. 53
—15.96
—8. 58

6.95
—1.53

0. 86
—11.14
—2. 26
—3.06

4. 15

Kg

2. 73
24. 06
13.04
15.38

—7. 02
7.23

11.67
10.44
6. 55
3.05
5. 96

3.14
20. 24
7. 78

17. 97
—4. 72

7.39
12.23
7.40
5. 14
2. 02
6. 18

—20. 84
0

0.14
1.26

-3.28
—5, 21

0
0
0
0
0

—18.00
0

-1,31
3.76

—2.39
-4. 50

0
0
0
0
0

fact that the B~ mode has a smaller dependence
upon Kz and K„I,.

The lower 83 mode is of particular interest. If
there were no noncentral secondary interactions,
i.e. , Ko=K~8=0, the frequency of this mode would
be zero. This is essentially a screw mode of the
chains in which no second-neighbor distances are
changed. The frequency is very nearly given by
~~ ~Ke. At Z, alternate unit cells along the chains
are exactly out of phase and M is the corresponding
point at which different chains axe also out of phase.
In these cases the single modes Z~ and M~ are low-
frequency modes which involve no stretching of
primary bonds. These modes, along with B~ and
I'2, are particularly relevant for understanding the
secondary interactions.

With the above descriptions of the modes it is
straightforward to adjust the force constants to fit
frequencies measured by neutron scattering and by
optical techniques. We have carried out a fitting
by crudely adjusting constants to fit relevant data. 4~

No least squares or other systematic optimization
procedure was used. The resulting dispersion
curves are shown in Figs. 6 and 7 for Te and Se
respectively. The force constants used are given
in Table IV. Calculated and experimental elastic
constants are given in Table V.

The procedure which we used to arrive at the
force constants is: (i) adjust Ko to fit the lower Bs
mode, (ii) Ka to fit the compressibility in the basal

plane Cii+ Cts, (iii) Kao to fit I's (this also has an
effect upon C,s+ Cts), (iv) K, to approximately fit
C„, Z, and the lower I', modes, (v) K„K„„,, and

FIG. 5. Displacement pattern for modes at I' in tri-
gonal Se or Te. The modes are F~(A.~), F2(&2), and
F&(E). In each case views of the displacements are
given from beside and from above the chain.



INTEHMOLECULAH BONDING AND LATTICE DYNAMICS OF. . .

140 (

I I I I

[00&]

3

40

20

1120 .
E

3
—100

U

80
0

60

Z

I

ty 01]

2 13
2

02

I I I I

[10g]

TELLUR I UM

1

I| y30

I I I I

fy00]
I I I

[0 gO]
160

FIG. 6. Phonon disper-
140 sion curves of Te. The

notation of the symmetry
points is given in Fig. 4.
Points are experimental.
data from Ref. 10 and the

10Q solid lines are the fitted
dispersion curves from the
present calculations using
the force constants listed
in Table IV. The dashed

60 lines result from ultra-
sonic sound velocities and

40
the calculated and experi-
mental elastic constants
are given. in Table V. Tri-

20 angles indicate infrared
(Ref. 13) and Raman. (Ref.
l4) frequencies.

REDUCED NAVE VECTOR g

K„~ to fit I'„ the upper I'3, and the upper modes at
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neutron data on the upper modes in Se became
available only after our calculations were complete
and because a good fit could not be found for Te.
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Since this is not the object of the present work, we
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TABLE IV. Adjusted force constants in Se and Te in
units of 10 dyn/cm. The notation is discussed in the
text preceding Eq. (2). Note that primary forces are
large in Se whereas secondary ones are larger in Te.

K„
K„„,
K„g
Ke
K~
K~o
Ko
K„z

Se

l. 18
0. 13
0
0. 14
0. 064

—0. 011
0. 0035
0. 012

Te

0. 66
0. 10
0
0. 04
0. 13

—0. 006
0. 0075
0. 034

K~~/Kse

0. 56
0. 77

0.29
2. 03
0. 55
2. 14
2. 83

modes at Z in Te. It is interesting to note that
large values of K«were needed in previous calcu-
lations" "to fit the low value of the I', frequency.
(This effect is evident in Table III. ) In the present
case this is accomplished by K„R and K„a is not
essential.

We have chosen to determine K„~ by comparing
the I ~ mode in the trigonal crystals with modes in
other structural modifications as described in Sec.
V. In this case the experimental data for Se are
best established and we can use accurately known

ring and chain frequencies. For Te we compare
with the dominant Raman frequency in the amor-
phous form. We test the choice of K„R by compar-
ing the results for the trigonal crystal with the
limited experimental information on the dispersion
of the upper optic modes for wave vectors perpen-
dicular to the c axis, in particular, I'y By.

We see from the figures that in general, agree-
ment is very good where comparisons with experi-
ment' ' '4 can be made. Of particular note are
the I'-B and I'-Z lower dispersion curves. The
value of the I'~ chain rotation frequency and the
downward dispersion from I'~ to B~ in both Se and
Te is well described by the inclusion of the non-
central secondary constant K~o. In all previous
calculations" ~ with only central secondary forces
the B2 frequency is equal to or greater than the I"2

frequency. For Se we find the noncentral forces
are the primary restoring forces for the I'2 mode.
This is in keeping with the result of Nakajama and
Odajima, who calculated a frequency of only 49
cm ' compared to the measured value' of 103 cm '
for the I ~ mode. The other low-frequency modes
from I' to 8 are also in good agreement supporting
our model for the interchain forces.

The lower modes from I' to Z are given quite
accurately in our calculations for Se; in particular
the lower Z2 and Z, frequencies agree with experi-
ment and are in the correct order in contrast to
the results of Ref. 37. On the other hand there
are large discrepancies for Z, and the lower Z2
modes in Te. Similar results are found in other

TABLE V. Elastic constants of Se and Te in 10"
dyn/cm . Experimental values are from Ref. 18.

Expt. Calc. Expt.

Te

Calc.

C«. Ci2)
'- (C«-Ci, )

~44

82. 0

10. 9

8.2

23. 0

18.2

6. 2

74. 1

11.2

6. 8

15.0

14. 9

6. 7

70. 5

20. 5

12. 5

23. 1

31.9

11.9

66.4

19.7

10.7

24

20. 8

9.2

calculations, ' '"'" including the bond-charge cal-
culations of Cowley. The discrepancies are re-
duced in the more involved models of Powell and
Martel. ' As mentioned above and as is evident in

Fig. 6, the highest optic modes from I" to Z in Te
are also not well described. The experimental re-
sults' for Se also indicate a much wider upper op-
tic mode bond than we have calculated. We con-
clude that more complicated intrachain forces be-
yond the scope of the present work are present in
both Se and Te.

The other important feature is the "softening" of
the I', mode. We see from the calculated I'y Bg
dispersion that interaction terms of the form of
K„~ can have large effects. If K„R were not in-
cluded we would find the same result as in Refs.
34-37 that the calculated B, frequency would be
lower than the I', frequency. The K„~ forces clear-
ly improve the agreement with experiment. ' In
Te our calculated value for B, appears to be some-
what too high whereas in Se the B, —I', splitting is
lower than the experimental value. '

Since the anomalous' I', frequencies in Se and
Te are here related to secondary forces (K„z) rath-
er than primary forces (K,e) as considered pre-
viously, the present model leads to a natural ex-
planation for the pressure dependence of the I

g

frequency. The comparison of force constants in
Se and Te shows that as secondary interactions are
increased (i. e. , as R/r is decreased toward I) Kz
increases, but K„~ increases even more rapidly.
We expect these trends to hold also as R/r is
changed under pressure. Thus it is a natural con-
sequence of the present model of secondary forces
that the I', frequency should decrease rapidly with
pressure. All other I' modes would be expected to
have a smaller dependence upon pressure since
they are less dependent upon EC„z. (See Table III. )

This is qualitatively the result found experimen-
tally. A more detailed examination of the I modes
under pressure is given elsewhere, '

Directional interchain forces similar to those in
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the present work have been proposed independently
by Wendel, Weber, and Teuchert for Se." They
have included forces associated with the intrachain
angle that is -180 and have set K„~=0 for the
-90 angles. Their results are very similar and
values of the force constants are quite comparable
to those given here. It is of inter est that they find
an average interaction between first and second
neighbor bond lengths to be K„s=0.02 & 105 dyn/cm
which is larger than the value of 0. 012&& 105 dyn/cm
which we derived from the comparison of ring and
chain frequencies. This reflects the observation
made above that we would have to increase K„~ to
fit the neutron scattering data of Bef. 12. For the
lower frequency modes the most apparent differ-
ence of the present results from those of Bef. 38
is the ordering of the lower modes at the M point.
No firm conclusion can be drawn from this differ-
ence since the frequencies of these modes have not
been reported in either of the experimental papers
on Se."2 Wendel et aE.38 have also carried out
shell model calculations which improve the descrip-
tion of the highest optic modes from I' to Z.

V. RING AND AMORPHOUS FORMS

In this section we discuss aspects of the lattice
vibrations in o.-monoclinic "ring" Se (a-Se), amor-
phous Se (a-Se), and amorphous Te (a-Te). Our

purpose is to compare with the trigonal crystals
and hence we consider only the highest optical fre-
quencies. The lower frequency modes are more
affected by geometrical arrangements of the atoms
and comparisons are difficult.

The most relevant modes to compare are the
high-frequency symmetric Baman-active A, -type
modes of the rings and chains. We have seen in
the previous section that this mode is particularly
sensitive to the secondary bonding constant K„~.
There is no unique relation between the A., fre-
quencies of the ring and chain (also termed I', ) as
is obvious since there are two A, modes of the
ring. However, for every case we have considered,
if we omit secondary interactions and assume the
sameprimaryforce constants (K„, K,„., K„„and K~),
the I', chain mode and upper A, ring mode are very
close in frequency. We expect changes in primary
bonding to be small since the bond lengths and an-
gles are so similar, as listed in Table I. There-
fore we attribute any large differences in the A»

fx equencies to secondary interactions.
Experimentally it is found that the A., mode in

z-Se has frequency43 256 cm ~ whereas in trigonal
Se the A, frequency is 237 cm'. Within any models
we have explored, this difference can only be ex-
plained by the primary-secondary interaction term
X„~ described for the trigonal form in Secs. III
and IV. We estimate the K„~ force constant by the
following procedure: (i) We assume each primary

constant in the chain is reduced from that in
the ring by (x„„/r,„«,)3 = (2. 32/2. 34)~ = 0. 975.
(ii) We neglect all secondary interactions for
the ring but include the contributions to the
4, chain frequency from the secondary interac-
tions K~, K„e, and K~. These were all determined
from the lower dispersion curves in the trigonal
crystal. (iii) Any remaining difference in the A~

frequencies is attributed to K„~ in the trigonal
form. From this we calculate the value of K„R for
Se given in Table IV and used in the previous sec-
tion. We have also calculated the other 24 —6 = 18
modes of a ring and find them to be in reasonable
agreement with experiment2' except for the lowest
modes w'here torsional forces or secondary forces
are probably important.

It has been observed that in amorphous a-Se, the
Baman spectrum has a large peak near the upper
A, ring frequency. " Since it is believed that a-
Se is not solely rings, this is interpreted to mean
that all molecular species in a-Se have approxi-
mately this frequency for the high-frequency sym-
metric modes. As is evident from our previous
discussion, the present calculations indicate that
this frequency is not determined by the molecular
specie (ring or chain) but by secondary interactions
Therefore we conclude that the geometrical pack-
ing of the possible rings and (bent) chains in a-Se
is such that all secondary interactions are small.
A simple picture of a-Se that derives from these
arguments is that of relatively isolated rings and
chains. This is supported by experimental radial
density distributions44 of atoms, which indicate
(Table II) closer first neighbors and more distant
second neighbors in a-Se compared to trigonal Se.

This comparison is useful in Te where no ring
molecules are known to exist, yet experimentally
it is found that the dominant Baman peak in a- Te
is shifted to much higher frequencies (-150 cm
compared to 122 cm ' in the trigonal crystal'~'").
These frequencies in a- Te are apparently higher
than any modes of the trigonal crystal. By analo-
gy with Se we make the anzatz that this change is
due to the secondary bonding in the crystal. . Brod-
sky et al.4' have also suggested this interpretation.
This is further supported by the facts that in a-Te,
ft/r is much larger' than in the crystal as shown
in Table II, and the band gap is increased to -0.8
eV from 7 the value of -0.35 eV in the crystal,
i.e. , an increase in the covalent primary bonding
in a-Te. In a manner very analogous to Se, we
have evaluated K„„by (i) assuming a-Te is made
up of isolated chains, (ii) scaling primary constants
by (r „,h/r, „«,) = (2. 79/2. 84) = 0.948, (iii) as-
suming Ks is reduced by one-half (the results are
insensitive to this particular choice) and K» =K.
=K„s=0 in the amorphous case, and (iv) attributing
all remaining discrepancies in the I", frequency
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to K„~ in the trigonal form. The resulting value of

K„R for the trigonal crystal is given in Table IV.
As we found in Sec. IV, this value of K„R improves
the description of the upper dispersion curves in
Te.

The primary result of the present work applied
to the ring and amorphous forms is that no definite
aspects of the secondary bonding have been detected.
This appears to be both because the forces are
much weaker than in the trigonal forms and be-
cause their effects are very complex and tend to
be averaged out, i.e. , there is no single frequency
which is particularly sensitive to secondary bond-
ing. The data for the amorphous forms are consis-
tent with the picture of relatively isolated molecu-
lar units.

VI. SUMMARY AND CONCLUSIONS

We have shown that from both structural data
(Sec. II) and lattice dynamical data (Secs. IV and

V) the different forms of Se and Te form a spec-
trum of materials having varying degrees of mo-
lecular character. All ring forms and amorphous
forms appear to be essentially molecular, however
the trigonal forms of Se and Te have distinct signs
of nonmolecular behavior, i.e. , strong secondary
bonding.

The interatomic forces were described in a va-
lence force field picture with the constants deter-
mined by approximate fitting of available frequency
data. In addition, algebraic expressions were pre-
sented which can be used to calculate frequencies
at high-symmetry points for any values of the force
constants and for a range of c/a values.

The tendency toward nonmolecular character in
the trigonal crystals was cast in the language of a
phase transition to a nonmolecular metallic hex-
agonal structure. The order parameter for the

transition was shown to be (R/r —1), where r and
R are the primary and secondary bond lengths re-
spectively, and the restoring for this order param-
eter was shown to be the I'~ mode frequency
squared.

Chemical bonding arguments supported the ex-
istence of driving forces toward the metal-insulator
instability and showed that they should be accom-
panied by noncentral secondary forces. Quantita-
tive calculation of the force constants supported
the general picture: (i) Noncentral secondary forces
were shown to exist and to increase relative to
other forces in going from Se to Te. (ii) Interac-
tion between primary and secondary bonding (K„s)
was shown to be consistent with the major features
of the lattice vibration spectra of the various forms.
(iii) The force constant EC„s which increases rapidly
with increasing secondary interactions was shown
to lead to a natural explanation for the decrease in
the I'y optic frequency of the trigonal crystals under
pressure.

It would be particularly interesting to explore
the pressure dependence of the frequencies for
pressures near the actual phase transitions. '
Modes which have not been studied under pressure,
for example I'~ and the lowest 82 mode, would pro-
vide a better quantitative picture of the change in
chemical bonding in this case of a pressure in-
duced insulator-metal transition.
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