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We have utilized a result of Clauser to evaluate the line shape of Mossbauer resonance spectra involving spin

relaxation effects even in cases with nondiagonal hyperfine interactions. Compared to traditional methods for
calculating the line shapes, this formulation saves computational time by approximately two orders of
magnitude and thus makes possible consideration of many problems which were previously intractable.
Examples are given for cases involving complicated hyperfine Hamiltonians, viz. , hemoglobin cyanide, acid
met myoglobin, and NpF6.

The theory of resonance line shapes in Moss-
bauer experiments' involving spin relaxation ef-
fects is well known. In a few cases, closed-form
expressions for the line shapes have been devel-
oped, for example, in problems involving adiabat-
ic relaxation (diagonal hyperfine interaction) of an
electronic Kramer's doublet, or in some special
cases of nonadiabatic relaxation. ' When closed
forms are unavailable for describing the experi-
mental data, as is frequently the case, the task
of line shape calculation demands an inversion of
a large super matrix (consisting of the matrix
elements of a Liouville operator describing the
static hyperfine interactions and a matrix de-
scribing the relaxation processes ' ) at every en-
ergy point over the resonant part of the spectrum.
Depending on the complexity of the problem at
hand, a simple simulation of a spectrum by such a
procedure required computational times on the or-
der of tens to hundreds of minutes on the fastest
machines available. Therefore, mere calculation
of a spectrum was difficult, and least-squares fit-
ting of the experimental data was impossible. A
practical result of this situation has been that
many problems of potential interest were never
treated properly. Several years ago, Clauser
presented a reformulation of the traditional ex-
pression for relaxation line shapes which requires
in effect only one inversion of the super matrix. '

Although the advantages are enormous, this pro-

cedure seems to have been largely overlooked.
The purpose of the present article is to demon-
strate the usefulness of this approach and to con-
sider a number of problems which had previously
been thought intractable.

The expression for Mossbauer line shapes in
the presence of relaxation effects can in general
be written as

I(~) = Re g Mz, ~ A ' ~ Mz,

A = (I' —f(u) 1 —(i/h)K* —R . (2)

Here, 1 is the natural width of the resonance, co

is the energy of the resonant y ray, X* is a Liou-
ville operator describing the excited and ground-
state hyperfine interactions, and R delineates the
relaxation processes involved in the problem. '
If I, and I~ are the excited and the ground-state
nuclear spins, and S is the electron spin, the di-
mensionality of A is

n =(2I,+ 1) (2I~+ 1) (2$+ 1)~ .
Thus for the 14.4-keV resonance in Fe, with
S = &, we have n = 32. Computational complexities
stated above arise in such cases since no closed-
form inversions can be done for an n = 32 matrix.

where MI. is an electromagnetic multipole oper-
ator of the order L, involving transitions of po-
larization m between various hyperfine levels, and
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In Cla,user's formulation of the relaxation line-
shape expression, e one recognizes the fact that the
lndependeIlt VRrlable occupies R speclRl posltlon
in the matrix A: it enters only as a constant on
the diagonal. Therefore, the eigenvectors of A
will be the same whether ~ is present or not, and
the eigenvalues of A with ~ removed will differ
from those of A containing ~ by only a consta, nt.
Thus, if V and A. represent the eigenvectors and
eigenvalues of A with m removed, then the line-
shape expression reduces to

The expression for the line shape given by Eq.
(3) can be easily evaluated numerically by first
obtaining the eigenvalues and eigenvectors of A
without (d along its diagonal, then reintroducing (d

in the simple algebxaic way indicated. Thus the
need to invert A at every value of (d is eliminated.
In fact, when using EII. (3), the computationa, l
time is largely dominated by the one eigenvalue
problem and is fairly independent of the number of
energy points in the spectrum. We shall now uti-
lize EII. (3) in discussing some actual data.
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FIG. 1. Mossbauer resonance absorption of 57Pe in
hemoglobin cyanide. The experimental data (c) are
from Ref. 6. The static pattern shown in (a) is calcu-
lated from hyperfine parameters given in Ref. 6 and a
linewidth of 0. 2 mm/sec. The simulation in (b) is ob-
tained by assuming a spheric, ".l relaxation rate of 4. 6
MHz, using the method given in the text.

Biological systems containing iron involve some
of the most complex hyperfine intexactions, and at
the same time their elucidation using the Moss-
bauer effect in Fe is of great interest. Lang Rnd

Marshall have investigated hemoglobin cyanide in
which iron has a low-spin ferric state with 8= —,.
The hyperfine interaction for the excited state of

Fe in this low symmetry system is given by

X=S*Ag I+-,' e'qq[I'. --', +-'.q(1'„-I',)]. (4)

A similar expression is used for the ground state
of Fe by replacing Ag by Ao Rnd Q by 0, In Flg,
l(c) we have shown the experimental data of Lang
and Marshall measured at l. 2 K, R.nd in Fig. 1(a)
the static hyperfine pattern devised by them using
Griffith's model' is given. The observed spec-
tl'lllll CRIl liow tie 81111111Rted llslllg EII. (3) by 111-

eluding spherical relaxation ' in the problem, and
the result is shown in Fig. 1(b). On an IBM 370/
195 machine this spectrum was simulated in less
than 1 sec. The curve reproduces the general
trends ill tile dRtR of Flg. 1(c) I'Rtllel' well Rl-
though there are some minor discrepancies in the
line positions owing to uncertainty in the hypeI'fine
parameters. It is sufficient to point out here that
a least-squares fitting of such data now becomes
very simple Rnd could leRd to R refinement of
Griffith's model as applied to hemoglobin cyanide.

As another example, we consider acid met myo-
globin. Although the Hamiltonian of EII. (4) is
axial, "and 8,=+ &- state alone is occupied at low
temperatures, there are additional complications
arising from the coupling of the iron spin with the
ligand nuclear moments. In Fig. 2(d) we give the
exper1mental spectrum measured by LRng et QE.

The Fe single-ion hyperfine parameters have been
obtained by Lang et al. , by applying an external
field sufficiently large that the Zeeman interaction
predominated over hyperf ine effects. The static
(slow I'elRxRtloll) spec'trlllll obtained 111 zero field
from those derived pa ram ete rs is shown ln Fig.
2(a). Our attempts to reproduce Fig. 2(d) merely
by introducing relaxation into the pxoblem, as in
the previous example, was not fruitful, showing
the necessity of including the ligand coupling with
the iron spin. Following Viccaro et a/. , we have
approximated the influence of the ligands by an in-
teraction H ~ g ~ 8 where H represents the average
magnetic field set up by the ligand nuclea, r mo-
ments. As has been shown, ' such a "random-
field" model improves the fit to the experimental
data [see Fig. 2(b)] even without the inclusion of
relaxation. The introduction of spherical relaxa-
tion in addition to this then reproduces the data, al-
most exactly [Fig. 2(c)]. Because one has to per-
form numerous integrations over angles in the
"random-field" model, the computational time was
on the order of tens of seconds.
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0.
relaxation spectrum can be simulated in about 12
sec on our computer. Some of the simulated
curves are shown in Fig. 3(a) along with the one
that fits the experimental data in Fig. 3(b).

We would like to point out that symmetries in
the problem can often factorize the super matrix,
as mentioned above for the 0-2 case. For exam-
ple, in the present ~Np problem, the n = 144 ma-
trix can be subdivided into 13 matrices of dimen-
sions 1, 1, 4, 4, 8, 8, 12, 12, 16, 16, 20, 20, 22.
Calculation of the spectrum with repeated use of
Eq. (3}on these submatrices further reduces the
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FIG. 2. Mossbauer resonance absorption. of ~7Fe in.

acid met myoglobin. The experimental data (d) are
from Ref. 8. The static pattern shown in (a) is calcu-
lated using the hyperfine parameters given in Ref. 8.
The spectrum in (b) is obtained using the "random-field"
model described in, Ref. 9 with an average field of 10 G

to describe the ligand nuclear coupling with the electron
spin on iron. The relaxation superposed on this (relaxa-
tion rate of 5. 8 NHz) produces the curve in {c), which
exactly reprodoces the experiment.

In the work of Gonzalez-Jimenez et aE. ,
' a

closed form-expression for the line shape of a re-
laxation spectrum for the 0-2 transition with
8= & has been given. In that case, the hyperfine
interaction was assumed to be axially symmetric.
A closed-form expression for the line shape was
achieved since the matrix A could then be conve-
niently factored into submatrices, the largest hav-
ing a dimensionality of 4. If we consider a Ham-
iltonian of a more general nature describing lower
symmetry hyperfine interactions, namely

K=S ~ Ap' I+I' P ~ I
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(where P is the quadrupole tensor), the factoriza-
tjon is not possible. However, using Eq. (3}we
can readily calculate relaxation line shapes even
in such cases.

Finally in Fig. 3(b) we show our own experi-
mental data for Nprs, measured with the 59.6-
keV —,

'
—, transition in Np. The spectrum is a

broad asymmetric line which arises from the spin
relaxation effects. The ground state of Np

' in
cubic NpFS is a doublet' and hence hyperfine in-
teractions can be accounted for by a Hamiltonian
of the type Ao I ~ S with 9 = &. The super matrix
has the dimensionality n= 144, but using Eq. (3) a

I
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FIG. 3. Mossbauer resonance absorption of 59.6 keV
2 transition in 237Np experiencing cubic hyperfine

coupling in NpF6. In the simulations and the analysis of
the data we have used Ao =-43 mm/sec and resonance
width of 3.0 mm/sec. The experimental data (b) show
an isomer shift of —51 mm/sec with respect to the Am
source, while the isomer shift is presumed zero for
sake of calculation in (a). Values for the spherical re-
laxation rates are shown.
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computing time by about one order of magnitude.
A similar HamOtonian would also break up the su-
per matrix in the &

- & transition to eight subma-
trices. ' The super matrix A for 8= ~ and for
'~Fe resonance has n= 128. In some cases this
may also be subdivided. However, even for the
colllplicated HRInlltonian of Eg. (5}, a spectral
simulation can be performed in about 9 sec. Such
a Hamiltonian describes the spectra measured
with some of the Fe ' dithiocarbamates investi-
gated by %ickman and %'agner. ' In discussing
their data, they have utilized the theory of Blume
and Tjon which is only an approximation for this
problem. The time needed to simulate a spectrum
in their case was larger by a factor of 20.

The usefulness of this formulation of the expres-
sion for the relaxation line shape is plain, and in

fact, Eq. (3) is applicable to almost any spin re-
laxation problem or to problems involving quad-
rupolar relaxation. The perturbation model as-
sumed in the examples to describe the relaxation
processes, ' and in particular the assumption of
the spherical relaxation, may be a simplification',
improvements over this can be done by least-
squares fitting of the actual data, which now be-
comes possible in cases of interest. Finally we
emphasize that the implications of this approach
are not confined to Mossbauer spectroscopy, but
in fact apply to EPR and NMR problems where one
may be interested in determining line shapes. 6
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