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The relative static stability of square and triangular dectron lattices (two-dimensional %'igner crystals), the

instability against vibrational excitations, and the effect of image-potential-induced screening on the
dispersion of the frequency spectra are studied in the inversion layer of a metal-insulator-semiconductor

structure. In harmonic approximation the two-dimensional Wigner crystal turns out to be stable against

transverse vibrations for a triangular lattice but unstable for a square lattice in the I10] direction in

disagreement with previous calculations. In triangular lattices, the transition of the anomalous dispersion

(coL ~ k '") of the two-dimensional longitudinal mode at intermediate wave vectors (D '
& k & a ') to the

normal dispersion (el ~ k) in the extremely-long-wavelength limit (kD & 1) due to screening effects is studied

as a function of the ratio of insulator thickness D and lattice constant a.

I. INTRODUCTION

Recent measurements of resonance absorption
due to transitions between quantized states have
verified most directly that electrons can form an
essentially two-dimensional systexn immersed in
a uniform background of positive charge either in
the surface space-charge layer of a semiconduc-
tor' or above the surface of liquid helium. These
experiments therefore confirm theoretical predic-
tions that at low temperatures a strong electric
field in the first case and a combination of an ex-
ternal field and image forces in the second one
trap the electrons to their lowest quantum state for
motions perpendicular to the surface. As the elec-
tron motion parallel to the surface is essentially
unrestricted the two-dimensional nature of such
systems has also been revealed by electron cyclo-
tron resonance measurements.

All these experiments together raise the possi-
bility to study a variety of further properties of
two-dimensional electron systems and theoretical
calculations are therefore of great interest. The
ratio of mean-kinetic-to-mean-potential energy
can for instance be varied over a wide range by
experimentally varying the surface concentration of
these electrons. Since the kinetic energy of the
electrons is small in a dilute system, the question
arises whether such systems might exhibit crys-
tallization into a two-dimensional Coulomb solid
in order to minimize their potential energy.
Crandall and Williams first suggested that an
ordered state xnight xninimize the potential energy
of the electrons above the surface of liquid helium
by forming a two-dimensional Wigner crystal. In-
dependently, Chaplik discussed the possibility of
crystallization of charge carriers in low-density
inversion layers and investigated qualitatively the
long-wavelength limit of vibrational excitations.

In particular, the anomalous dispersion, mI, ~ k'

of the longitudinal plasmonlike acoustic branch at
iong wavelength (k«a ), in addition to a. trans-
verse branch, co+ CC k, has first been predicted in

Ref. 7. The experimental possibility of a liquid-
solid transition has been concluded by Platzman
and Fukuyama based on the study of the phase
diagram of such two-dimensional electron systems.
A A.-type transition between a fluid and a poly-
microcrystalline phase has been discovered by
Hockney and Brown in a system of classical point
charges confined to move in a plane using a molecu-
lar-dynamics method. Expe rimental evidence,
however, concerning the existence of crystalliza-
tion of electrons in the lowest quantum state at a
surface is still inconclusive at present.

The dynamical stability of two-dimensional elec-
tron lattice structures and possible effects on the
frequency spectra associated with the experimen-
tally given thxee-layer structure, e. g. , metal-
insulator- semiconductor, are inte resting f rom a
theoretical and experimental point of view. There-
fore, the main object of the present paper is to in-
vestigate quantitatively two-dimensional Wigner
lattices, in particular, with respect to the stability
against vibrational excitations taking into account
image-potential-induced screening effects due to a
three-layer structure for various thicknesses D
of the intermediate insulator.

The underlying model of a three-layer structure
is outlined in Sec. II. The general approach for
investigating vibrational excitations of electron lat-
tices is set up in Sec. III. As an application we
find, for instance, that in the harmonic approxi-
mation the frequencies of transverse vibrations of
a square lattice are imaginary around the [10]
direction, in disagreement with previous calcula-
tions. Whexeas, in a triangular lattice the fre-
quencies of both modes in the plane are real every-
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FIG. l. Interaction of two electrons of distance p»
at the interface z = 0 in a three-layer structure, e. g. ,
semiconductor (Si)—insulator (Sio&)-metal, or equiva-
lently, vapor-helium metal. The induced image charges
are located on planes z = —2D, —4D, .. . .

where in the Brillouin zone. We conclude that a
triangular structure is stable but a square struc-
ture is unstable against external shearing forces
corresponding to wave propagation around the [10]
direction. Based on this fact we restrict our de-
tailed calculations to a triangular structure. In
Sec. IV image-potential-induced screening effects
on the electron vibrational excitations are investi-
gated quantitatively as a function of the insulator
thickness D in a three-layer structure. Implica-
tions of our work on experimentally observing a
two-dimensional Wigner lattice are briefly indi-
cated in the conclusions of Sec. V.

II. MODEL OF THREE-LAYER STRUCTURE

A schematic view of our three-layer system is
given in Fig. 1. The semiconductor (Si with di-
electric constant &, = 11.8) is filling the space z&0,
the insulating layer (Si02 with dielectric constant
ez = 3. 8} the space between z = 0 and z = —D, and the
metal the space z& —D. We assume that at low
temperatures all the electrons in the inversion layer
are in their lowest quantum state with respect to
motion in z direction and, for simplicity, set the
expectation value of z in this state equal to zero,
i. e. , we assume all the electrons to be situated
at the interface between the semiconductor and
the insulator. The electrostatic interaction energy
between two electrons (charge e) of distance p„.
= (x, -x,. ( at the interface z = 0 then reads

(k( 1 ~ zkD (2)

showing explicitly that the electrostatic interaction
energy of Eq. (1) corresponds to the form actually
used by Chaplik. Our numerical investigations
are based on Eq. (1). They reveal, e.g. , a dy-
namical instability of the square lattice. There-
fore, we conclude that the matrix of the elastic
constants for a square lattice calculated by Chap-
lik must contain negative principal minors giving
rise to unphysical imaginary sound velocities for
certain directions and polarizations.

From Eq. (2) we find that W(lkl) remains finite
at k= 0 for noninfinite values of the layer thickness
(D&~)) i.e. , W(k=0)=2we 2D/e2. Only in the
limit D-~ we obtain W(k) =(2ve /~)/Ikl which
corresponds to the Fourier transform of the bare
Coulomb interaction in two dimensions and thus
diverges at k=0 due to the infinite range of the
interaction.

the planes z = —2D, —4D, . . . , —2vD. . . . The rela-
tive strength of the vth image charge is determined
by K" '. Therefore, W( p„.)/e corresponds to the
potential 4 ( p». , z, = z,.- 0}, induced by a charge e
at a distance p». in region z & 0 of the system,
satisfying Poisson's equation with appropriate
boundary conditions at the interfaces.

From Eq. (1) we may readily obtain two limiting
cases. For thick insulating layers, D» p». , the
Coulomb repulsion between renormalized charges
dominates, i. e. , W(p„.) = e /(p». ~). In the op-
posite limit of thin insulating layers, p»»D,
however, the image charges cancel the direct
Coulomb term, since electrons and image charges
are approximately forming dipoles and the effec-
tive interaction becomes

e2i

W(p, ), ) = 2@,~
~2 p»'

The additional attractive field induced by the image
charges of a three-layer structure thus gives rise
to a screening of the bare Coulomb repulsion of the
electrons in the surface layer. The Fourier trans-
form of W( p». ) with respect to the two-dimensional
vector p». can be written

)))I&I)-=f des )))a)f dAe
"'

III. FORMAL DEVELOPMENT

where e—= —,(e, +ez) and K:—(e, —ez)/(6(+ 62). The
first term in (1}denotes the direct Coulomb re-
pulsion between the electrons of "renormalized"
cha, rges e/e' and the following sum denotes the
attractive interaction induced by an infinite series
of positive image charges located in the metal on

In this section we review the formal basis of a
theory" appropriate for a study of vibrational
properties of two-dimensional electron lattices
along with their static stability and possible dy-
namical instabilities. Our model Hamiltonian is
given by

H= T~+ T;+ V,
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Vp-p= ~ W(x, —x,.) (3)

with the kinetic energies of electrons T, and neu-
tralizing "ion" charges T;, respectively. The po-
tential energy

V= Ve-e+ Ve-i+ Vi-i

contains the electron-electron interaction V, „the
interaction of the electrons with the uniform back-
ground of ions V, ;, and the interaction of the back-
ground ions V;;. In order to account for the modi-
fication of the Coulomb interaction by the presence
of the insulator and the metallic gate electrode we
are using the screened potentia. l W(x, —x,.) of (1)
instead of e /Ix, —x, I, i. e. ,

M(12)=p( )) p(«(2)), (6)

where x(1) denotes the Cartesian component n( of
the position operator of the electron l, at time t„
i. e. , 1=—n&l&t&. Since we are interested in prop-
erties of a dilute electron system we may investi-
gate the self-energy of (6) in ha. rmonic approxima-
tion (HA), where

dimensions' —only the electron-electron interac-
tion V, „ i. e. , Eq. (3), of the Hamiltonian H en-
ters into the expressions for the electron vibra-
tional excitations. This can be shown quite general-
ly by employing sum-rule arguments' in evaluating
the rigorous expression of the self-energy of vibra-
tional excitations

and
M(12) = 5(t, —tz)4, (t, lz) . (6a)

v. ..v, = —g —Ip'p k(, —p)

1 N
+ —— dp dp' p —p'. 4

The electron density per unit area, N/F = n= 1/—
(vrzz' az), is measured in terms of the dimension-
less mean interparticle separation r,*, where ao
=5 /me denotes the three-dimensional Bohr
radius.

A certain lattice structure will be defined by
identifying the equilibrium positions (x (l)) of
electrons with the lattice sites of a two-dimen-
sional lattice. For Bravais lattices thus

(x (l)) =R (l) =A .l ~,
where e, n' = 1, 2 and lQ. = 0, + 1, + 2, . . . . Finally,
A Q. denotes the two-by-two matrix of the unit
cell. The area of the unit cell Fo =detA and the
electron density per unit area n = 1/Fz.

Before discussing the dynamical behavior of two-
dimensional electron lattices it is worth investi-
gating some static features. In this context the
mean static energy (V)/N provides a first indica-
tion of the relative stability of a given lattice
structure. In a harmonic treatment of our dilute
electron system, e. g. , we may approximate the
averages of the interaction energies (W) in (3}
and (4) by replacing all instantaneous electron
positions x by their mean values, for instance,
(W(x, —x,.})= W((x(l}) —(x(l'))). Therefore, in

harmonic approximation

—=Q K" '4* (k*; g*)
Q)Q2 & V

v=1

where k*—:(a/2v)k, f„*=2vD/a, and

~$
(k 2P. gg) g [1 ezviz 'R (1)]

Q)Qpz & V
R (1)40

xV* V* 1
a1 mz [R2pz(t) gp)pz]1/2 (g)

The frequency &@2=—(e /(mrna }' ' and the lattice sites
in units of lattice spa, cing a are R~(l):—a R (t).
A quantitative evaluation of the vibrational excita-
tions of a triangular lattice based on Eq. (t) will
be presented in Sec. IV.

Taking into account the oscillations of the elec-
trons about their lattice sites we obtain the inter-
nal energy (H)/N in HA by adding the vibrational
energy

The two eigenvalues of the Fourier transform
4)~, (k) of the force-constant tensor 4)~, 2(l)fz)
give then the squared vibrational frequencies of the
electron lattice in the interface plane in HA:

((),(k) = ~2(4)11(k) + 4)zz(k) s ([4'11(k) —4)22(k)]

+ 44'„(k)j'") . ( t)

With Eq. (1}for W, and appropriately chosen di-
mensionless variables, one finds

k, ,„(k)= (P (k; 0)

=—E lv(R(ill ——,
' 1d p lv(p) .

N 2 1).P

Results of a numerical evaluation of (5) will be
presented in Sec. IV.

For explicitly calculating vibrational frequen-
cies of the Coulomb solid it is important to note
that in two dimensions —differently from three

(5)
E„z=N + R(d, (k)[n(h(d, (k))+ —,]

to the static energy of Eq. (5), where the polariza-
tion index j= + and the Bose distribution function
n(8(d) =(e""t R —1) '. At sufficiently low tempera-
tures T where n(h(d) -0 the internal energy is ob-
tained by adding to the static energy the zero-
point energy
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to be calculated via a summation of the vibrational
frequencies ar&(k) over the two-dimensional Brill-
ouin zone. Therefore, in HA as T-O

= —E +R(l)) ——,
' fd'p W(p)

+ X ' Z -', +(v, (k) .

In using dimensionless variables R~ =—a 'R and
(d&~:—I'do id& ln (10) we readily find that the statlc-
energy term {V)/N~ —1/r,* and that the zero-point
energy term Eo~ 1/r,* ~ T.he results of evaluating
the numerical constant in front of 1/r,*'~ will also
be presented in Sec. IV.

IV. PRESENTATION OF RESULTS FOR SCREENED
TWO-DIMENSIONAL ELECTRON LATTICES

FIG. 2. Dispersion curves for a trianglular electron
lattice in a three-layer system along the A direction and
the & direction and the connecting line on the zone sur-
face at various reduced insulator thicknesses 2D/a.

The numerical evaluation of the mean static en-
ergy {V)/X of Eq. (5), of the two vibrational fre-
quencies u&,(k) of Eq. (7) by means of Eqs. (9) and

(9), and of the zero-point energy term in Eq. (10)
has been carried out by a computer. The lattice
sums required for evaluating Eq. (5) and Eq. (9)
are converging rather slowly. %e, therefore,
have applied the Ewald method' in order to per-
form the lattice summations. The summation of
the frequencies &u,.(k) over the two-dimensional
Brillouin zone in the zero-point energy term of
Eq. (10) has been performed by appropriately aver-
aging over a coarse mesh of 256 different k vectors
distributed uniformly over the first Brillouin zone
of the triangular lattice with an irreducible segment
of,~.

A. Relative static stability

The matrices of the unit cell for the triangular
lattice and the square lattice are

respectively. In calculating the mean static ener-
gies {V)/N of these "ideal" two-dimensional sys-
tems (D-~ and e= 1) from Eq. (5) in units of Ry
= e /2ao we find a value of —2. 21/r~ Ry for the
triangular lattice and a value of —2. 20/H Ry for
the square lattice, i.e. , the triangular lattice is
the configura. tion of lowest potential energy.

8. Dynamical instability and dispersion curves

However, in addition to the relative static stabili-
ty of a triangular lattice as compared with a square
lattice, our numerical calculations reveal an in-
stability of the square lattice against transverse
vibrational excitations in harmonic approximation.
The frequency squares of the transverse branch

of vibrational excitations in the [10]direction of a
square lattice are given by the diagonal component
42&(k) of Eq. (8) with kll [10]. Numerically we ob-
tain C'&&(k) &0 for kit [10]. The transverse branch
tn [10]direction therefore turns out to be imaginary
in contrast to previous calculations. ' This be-
havior holds even more generally for the frequen-
cies ru (k) of wave vectors k around the [10]direc-
tion. It is because of this dynamical instability of
the square lattice against shear forces that we
present dispersion curves of the triangular lattice
conf iguration exclusively.

For a quantitative investigation of the screening
effects on the frequency spectra as a function Uf the
ratio of insulator thickness D and lattice particle
separation a we have computed from Eq. (7) the
dispersion curves in the main symmetry directions
and their connections along the zone boundary of a
triangular lattice. These dispersion curves u&,(k)
are plotted in Fig. 2 in units of vo defined above
where the mass m should denote the effective elec-
tron mass of the planar motion parallel to the inter-
face. The solid lines represent the dispersion
curves for the limiting case (D-~) where two half-
spaces are filled by SiO~ and Si, respectively. In
this limit one obtains the electron vibrational spec-
tra of the "ideal" two-dimensional %igner crystal
for ~ = 3.. '6 The solid lines of the longitudinal modes
clearly show the two-dimensional plasma disper-
sion behavior, ' sr~(k) ~ k'~, at small wave vectors

The four transverse and longitudinal curves ap-
pearing in addition in Fig. 2 correspond to values
of 0. 40, 0. 60, 0. 90, and 3.00 for 2D/a, where
twenty image charges have been included according
to Eq. (8). The curves for the value 3. 00 are al-
ready quite close to the dispersion curves for the
ideal case (D- ~). A transition from the anomalous
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FIG. 3. Dispersion curves of the vibrational excita-
tions of a triangular electron lattice in the vicinity of the
I' point along the g direction. and the A direction.

dispersion (d~ ~k' to a linear dispersion v~- s~k
at sufficiently small k with decreasing 2D/a is
rather clearly seen in Fig. 3 where the dispersion
curves are drawn on an enlarged scale in the vi-

cinity of the I' point along the A line and the 6 line,
respectively. The transverse branches, on the
other hand, are linear in k for 0-0 also in the
"ideal" case and their "sound" velocities s~—to
be obtained from the slope of the dispersion
curves-do not change so much with the thickness
D of the insulating layer. The dependence of u&~~/k~

on the reduced insulator thickness 2D/a is plotted
in Fig. 4 for wave propagation along the L line.
The four points of this plot correspond to the small-
est k-vector points of Fig. 3 where the linear dis-
persion el - s~k should already be valid approxi-
mately. From the slope of a fit of these points by
a straight line (dotted line) we may infer a square-
root dependence s~ ~ (2D/a)"

The transition of the dispersion relation of longi-
tudinal electron vibrations in a three-layer struc-
ture from a two-dimensional plasmon dispersion
to a linear one in the extreme long-wavelength
limit, the square-root dependence of the longitudi-
nal sound velocity on the reduced insulator thick-
ness, and the linear wave-vector dependence of the
transverse excitation frequencies are rather gen-
eral phenomena which hold independently from the
details of the structure. Qualitatively these re-
sults may readily be obtained by rewriting Eq. (8)
in a series in reciprocal-lattice space~'":

(k} (2~~ )ana2 e1 n2 1 + I &2 1
k~ k* 1-exp(- 2ak*(*} g (G~+ k*)u (6*+k~)~ 1 —exp(- 2v I 6*+k~ [g~)

I
k"

I 1 -Eexp(- 2vk*g,*) I
5"+ k"

1
1-Xexp(- 2v I

0*+k*
I f~)

Gnq4a2 1 —exp(- 2v I 6* I fg }
(
5* [ 1 —K exp(- 2x [6*I f,*)

~, (k}—2w~, (na')" 'u*" ' (12a)

then corresponds to the dispersion relation of two-
dimensional plasmons. For D- ~ the dispersion
relation (12a) holds down to 0= 0 owing to the long-
range Coulomb interaction. For D& ~, however,

with the reduced reciprocal lattice vectors 6*
=- (a/2a')6 given, e. g. , through the Cartesian com-
ponents G, =27th J3 ., where h =0, +1,+2. . . .
In a triangular lattice

, 1 —1/Ws
0 2/v3

Neglecting for k «a ' the sum over all terms G*
e0 in (11) one obtains for the longitudinal vibra-
tional frequency

1 —exp(- 2vk*1,*)~,(k) = 2vsro na'&+

(»)
The anomalous dispersion following from (12) in the
region D «k «a

I

the screening induced by the image charges reduces
this anomalous dispersion to a normal, i.e., a linear
dispersion at still smaller wave vectors kD «1:

(u~ (k) —2 v(o,[na'(e/e, )2vg*, ]"'0*. (12b)

Since the contribution from the reciprocal-lattice
vectors G~ 40 is irrevelant for this transition it is
clear that this behavior remains essentially valid
for the plasma modes of a two-dimensional eleef, oui

gas in the inversion layer of a metal-insulator-
semiconductor structure. ' The square-root de-
pendence of &of/k* on f,*—:2D/a following from
(12b) has been drawn in Fig. 4 (solid line).

Disregarding umklapp processes, i. e. , terms
6*0 0 in (11), one obtains ar(k) = 0 due to the re-
sulting vanishing transverse sound velocities and
the vanishing shear moduli. This result, of
course, is associated with the fact that umklapp
vibrational excitations are related to Goldstone
excitations of broken translational invariance' and
thus responsible for nonvanishing shear moduli
and nonvanishing transverse sound velocities in
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FIG. 4. Logarithmic plot of the ratio ~z/0 vs the re-
duced insulator thickness 2D/a for wave propagat'*on
along the ~ line. The solid line follows from Eq. (12b),"

the dotted line represents the fit of ('g/k* for four values
2Dja at ~ of the maximum wave vector of the first

100
8rillouin zone,

the solid phase. The large wave vectors, 5*00,
on the other hand, are not essentially affected by
screening effects as caused by small values 2B//a.
This observation is in accord with our numerical
results that the linear dispersion of transverse vi-
brations in the long-wavelength limit holds irre-
spectively of the insulator thickness and that the
transverse sound velocities do not change drastical-
ly with the thickness of the insulating layer.

Finally, it should be noted that the transverse
dispersion curves in Fig. 2 exhibit a small upward
curvature in the middle of the fir st Brillouin zone
along the A line. The anomalous positive disper-
sion is most clearly seen in the limit of the ideal
two-dimensional Wigner crystal and becomes less
evident for decreasing values of the insulator thick-
ness D. From the graphical Iepresentation we may
conjecture that this anomalous curvature of the
dispersion is a result of long-range interaction
since in the ideal case the transverse dispersion in
the long-wavelength limit in the A direction has to
remain linear; yet it still must match the continua-
tion of the longitudinal dispersion along the 6 line
with the anomalous square-root behavior at the 1"

point due to the long-range Coulomb forces.
C. Zero-poin t energy

Having calculated the normal-mode frequencies
of the electron vibrational excitations at sufficient
k vectors in the first Brillouin zone one obtains the
zero-point energy Eo by numerical integration. We
find a value of l. 63/r,* ~ Ry for the ideal triangular
lattice. The prefactor in front of l/r,"'(' decreases
with decreasing insulator thickness D.

Y. CONCLUSIONS

The present investigations have explicitly been
concerned with the study of the influence of a three-
layer structure on the vibrational excitations of

charge-compensated electrons in a planar geometry
with their Coulomb interaction predominating.
From our numerical calculations as well as the
general arguments it is clear that the longitudinal
vibrations of such a two-dimensional Wigner crys-
tal in the long-wavelength limit qualitatively exhibit
the same form as an electron gas. Though the
present calculations in harmonic approximation
could be used generally for analyzing measurements
of two-dimensional vibrational excitations in this
regime, which are still lacking yet, only trans-
verse vibrations would, of course, give experi-
mental evidence of crystallization of electrons.

The present approach" outlined in Sec. III,
however, by no means is limited to the harmonic
approximation (HA) which should rather be consid-
ered as a first application. A str aightforward ex-
tension of the HA to the renormalized harmonic
approximation (RHA), consists in calculating mean
values of interaction energies of the form (W(x,
—x, )) by weighting deviations from equilibrium
distances between two electrons at l and l' with a
Gaussian having a, width which is determined by the
equal-time relative displacement correlation func-
tion (RDCF). Owing to the resulting functional de-
pendence of the effective force-constant tensor on
the RDCF in the RHA a sum rule for the kinetic en-
ergy imposes a self-consistency condition on the
RDCF giving rise to the possibility of describing a
first-order phase transition. Kugler" has actually
suggested to apply the RHA in order to study the
stability of a three-dimensional Wigner crystal,
and Fukuyama and Platzmans have elaborated the
theory further with respect to the possible crys-
tallization into a two-dimensional Coulomb solid.
In that connection it is important to note that the
RDCF, entering into the effective fox ce constants
in RHA does not diverge in two dimensions in con-
trast to the autocorrelation function of displace-
ments. ' For these reasons the RHA can even
be applied to the problem of an "isolated" two-di-
mensional Wigner crystal.

However, in the planar geometry of a charge-
compensated electron system considered in this
paper the degree of freedom of the total momentum
corresponding to t.ranslations perpendicular to the
interface should not be neglected from the begin-
ning. In the language of broken translational in-
variance a second transverse vibrational mode
follows from that degree of freedom describing a
drumltke vibration (polarization perpendicular to
the interface) in addition to the transverse vibra-
tional mode of polarization parallel to the interface
investigated above. Associated with the drumlike
transverse mode, finally, is another instability
whl. ch should Set, 1n with incr easing surface con-
centration of electrons deserving, however, a
separate detailed ana, lysis.
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