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Phenomenological models with "planar-spin" and "antiferromagnetic" dynamics are introduced, and their
critical behavior is analyzed using renomalization-group methods. Dynamic scahng is shown to hold for these
models to all orders in a = 4 —d, and the dynamic exponents are expressed entirely in terms of static
exponents, in agreement with earlier phenomenological and mode-coupling theories. The magnitudes of the
diverging transport and kinetic coefficients are expressed purely in terms of static properties and of universal

constants which are calculated to second order in e. Matching conditions are proved between the
characteristic frequencies above and below T„and the corresponding universal amphtude ratios are calculated
to second order in w. The principal applications are to liquid helium and the Heisenberg antifcrromagnet

RbMnF3, where the experimental exponents and amplitudes both agree reasonably well with theory. In the
case of liquid helium ("asymmetric" case with a g 0) the asymptotic critical behavior is somewhat masked by
correction terms, due to the slow approach of the spectific heat to its finite value at T&. These correction terms
are analyzed in detail, and a proposal is made for extracting the true asymptotic behavior from the data. The
effects of other conserved fields such as the mass density and momentum in helium, and the energy density in
the magnet, are considered, and shown to be irrelevant for the critical behavior of the order parameter.

I. INTRODUCTION

One of the principal achievements of the phe-
nomenologieal scaling approach to critical phe-
nomena' ' mas the prediction, ~ and subsequent
experimental ver ification, e of a. divergent thermal
conductivity in liquid helium upon approaching
the A, point. The critical exponent for this diver-
gence mRs determined in terms of the exponents
for the superfluid density p, and the specific heat
C~. Moreover, the amplitude of the divergence
and the detailed temperature dependence mere
found to be consistent with a, "matching condi-
tion" between thermal diffusion and second
sound. Subsequently, more accurate measure-
ments' at different pressures along the A, line
have east some doubt on the precise validity of
the matching condition, and of the sealing theory
which lies at the basis of this condition, but these
are at the very least excellent approximations to
the true eritieal behavior. In addition, calcula-
tions based on "mode-mode coupling" theoriess 9

have also yielded results consistent with dynamic
scaling in liquid helium.

In the present paper the renormalization-group
method'0 "is applied to a. classical tmo-field
planar-spin modeV' whose dynamic critical be-
havior is expected to be identical to that of super-

fluid helium. The sealing picture, and the match-
ing condition which follows from it, are found to
hold exactly for the model in the limit as the
temperature tends to T,. The rate of approach to
this asymptotic limit, however, is found to be
anomalously slow in liquid helium, oming to the
near-logarithmic singularity'3 in the speeifie heat.
Thus, as explained in detail belted', there are
perceptible corrections to the ideal critical be-
hRvlor in the experimental rRnge of measurement,
as mas in fact observed. ' The planar-spin model
for liquid helium ean also be applied to the critical
dynamics of an anisotropic (easy-piane) ferro-
magnet. "' '~ A related model, which represents
the critical dynamics of the isotropic Heisenberg
antiferromagnet'' ' " is also discussed in this
PRPel ~

All the above models mere introduced in an
earlier Letter, "where some features of the crit-
ical behavior were obtained. The models involve
tmo coupled fields —a vector order parameter 4
which is not conserved, and a conserved density
m. There is, however, a difference mith case C
of the time-dependent Ginzburg-I andau model

iscussed by HRlperin Hohenberg Rnd Max'

(HHM), in that the conserved quantity M
= f d sm(x) is now an infinitesimal generator for
rotations of the order parameter 4, in a sense
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which will be made more precise below. This
property leads to the existence of propagating
hydrodynamic modes in the ordered phase, "
whereas model C contains purely relaxational
modes, both above and below T, ."

In the easy-plane ferromagnet the field 4 is a
two-component vector (or complex scalar) cor-
responding to the magnetization in the plane,
while M is a real scalar corresponding to the
magnetization in a direction perpendicular to the
plane. In the case where the field &, conjugate
to M is zero, we have (M) =0, which we shall
refer to as the "symmetric planar-spin model, "
denoted model E. For finite field H„ the symme-
try between M and -M is lost, and the system
will be referred to as model I, or the "asym-
metric planar-spin model. " Liquid helium be-
longs to this latter class, the order parameter
4 being the expectation value of the complex Bose
field, and the conserved field M a linear combina-
tion of the energy and particle number.

In the isotropic antiferromagnet, "'"or model
G, 4 is a three-component vector representing
the staggered magnetization, while M is also a

three-component vector, representing the total
magnetization. Besides the planar-spin and anti-
ferromagnetic models of the present paper, and
the time-dependent Ginzburg-Landau models, "a
number of other dynamical models have been
treated by renormalization-group methods. "'" "
These are summarized in Table I.

For all the two-field models we consider here
(models E G},-the property of dynamic scaling4' '
may be proved to all orders in the parameter
c =4-d, where d is the dimensionality. Moreover,
the dynamic exponents are expressible purely in
terms of static exponents, in complete accord
with earlier phenomenological and mode- mode
coupling theories. '"' " For the asymmetric
planar-spin model, and in particular for liquid
helium, we find different results for the asymptot-
ic critical behavior, in the case where the specific
heat is divergent (o. &0}, and in the case where it
is finite (n &0), as was indeed predicted by the
earlier theories. ''' In the present work we
consider in addition corrections to the leading
singularities, which reflect the slow approach of
the specific heat to its asymptotic limit, and are

TABLE I. Summary of dynamical models.

System Designation n
Nonconserved

fields
Cons er ved

fields

Nonvanishing
Poisson
brackets Reference

Time-dependent
Ginz burg- Landau
models

Two-f ield
planar-spin
models

none

lP, 6

none
none
none
none

11, 18

12
This work

Three-field
planar-spin
models

Two-field
isotropic
antifer ro magnet

(g, m} This work
(it, m}

(f, m} 12, 15
(m, m} This work

Three-field
isotropic
antiferro magnet

Fluid

One-field
lsotroplc
ferromagnet

Two-field
isotropic
ferromagnet

none

none

none

m, j {q,rn}
(m, m}

This work

12, 19

Multicomponent
Bose system

+ =2m ij)~ G =1s. . . s Pl p~s P08~ @os See Hef. 17
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important in the experimental range of tempera-
tures whenever

1 n1 is small (e.g. , &0.1}. In all
cases we predict divergent transport coefficients
and a universal matching condition" between the
characteristic frequencies above and below T„
analogous to the one first proposed by Ferrel
et al.'

Associated with the universal matching condi-
tion there is a universal amplitude ratio, which
is analogous to a critical exponent in that it is
only a property of the specific fixed point reached,
and not dependent on the details of the starting
Hamiltonian. Unlike the dynamic exponents,
however, the amplitude ratios are not expressible
purely in terms of static properties; rather,
they may be calculated in an e expansion" for the
different fixed points. Such a calculation of ampli-
tude ratios has also recently been carried out by
Gunton and Kawasaki' from a mode-mode theory.
Their results agree with ours in lowest order
for model E, but disagree for model F.

Comparison of the calculated ratios with mea-
sured values' in liquid helium is complicated by
the presence of the aforementioned correction
terms, which are estimated to lead to an effect
of the order of (20-30)%. We have nevertheless
carried out such a comparison in liquid helium
(model F) and RbMnF, (model G), for which ex-
perimental data are available, '""and find
rather good agreement with the second-order e

expansion. The e expansion appears to converge
rather poorly, however, and the agreement may
be fortuitous. A more important test of our pre-
dictions would result from a careful analysis of
the experiments themselves, to see if they are
consistent with universality.

A. Outline

In Sec. II the planar-spin models are introduced,
and their hydrodynamic properties briefly dis-
cussed. Section III is devoted to an analysis of
the dynamic renormalization group for both the
symmetric and asymmetric cases. In the sym-
metric case (model F) the dynamic exponent is
found to be z = 2- oe = od/2, while in the asym-
metric case (model F), the dynamic exponent
has the value z = od+n/2v, where n—= max(a, 0).
These exponent relations are then shown to be
correct to all orders in e, by analyzing the
higher-order corrections to the recursion rela-
tions. Moreover, the dynamic scaling property
and the frequency matching condition are also
proved to all orders in e, with the corresponding
amplitude ratio expressed in terms of (universal)
fixed-point parameters. In Sec. IV we discuss the
relation of our two-field models to various mag-
netic Hamiltonians and to liquid helium, where

additional quantities are conserved, such as
energy and momentum. As mentioned above,
liquid helium corresponds to model F, and has a
specific heat exponent which is nearly zero, but
almost certainly negative, ~ so that singular cor-
rections to the leading singularities are never
negligible in the experimental range. An analysis
of the important correction terms arising from
the recursion relations leads to a rather compli-
cated temperature dependence for the diverging
thermal conductivity above T ~, and accounts
semiquantitatively for the observed lack of uni-
versality. ' Model G, for the antiferromagnet,
is discussed in Sec. V. The results are compared
with neutron scattering experiments" ' on
RbMnF„where the characteristic frequencies
for both the staggered magnetization (4I) and the
total magnetization (M) can be measured above
and below T, . Section VI concludes with a de-
tailed summary of the results of the present pa-
per. Finally, a number of calculations are pre-
sented in the Appendixes: Appendix A discusses
details fo the hydrodynamics of models E and F,
while Appendix B describes the diagrammatic
perturbation theory used to calculate the dynamic
response functions for the planar-spin models.
In Appendix C the recursions are solved in the
asymmetric model for +&0, and the principal
corrections to scaling are found for this case.
Appendix D contains the second-order calculation
of the various experimentally observable ampli-
tude ratios, for model E, while Appendix E
discusses the effects of energy conservation on
the various models. Appendix F describes the
modifications in the diagrammatic expansion for
the case of the isotropic antiferromagnet (model
a).

r, eF,0 0
q

0 e
Bt cQ 5g* 6ma~, OF, 5FQ= A.QV' + 2gQ Im

(2.1a)

(2.1b)

FQ d /( g gQrQ q + 2 gQ

+ co&ol 01 + oXo m + coyom141 &o~),

(2.1c)

( e(x, t) e*(x', t')) =4c, 'Rel",6(x- x')6(t —t'), (2.1d)

(g(x, t)g(x', t')) = -2aoV'6(x- x')6(t —t'), (2.1e}

( ee) = ( e* e ) = ( eg) = ( e*g) = 0 . (2.1f)

II. PLANAR-SPIN MODELS

Let us consider the following phenomenological
model":
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Here g(x, f) and rn(x, I) are space- and time-de-
pendent scalar fields with Fourier components
k ~ A, g being complex and m real, while 8 and g

are Gaussian noise sources. The parameters
&p, up, gp, yp, hp, cp, gp, and Xp are real con-
stants, while I'p may be complex. The real part
of I p as well as Xp X.p &p and up

—= up —2 y pyp

are assumed to be greater than zero. The con-
stant cp determines the overall scale of g and is
often chosen to be unity. In Eq. (2.1) and through-
out this paper, a derivative with respect to g or
g* is to be interpreted as

5E, 1 5E, , 5E,
5g* 2 5 Re/ 5 lmg

(2.2)

Eo= — d x(h (x, t)m(x, t)+Re[h&(x, t)g*(x, t)]].

We may define the wave vector and frequency-
dependent linear response functions y&(k, ~) and

(}t,u) in the usual way, assuming that the sys-
tem starts out at t=-~ in a thermal equilibrium
state (defined below). These response functions

In the general case where all constants are non-

zero, we shall refer to the system described by

(2.1) as model E or the asymmetric planar-spin
model. In the special case where Ip is real, and

hp = y, = 0, the syst em will be denoted as model E,
or the symmetric planar-spin model. The equa-
tions of motion are then invariant under the trans-
formation m- -m and g —g*. For an anisotropic
Heisenberg ferromagnet with an easy plane of
magnetization (the x-y plane} this transformation
corresponds to a rotation of all spins by 180'about
the x axis, which will leave the equations of mo-
tion invariant if there is no external field H,
(see Sec. IVA).

Another special case of (2.1) occurs if we set
gp=0, and take I'p real; we then obtain case C of
HHM, " for n= 2 [in Ref. 11 the field m was de-
noted e, Xo was Co, and Ao was 5PO. ] In principle,
one may add various higher-order terms to Ep,
such as terms proportional to

~ g~
'm',

[ Vm ~',
m', m, ~ g~ ', etc. Such terms turn out to be
"irrelevant" in the renormalization-group sense'
for both statics and dynamics at long wavelengths,
at least near d=4. It is also possible to consider
more complicated equations of motion (which need
not be Markoffian) as discussed in Sec. IV and

Appendix E.
We shall be interested in the response of our

system to time-dependent applied fields coupling
to g and m. These fields are included in the
equations of motion by adding to Ep a perturba-
tion Ep given by

are x elated by the fluctuation-dissipation theorem
to time-dependent correlation functions for the
system in the absence of applied fields.

Two properties of the equations of motion (2.1)
deserve special emphasis. First, let us remark
that m is a conserved quantity in the absence of
a field A&. When h&=0, we have

Im g*& ~ =V Im(/*VS). (2 4)

Furthermore, the noise source g vanishes in the
limit k-0, according to (2.1e), so that & may be

written as the divergence of a current. Thus Eq.
(2.1b) may be written

and therefore I, the space-integral of m, is
independent of time. Secondly, we note that the
equations of motion are unchanged if g(x, I} is
multiplied by any constant phase factor, e'~.

As discussed in Appendix A, in the absence of
time-dependent applied fields there exists a time
independent (equilibrium) state in which the prob-
ability density P[g, m] is the thermal equilibrium
distribution

[q m]=z 'e ""' (2.6)

Z=- e p~ ' dgdm (2.7)

Since the field m enters E, only quadratically,
the Gaussian integral in (2.7) can be performed
to eliminate m from the equilibrium distribution
(2.6). The remaining equilibrium probability dis-
tribution for g is then precisely the same as in
the usual Ginzburg-Landau-Wilson'0 model (for
n =2) with shifted coefficients

&p=&p- ypXp&p

1
Np=Qp —py pg .

(2.6)

(See Ref. 11 for a more complete discussion of
this point. ) It follows that for appropriate choices
of the parameters rp and u„ the system will be
at a critical point, characterized by the usual ex-
ponents and instantaneous correlations for a sys-
tem with n =2. For rp greater than its critical
value the system will be in a "normal" or "para-
magnetic" state (T & T,), while for r, less that the
critical value (T &T,} the system will be in a
"superfluid" phase characterized by long-range
order for g.

In the ordered phase, when the system has a
continuous broken symmetry, it is convenient to
choose a thermal equilibrium state in which the
order parameter has a definite phase y. If be-
ginning at time tp we subject the system to a uni-
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form time-dependent field k„(t) coupled to m,
then the sole eQ'ect mill be to rotate the phage q
by the amount

t

5i!!(I)=g, I! (I')dt'. (2.10)

where go is a real nonzero constant.
Equation (2.11) has several important conse-

quences~ which Rre discussed ln Appendix A.
First, me ean derive an equation of motion for the
phase cp(t} which is exact for the model, and is
just the "Josephgon equation"" or "Landau ac-
celeration equation"" familiar in superfluid hy-
drodynamics. Secondly, an exact Vizard identity
ca!1be obtained [Eq. (A9) ), lll!kitlg cel'ta!Il lllleaI'
and nonlinear response functions. Finally, the
coupling between y(t) and m leads to the existence
of spin waves in the ordered phase, with a linear
dispersion relation

(o (k) = c,k+0(}t2),

cs =8'op3/X i

(2.12)

where y is the susceptibility for the field m, and

p, ig a stiffness constant, analogous to the guper-
fluid density in helium. These quantities are
defined more precisely in Appendix A, mhere the
derivation of Eq. (2.12) is outlined.

The spin waves dominate the spectrum of the
correlations of both p Rnd m in the long-wave-
length limit, below T, . In the disordered phase
(T &Tq)~ 'tile OIlly hydrody!lan!le mode ls a (spill}
diffugion mode

(u (I!)= (X/X)k', (2.14)

which dominates the correlation function X (k, &o)

for the field m. The correlation function X& (k, &u),

on the other hand, has no hydrodynamic mode
for T &T„since P is not consex ved. %'e may
nonetheless define a charaetex'istic frequency for
g and mrite it as

!d~(&)= I'(&)/X~(&),

where

I,-!(}t) sxa (&r &)
& (-i(u)

(2.15)

(2.16)

Equation (2.10) expresses the fact, already men-
tioned in the Introduction, that M = f d "xm(x} is
an infinitesimal generator for rotations of the
order parameter +. Alternatively, me may say
that there exists a eanonieal, ox "Poisson bracket"
relation between M and 4', since the equivalent
equation in classical Hamiltonian mechanics,
mould be expressed by the Poisson bracket

The derivation of the above results, which is
discussed in Appendix A, proceeds as for the
easy-plane ferromagnet considered in Ref. 14.
We remark that for the asymmetric model, I'(k}
ig in general complex, although ReF ig always
positive. It is convenient to use the symbol I'(T)
for the value of I' at }t =0. We shall see that I'(T)
diver'geg Rg T T~ but not Rg fRgt R8 g((, ~ Con-
sequently &u&(k =0) tends to zero at T, which is
known as critiea. l sloming down. ' "

The thermodynamic derivatives X, p„and X&,
and the kinetic coefficients A. and F depend on the
detailed form of the function I"0. [Eq. (2.1c)). In

Appendix 8 me shorn hom these may be expressed
formally as power series in the coupling constants
uo, go, and yo. Fox' uo=yo=go=0 me have, of
course, X&(}t)=co!(r,+}t'} ', X=X„X=X„and

lF= Foco .

III. RENORMAI. IZATION GROUP

A. Lowest-order recursion relations

As mentioned in See. II the equilibrium propex-
ties of our model are the same as those of the
Ginzburg-Landau-Wilson model, ' [with parame-
ters ro and uo given by Eqs. (2.8) and (2.9)J and

also of model C of HHM. Vfe may thug discuss the
static critical behavior by the usual renorrnaliza-
tion-group transformation, involving integration
over momentum shells, and a scale transforma-
tion

x- x'= b 'x,

m- m'=5'm

(S.lb)

(3.1c}

(the constant c was denoted az in Ref. 11). In
order to discuss the dynamic critical behavior,
me also perform a scale transformation on the
frequencies"

(S.Id)

but me integrate intermediate frequencieg from
-~ to ~ (i.e., we do not integrate over "frequency
shells" ). The frequency-dependent susceptibilities
can be expressed via a diagrammatic expansion
of the type introduced by Martin, Siggia, and
Rose" for txeating classical dynamical systems.
This formalism is slightly more complicated than
the usual formalism of quantum-mechanical
many-body theory, in that it introduces fictitious
fields g and n&, mhieh must also be rescaled by
appropriate powers of b (see Append!x 8).

In general. , as soon as the renormaliza. tion group
is applied, the equations of motion become ex-
tremely eomplieated —the nem equations must be
represented by interaction vertices of all orders
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vr —= K~yr yrA
2 fr 4

f, -=K,g', A'-'/X, Rei', ,

(3.2)

(3.3)

in the fields i' and m, each one being a function
of the wave vectors and frequencies of the at-
tached propagators. Thus, at intermediate stages
of the renormalization group, the equations of
motion are non-Markoffian, with interactions that
are nonlocal in space as well. In the limit e- 0,
however, the higher-order vertices turn out to
be negligible, and the lowest-order vertices may
be taken to be constants. To first order in e,
the renormalized equations of motion are then of
the same form as the starting equations (2.1), but
with altered parameters. The recursion relations
thus obtained are the basis for our study of the
critical dynamics.

The static parameters u„r„yr and X, satisfy
the same recursion relations as in model C,
namely, Eqs. (4.5)-(4.8) of HHM. "'8 (We also
add an equation for c, which was not explicitly
considered in Ref. 11.) Recursion relations, valid
to lowest order in e, may also be obtained for
the dynamic parameters I'„X„and g, (see Ap-
pendix B). It is convenient to introduce the quan-
tities

u r
=—u r'+uor" are complex quantities, whereas the

other coefficients are all real.
Using Eqs. (3.2)-(3.12) we find the recursion re-

lations for vr fr and zo

v„,= b~ 4'(1 —32u, K, lnb —4v, lnb), (3.13)

f =b' "f 1+lnbRe
wl 1+wl Wl(1+ull)

4l(flvlwl) 1

1+Wl 2

I
y2+2a M 1 In' r r fr r

1+Wl Wl(1+Wl)

(3.14)

a= —,'(d-2+q),
where q =0 to order e.

(3.16}

J. NodelE (go=0)

4t(flvlw l) 1
4 (3 5)

1+$0r

Note that these equations are independent of the
choice of c and z. The exponent a may be de-
termined in the usual manner, " in terms of the
static exponent q, by the condition that cr remain
constant [cf. Eq. (3.6)]:

I'r Xr&fkr =sar +we/ ' 0' (3.4)

r„,=b "(r, +BK,u, [A'(I —b ') —2r, Inb]},

(3.5)

which are independent of the overall scale of m.
In (3.2) and (3.3) K, =2' "w i'[I'(-,'d)] ' is the
phase-space volume element in d dimensions.
The quantities v, and f, turn out to be of order e,
while wr is of order unity, at the fixed point.

The recursion relations may now be written

In the symmetric case we have y, =v, =0, and
the recursion relations simplify considerably,
since all quantities are real. Let us note that
according to Eq. (3.8) y, will remain unrenormal-
ized if we choose

(3.17)

and to first order in e Eq. (3.16) implies
a=-,'(d-2). When v, =0 Eqs. (3.14) and (3.15) are
easily seen to reach a stable fixed point with

(3.19)

c„,=b' ' "c,[1 —O(u', )],
u„, = b' "(u, —40u', K, lnb),

X '(1-4vr lnb),

r l „=b " 'y
l (1 —16u,K~ lnb —4v, lnb),

yz -if+ cg

(3.6)

(3.7)

(3.8)

(3.9}

(3.10} z —2+f„(l+w„) '=0, (3.20)

[We use the notation f„, w„, etc. , for the fixed
point values of f„w„etc., rather than f*, w*, in
order to avoid confusion with complex conjugation. ]
Then Eq. (3.11)will lead to a finite nonzero fixed
point value I'„ if and only if

4v so I
ya'+2aM' 1 In' r r Jr r

1+zvr ver {1+ter)
l.e.,

1 18 =2 —26 = 2d. (3.21)
4i(f, v,u,')'"

1+Mr
(3.11}

).„,=b' " ""X,(I ~f, 1+nb). (3.12)

[The quantity K4= (Bv ) ' was denoted B in Ref. 11.]
It is important to note that in general I', and

In order to compute the critical exponent of the
physical coefficient I'(T) we must relate it to the
rescaled quantity I'r. Here we shall present an
approximate evaluation of I'(T}, in the spirit of
Wilson and Kogut's calculation' for the static
case, reserving a more detailed discussion for
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Sec. III C and Appendix C. Since at each stage of
the renormalization procedure I', is rescaled by

i cal coeff icient is gi

I (T) = I("/'F, (I+g, ), (3.22)

where o; represents corrections arising from in-
termediate momenta less than Ab '. The parame-
ter I', approaches its fixed point I „and stays
there until

O' = A/x, (3.23)

where g is the inverse correlation range. Fur-
thermore, the correction o, is expected to be a
finite constant when I satisfies (3.23), whence

I (T) - ~-'/' I„. (3.24}

Since A.„is also a finite constant, we may similar-
ly show, using Eqs. (3.12) and (3.17), that

)((T) -)(„x '/' (3.25)

which is the dynamic scaling prediction'' for the
symmetric model, in lowest order in e.

2. Model F (y() 40)

In the asymmetric case, the lowest-order re-
cursion relations cannot be solved analytically,
but they may be iterated quite simply on a com-
puter. We first determine the exponent c from the
requirement that the rescaled static susceptibility
)(( reach a finite fixed point [see Eqs. (4.11) and
(4.13) of HHM"), namely,

c = —,'(d —a/v),

where

(3.26)

(I = max(n, 0) . (3.21)

For the case (n=2) under consideration here, we
have a/v= —,'e+0(e2) and ua= e/40Kz. Furthermore,
Eqs. (3.15) and (3.16) imply that

and

1i m v, = v„=a /4 v =
2~ac + O(e')

7 ~oo
(3.28)

(3.29}

Inserting these values into Eqs. (3.14) and (3.15),
we obtain by a numerical calculation for e- 0

ge„= 0.732 + 0.480i, (3.30)

x =d —c=-2'(d+a/v), (3.31)

where the sign of Imu „ is determined by the as-
sumption that yp &0 ~ The symmetric fixed point
with v„=0, f„=e, w„= 1, is an unstable fixed point
of the asymmetric model, for a &0.

For the asymmetric case, the requirement that
g„=gp implies, by Eqs. (3.10) and (3.26), that

and that A.„and l „are finite nonzero constants.
As in model E we may again find the critical ex-
ponents to lowest order in e from Eqs. (3.11) and
(3 12)

F(T) /(-( -2)T /(-(z/2)(z —a/v)F

)((T) x-(z-2+ a /v))( K-(1/2)(z+ a /v))
an ao

(3.32)

(3.33)

in agreement with dynamic scaling. ' '
A mode-coupling analysis of systems which are

similar to models E and F has recently been
carried out to lowest order in e by Gunton and
Kawasaki. ' These authors found the same expo-
nent values as we do in both cases. Their critical
amplitudes, agree with ours in model E [Eqs.
(3.18) and (3.19)], but disagree in model F where
they find (in our notation) f„= -', e, but w„= 2
rather than Eq. (3.30). The reason for the dis-
crepancy is the omission by Gunton and Kawasaki,
of the terms involving v, in Eq. (3.11). It should
be noted in particular that their Langevin equa-
tions do not yield the correct equilibrium distri-
bution for the asymmetric case.

B. Analysis to all orders in c

We now wish to show that the exponent results
of Sec. III A are in fact valid to all orders in e.
Since for finite e the renormalized equations of
motion are no longer of the simple form (2.1),
one must first redefine the nine "slowly varying"
parameters r„u„y„y„c„~„g„ReI „and
Iml, in terms of the limiting behavior of the
appropriate frequency- and wave-vector-dependent
vertices and propagators, when wave vectors and
frequencies tend to zero. For small e, it is still
possible formally to write down recursion rela-
tions for these nine parameters because the co-
efficients corresponding to all the other degrees
of freedom of the equations of motion may be ex-
pressed in terms of the first nine. Recursion
relations in terms of these slowly varying pa-
rameters suffice for the study of the fixed point,
and of the slow transients which decay with ex-
ponents of order e. [See the discussion of the
static renormalization group given in Sec. 5 of
Wilson and Kogut'2. ]

For the symmetric model, the recursion rela-
tions for f, and w, take the form

f„,= I)'f (I —Inb[f, /(I +w, )+ 2f, ]+ 0',(f„w„u„e)),
(3.34)

w, , =w, (1+Inf)[f /(1+u/, )+ 2f ]+I/(T, (f„w„u» e)j,
(3.35)

where 5, and W, contain no terms of lower order
than e, u, f„u'„or f', . Since' u„cce and f„zz e,
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the additional terms in (3.34) and (3.35} are of
higher order in e, and the fixed point values are
seen to be

C. Dynamic sealing laws

The response function LL&(k, ro) and LL (k, m) may
be written in the (exact) form

f„=e+ O(e'),

w„= 1+ O(e) .
(3.36)

(3.37)

){j (k, (d ) = C ( 5 [—I (d ) +t ( + k ( +o ( (k (, (al ) )],
(3.42)

In contrast to (3.14) and (3.15), the recursion
relation (3.10) for g„ is believed to be exact, to
all orders in e. This is closely related to the
requirement that the Poisson bracket relationship
(2.11) and its consequences, [the Josephson equa-
tion (A14) below T, and the Ward identity (A9)
above T, J, are exact relations, which must be
preserved by the renormalization group (see Ap-
pendix 8). It follows that g, goes to a finite fixed-
point value, with

g' =go y

if and only if we choose

(3.36)

(3.39)

z = —,'(d+ n/v) . (3.41)

Furthermore the fixed-point values of f, and w,
are given to lowest order in e by (3.29}and (3.30),
with corrections of order e' and e, respectively.
The fixed-point Hamiltonian is modified by higher-
order terms in c, but not the exponents.

As mentioned in the Introduction, the value of
n is believed" to be slightly negative, at d = 3. In
this case the parameter v, approaches zero as

~, and the stable fixed point of the asymmetric
model {E)is the same as that of the symmetric
model (E) [this is similar to the situation in case
C of HHM" for n =2]. Thus, strictly speaking, if
the fixed-point values of f, and w, are to be ob-
tained by analytic continuation from 4 —e dimen-
sions, one should use the symmetric fixed-point
values (3.36) and (3.37), rather than (3.29) and
(3.30).

Moreover„ for v, =0, y, is also unrenormalized

(){,=LL, =X„), if we choose c according to Eq.
(3.17). Thus

(3.40)

as predicted by dynamic scaling. ' ""Since
f„, w„, g, and X„are all finite, Eqs. {3.11) and

(3.12) imply that A. , and I', will also reach finite
nonzero fixed-point values.

In a similar manner, we find that for the asym-
metric case, the renormalization group approach-
es a fixed point with A.„, I'„, and X„ finite, and

g„=go, provided we choose c according to (3.26),
and

gm (k, (d) = 5 [EQlg Fg/A( k( +LL( + 7l((k()

where

(3.44)

(3.45)

and 0'„m„and m,
' may be described as arising

from "self-energy corrections, " in which the wave
vectors of the intermediate propagators are inte-
grated from the cutoff A all the way down to zero.
These self-energy corrections involve one or more
interaction vertices and are formally of order e

or higher, relative to the leading terms; at the
critical point, however, the self-energies contain
divergences if k, and w, approach zero.

If the renormalization group leads to a well-be-
haved fixed point as l -~, then the functions o„

and p f bee ome independent of l for large l
Furthermore, when T= T„ if we choose l such
that max(k„&u, ) is some fixed number of order
unity, then the self-energy corrections should be
finite, and of order ~ or smaller. If T is slightly
above T„ the renormalization group at first ap-
proaches the fixed point, but r, eventually becomes
large and positive. If we choose E such that

(which occurs for O' =A/»), then the self-energy
corrections are all finite, (and of order e or small-
er) even when k, and +, are smaLL. If follows that
if the renormalization group for the equations of
motion approaches a well-behaved (finite) fixed
point at 7.'„ then X and X& will have the asymp-
totic forms

LL~(k, (u) =c„'(A/»)' "Kq((u/g»', k/»),

Xm(k& ~) = X&m(~/L» ~ k/»} ~

(3.47)

(3.48)

g =—IteI' A' ' =g (K )' 'A "'
'LL

' '(w „'/f )' '

while the static susceptibility y is given by

X = Xo =
X „symmetric case (3.5

LL
=X„(A/»)"~'[I +0(u/v)] asymmetric case .

(3.51)
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Kq'(x, y) = —inu„'/su„+ I+y',
K '(x, y) = —fxat„'/y'+ I,

(3.52)

{3.M)

where corrections to the above are of order ~

(these corrections can become large, however,
if either x or y are very large; e.g. , K&-exlna).
It follows that for T just above T, we have

The asymptotic forms (3.47-48) will be valid in
the limit k 0, z-0, & —0, for arbitrary ratios
of the three variables. Furthermore the functions
K& and K are universal functions, which depend
on the dimensionality and the fixed point reached,
but not on details of the original equations of mo-
tion. To lowest order in 6, we may write

range is defined differently' above and below T,.
A consistent definition, which generalizes Joseph-
son's relation" to arbitrary d, is

—p(& -2) (3.58)

where p„given in Eq. (A16), is related to the k-
dependent transverse static response below T, by"

~, (a)=lql'/p, u', u-o. (3.59)

[In the present model we consider the "free en-
ergies" E, and 0 [Eqs. (2.1c) and (A16)] to be di-
mensionless, so p, has the dimensions of A' '.]
Now according to Eqs. {2.12-13), (3.49) and (3.54)
we have

e (k) = 8k'/y =a, (&/w„')x' 'k', (3.54)

(K )I/2g (~ t f )
I/2x-E/2 1/2 —ft g x-E/2 1/2

(3.55)

(u'(z )
' z'x'X

X+g o ps X+ ~+

II y = Kyat/f ~ 8)~,

(3.60)

(3.61)

(u„(k) -=I'/}{
q

= a, ((u„/(g'„}gx'

=g,a, (K„)' 'a/„(zo'f )' '&' 'y, ' '

=-~ g ~"'x '", (3.56)

where a, and a, are universal constants of the
form I+O(e). Equations (3.54)-(3.56) are the (ex-
tended') dynamic scaling result, "which has been
shown to hold to all orders in c. An important
additional result for the critical amplitudes of j.
and A, follows from Eqs. {3.55) and (3.56): these
amplitudes are expressed entirely in terms of
static quantities and universal constants, apart
from the factor g, which determines the frequency
scale, and is known from the starting Eqs. (2.1)
(see Secs. 1V and P).

D. Matching conditions

The matching conditions between characteristic
frequencies above and below T, implied by dynam-
ic scaling, may also be proved for the present
models. Indeed, since by hydrodynamics the spin-
wave frequency (2.12) is determined entirely byg,
and static quantities, it is clear that certain fre-
quency ratios will be universal, i.e., independent
of the parameters of the starting equations.

Let us consider the ratio

It (k) =u& (0)/u) (0), (3.57)

where &u is given in Eq. (2.14), and ru is the spin-
wave frequency {2.12), evaluated at temperatures
above and below T„respectively, by the same
(small) value of ( T —T, (. We wish to show that the

quantity' ~R (4=K ), for instance, is universal,
where ~ is the inverse correlation range below T,.

Since g is a vector order parameter (n =2), the
static correlation function {g(x)g(0)) does not de-
cay exponentially below T„and the correlation

8 ~
= (K,e ')'/'[I +0.597' +0(~'}]. (3.65)

The O(e) term is then smaller than in (3.64), and
one may hope for a more accurate extrapolation
to d=3.

In the symmetric case (model E or model I'
with a & 0) y is continuous at T, so that y, =

li .
For the asymmetric fixed point (model E with u
&0}, the quantity y, /X is equal to the specific-
heat ratio, evaluated in the e expansion by Brezin
et al. ,

'0

X./X =2" (-'n)(I+e)+O(e'). (3.66)

where y, and X are the static susceptibilities of
the field rn above and below T„respectively, z,
and ~ are the corresponding correlation lengths,
andA~ is defined by (3.55). Furthermore, the
static ratios z /x and y, /}{ are universal con-
stants, so that A is itself predicted to be a uni-
versal constant. Using the values from (3.18) and
(3.19) and (3.29) and (3.30) we see that for the sym-
metric case, in the limit c 0,

A&=K, ~ '[I+O(e)]=0.0127m '[I+O(e)], (3.62)

while for the asymmetric case

It'„= 0.0144m '[1+0(c)].

The second-order calculation for the symmetric
model, described in Appendix D yields

A ~ = (K,& ')'/'[I+ 1.335m+0(e')], (3.64)

which suggests that the expansion may be rather
ill behaved. We may note, however, that a signi-
ficant part of e dependence of 8& comes from the
dimensionality dependence of the phase-space fac-
tor, K„'/', present in (3.61). It may be more ad-
vantageous, then, to expand R~ in the form of Eq.
(D29)
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Similarly, z, /z may also be obtained in an e ex-
pansion. %'e shall rather use values of the static
ratios obtained" from experiments and high-tem-
perature series in three dimensions, and thus ob-
tain an "experimental" estimate of R~ from Eq.
(3.60) which we can compare with the theoretical
values (see Secs. IV and V).

For magnetic systems, one can also measure
the characteristic frequency u&(q} of the order
parametex above T,. %'e can then define other
universal ratios [see Eqs. (2.12), (2.13), and

(3.66)],

(3.67)

IV. APPLICATIONS TO SPECIFIC SYSTEMS

A. Hamiltonian models of magnets

36= —g [J (i -j)(S„'S'„+S',S', )+Z„,(i -j)S',S~]

+H, QS,', (4.1)

where i and j denote points on a d-dimensional
lattice and S ' is a (three-component) spin oper-
ator at point i. The dynamics of this system fol-
lows from the usual quantum-mechanical equation
of motion

Let us consider an anisotropic Heisenberg mag-
net with Hamiltonian

R'~= a2K, u „If- (3.68)

8S'—ia = [36, 8 '], (4.2)

and

TABLE II. Some characteristic frequencies and
universal dynamic critical ratios used in the text. In
the definitions of B~ and R~, the absolute value ~T- T~ (

must be the same in numerator and denominator.

Character istic frequencies

~ (&) =-~x '&'

q(&) =I /Q
(u {k)=—CSk

spin-diffusion rate,

order-parameter relaxation, T & T~

spin-wave frequency,

Universal ratios

&.=«(~o "x'")
Rr= r/(g()K& ~2g -&~2g, )

(& )/-(~ )

R~ ——~&(0)/~ (K )

Rry~= x&(0)/re~(g }=Rr/R&

(dg(g =()) Ry K R rR ri~ =-, , = = = =su„(a,/a, ) .
-m&& = &+ &. Rm &+ R x.

(3.69)

The last ratio depends only on experimental data
above T, . %e shall compare these quantities to
measurements on RbMnF, in Sec. V.

It should be noted that beyond the lowest order
in ~ the precise values of R&, R «„ depend on the
somewhat arbitrary definition of & ~ that we have
adopted. In particular the value of a„ in (3.56),
depends on this definition, although the values of
M „and f„do not. The characteristic fxequencies
and universal ratios defined above are summa-
rized in Table II for later reference.

or the equivalent Poisson bracket relation in the
classical limit. If we choose the interaction con-
stants J and J„ in such a way that the system or-
ders ferromagnetically in the x-y plane, we ob-
tain a model whose hydrodynamic properties were
discussed in detail in Ref. 14. The properties of
(4.1) are quite similar to those of models E and E
of Sec. II, except for the existence of an additional
conserved energy field in the system (4.1). As
shown in Ref. 14, this conservation law leads to
the existence of a low-lying thermal diffusion
mode, which is absent from models E and F.
Thus a more accurate phenomenological model
for the study of the dynamic critical behavior of
the anisotropic Heisenberg magnet (4.1) would
contain three coupled fields —a complex order
parameter f, xepxesenting S„—iS„a magnetiza-
tion m, representing S„and an energy density i.
Such three-field planar-spin models (which we de-
note as models F. ' and F' for the symmetric and
asymmetric cases, respectively) are studied
briefly in Appendix E. Above 7, there are two
diffusive modes, of which only one has a diverg-
ing transport coefficient as T- T,. The second
mode will thus be slower than the characteristic
frequency for the order parameter, which retains
an exponent z = —,

' d& 2. If the specific-heat expo-
nent e is negative then the energy decouples from
the other fields in the limit T- T„and the fixed
points and leading singularities are the same for
models with and without energy conservation (the
corrections to scaling have different behavior,
however; see Appendix C). If the exponent cy is
positive, the recursion relation analysis of Ap-
pendix E still predicts no change in the exponent
z owing to energy conservation, at least in the
symmetric model (E'). In particular, there will
still be a diverging transport coefficient propor-
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tional to z '~'. The critical ratios, such as 9
and&&, on the other hand, are affected by energy
conservation, even in lowest order in e (see Ap-
pendix E). Moreover, the situation hexe is very
similar to that of model C studied in Ref. 11,
where the fixed point reached in the presence of
enex'gy conservat1on ls s1ngulRx' fo1 2 «~ s «~ 4 Rnd

0, and it is not cleax hom mell behaved the re-
sults will be when coxxections of higher oxder in
e are included. It seems probable that a charac-
tex istic frequency fox the order parameter ean
still be defined, which obeys the usual dynamic
sealing prediction z =-'d, but there may be pa,rts
of the scaling function K~ of Eq. (3.4'7) which have
another characteristic frequency.

8. I iquid hehum

1. AppIicubility of model F

The usefulness of a pseudosp1n model to describe
superfluid helium was first pointed out by Matsu-
bara and Matsuda. " Since their work, a numbex
of authors have applied such models to calcula-
tions of static and dynamic properties of heli-
um. '""" In particular, it mas shown in Ref.
14 that the easy-plane ferromagnet had hydrody-
namic modes mhich correspond closely to those
of superfluld helium.

The ordex parameter of helium is the expecta-
tion value of the boson field (g), which corresponds
to the magnetization in the easy plane of the mag-
netic system. There are, in addition, three con-
served fields, ' "the mass density p™, the enex gy
density c, and the momentum density g. Gne lin-
ear combination of p and i is the "entropy"" q,
and it is identified with the field m. This field
couples with v, to make second sound below T„,
and relaxes with the thermal diffusion mode above

The other linear combination of p and e,
mhich we ean eall P, couples with the longitudinal
part of g™to make fix st sound, both above and be-
low Tz. Since the first-sound velocity is finite at
T& this mode remains at high frequency, and is
Qot expected to have any influence on the critical
behavior of the other modes. ' " Thus the two-
field model, Eqs. (2.1), should be a proper start-
ing point for understanding the critical dynamics
of pure bulk helium, if attention is confined to
phenomena oeeurring in the frequency xange +
& c,z (where c, is the fixst-sound velocity). The
tmo-field model is, moreover, the simplest model
which incorporates the important conservation
lRms Rnd hydrodynamic modes of R supel'fluid.

It is worth pointi. ng out at this stage that if the
helium is immersed in a powder, '4 3' then it is
precisely analogous to the three-field model E',
since momentum is no longer conserved. The

2. DJNCNflc 8ÃpoNPNfs NNd QNfpNtNd8 P8l'10$

In order to apply the results of Sec. D to expex i-
ments on helium, it is necessary to specify the
dimensional form of the various quantities which
enter the theory, and to spell out the detailed eox-
respondence with measurable quantihes. I.et us
suppose that E, [Eq. (3.1c)] and 0 [Eq. (A16)] are
dimensionless, and that Q=(ksT) 'E, whereI is
the total free energy of the helium system. The
usual superfluid density p„ in units of mass per
unit volume, is related to E by

P = F(s, = 0) + , JI d x p,—v,',
where" v, =(6/m„)Vy, and ms is the helium mass,
so that according to (A16), (3.56), and (4.3) we
hRve

p, =(m„'asT/g')p, = (mHnsT/g')x' '.
Tile second-sound velocity of helium 1s

(4 4)

(4.5)

where o =3/ft is the (dimensionless) entropy per
particle, C~ is the constant-pressure speeifie heat
pex unit volume, and p„=p —p, is the normal fluid
density. %'8 shall choose the units of the field m
in such a way that ks'C~ is identified with )( [Eq.
(AV)]. Comparing Eqs. (4.5) Rnd (2.13), Rnd mak-
ing the approximation (valid near T~) that p =p„,
me then have

(4.6)

As mentioned earlier, m is a particular linear
combination of p and 8, which must be chosen so
as to yield the second-sound velocity (4.5). From
the analysis of Ref. 36 it may be seen that m is
proportional to the operator q of Eq. (4.4) of Ref.
36, i.e., M =fd'x m(x) is given by

M =(ksT) '[E —(P+ksTo)iV]. (4.7)

Hex'e N is the particle number and E the energy,
with densities n=p/mH and e, respectively, and p,

ls the cheDl1cRl poteQtiRl per pR1 tlcle. We may

field m is then identified with the linear combina-
tion p, which couples with v, to make fourth sound
belom T~, while the other linear combination of
i and p relaxes with the thermal diffusion frequen-
cy. The situation is then precisely analogous to
the easy-plane ferromagnet discussed above, in
mhieh both the energy and S, are conserved. The
uncertainties discussed there, which arise fx om
the existence of a lom-frequency thermal diffusion
mode in addition to the spin wave, are also ex-
pected to exist here.
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now verify the Josephson equation (A14)

dy gg, ~F ~N

dt 'sM ' BN sM
(4.8)

which is equivalent to the Landau acceleration
equation"

dv, 1
dt mH

(4.S)

[In Eq. (4.8) we have used the relations sM/&N
= —ksTo and BF/SN = P, .] It is now easy to verify
that )t, as defined in Eq. (A17), is equal to k~'CP,
and that Eq. (A18) for the current j agrees with

the usual "entropy current. "" This completes the
proof of the equivalence of the dynamics of model
F to that of liquid helium near T«[when the factor
p/p„ in (4.5) may be set equal to unity].

The observable low-frequency modes in liquid
helium are thermal diffusion

&ur = Xk'/Cp, (4.10)

which we identify with ~ [Eq. (2.14)] above T«,
and second sound

+ (q)=c,k, (4.11)

t = (T —T«)/T« (4.13)

is the reduced temperature (which should not be
confused with the time. ). Since K+ is not directly
measurable in liquid helium, we shall first ex-
press the critical amplitude of A. in terms of the
behavior below Tq, using the matching condition
(3.60) and the relation (4.4) between «and p, . In

the present units the matching condition reads

k') (t)p, (- t)
c o m k T«CP(t)c ( t)

(4 14)

All quantities on the right-hand side of (4.14) are
measurable in liquid helium, whereas the left-
hand side is universal in the limit T- T&, and can
therefore be calculated using models E or E, e.g. ,
in an e expansion. The temperature and pressure
dependence of R in liquid helium has been deter-
mined near the A.-line by Ahlers, ' and universality
was only found to hold approximately. Moreover,
the exponent prediction in Eq. (4.12) was also not
precisely observed in the experiments. Presum-
ably these discrepancies are due to deviations
from the asymptotic critical temperature depen-
dence. As we discuss below, the approach to the

with c, = c, given by (2.13) or (4.5).
According to Eq. (3.55) we have as T- T«

g «-1/2(k-1C )1/2~t -(1/2)(P+n) (4.12)Xgo + 8 P 1

where Rz is the universal constant of Eq. (3.61),
and

RcxPt 0 23 (4.15)

In order to compare this value with the calcula-
tion of Sec. III, we shall use three-dimensional
estimates of the static ratios «, /z and CP/CP, to
form an "experimental" value of R„using Eq.
(3.60), and compare this quantity with theory,
rather than R . In this way we do not make use
of the ~ expansion below Tq, and we separate the
static and dynamic calculations. The inverse cor-
relation range K may be obtained from the mea-
sured p„using Eq. (4.4), while «, is found" from
the singular part of the specific heat C~, and high-
temperature-series estimates of the universal
ratio C& K,'. At SVP and for t = 10~ we find"

K = 0.3~ tp "A ' = 6.26x 10-4 A-' (4.16)

K+
—-0.7to" A ' = 1 46X 10 3 A (4.17)

Since experimentally there is good evidence" that
o. &0 for helium, we choose the value C;/CP =1,
appropriate to the symmetric fixed point. Insert-
ing these values and Eq. (4.15) into Eq. (3.60) we
found at SVP and t =10-4

"P RexPt (« /x )1/2 0 36 (4.18)

(The bar over R«"P' is meant to indicate that this
experimental value was obtained using data both
above and below T&.) This value is to be com-
pared to the «-expansion estimates of Rz (3.62)-
(3.65). The lowest-order estimate obtained by
setting «= 1 in (3.62) and (3.63) and ignoring the
O(e) correction is R« = (K,e-')'/' =0.113, for the
symmetric case, and R ~ = 0.120 in the asymmet-
ric case. These estimates, which are too small
by a factor of 3, may be improved by use of K,
rather than K, in (3.62) to yield R«=0.226 for the
symmetric case. In second order, we obtain
from (3.64), R„=0.26, whereas setting d=3 (e =1)
in (3.65), we find

=0 359 (4.1 9)

The precise agreement between (4.18) and (4.1S)

asymptotic form is expected to be rather slow,
when

~ o. ~
is small. Even in the absence of precise

temperature independence of the measured R,
however, it is interesting to compare experimen-
tal values of R with the theoretical estimates
made in Sec. III. Using experimental data on
thermal conductivity, specific heat, second-sound
velocity, and p„one finds" that R varies by
roughly 40%%uc near the A. line from saturated vapor
pressure to 22 atm, in the range 10 '&[ T —T&, ~/T«
& 10 '. Typical experimental values are of order
R'"l"=0.20-0.28, if data at all pressures are in-
cluded, while the value at t =10~ and saturated
vapor pressure (SVP) is"
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is surely fortuitous, since the experimental val-
ues themselves are not universal, and the theoret-
ical values may be subject to large corrections.
Nevertheless, the comparison suggests that our
method of extrapolation may be quite reasonable.

It is possible to obtain an experimental value
using data only above T„, by using Elle. (4.12)
and (4.1V). Inserting values" of 8 = S/8, C», X,
and x„appropriate to t =10~ and SVP i.nto Eqs.
(4.6) and (4.12), we find

rp(x} =I+gx+y x'+ ~ ~ ~ (4.23)

The coefficient y, has been evaluated to lowest
order, and ls equal to

y, = (5/188v)[I + O(e)] .

which is positive and approaches zero slowly as
f -0 for o. &0 (a, -t~ "~). In Eq. (4.21) y(n, } is a
universal function of its argument, with an asymp-
totic expansion of the form

g exPt 0 29 (4.20) A function similar to y(n, ) occurs for the specific
heat itself. As demonstrated in EIIs. (C36)-(C38)

which is once again in reasonably good agreement
with the theoretical estimate (4.19). The two dif-
ferent experimental values (4.18) and (4.20) do
not agree precisely with each other, however,
and in order to make a more reliable comparison
with theory, the correction terms must be
analyzed carefully. An estimate of R~ based on
mode-coupling theory was carried out some time
ago by Krueger and, Huber, "who found a value
smaller than experiment by a factor of '7.

Dynamic scaling also makes predictions con-
cerning the damping of second sound in liquid
helium below T„, and it would be interesting to
extend the present theory to that case. The ex-
perimental situation on second sound damping is
still unclear, however, since dynamic scaling
predictions were confirmed at low frequency, "
but appear to be in conflict with Brillouin scatter-
ing experiments'0 at high frequencies. We do not
know of any explanation for the latter results.

d lnC»(t)
d Int

(4.22)

3. Correction terms

Since the exponent ~ is expected to be negative
in liquid helium, " the appropriate fixed point of
model F at d =3 is the symmetric one, as in
model E, and the dynamic exponents are those
of Elle. (3.21) and (3.25). Nevertheless, there is
a difference between models E Rnd I" for I ul

small, since the asymmetric model wi. l1 possess
significant correction terms which reflect the
slow Rppl'ORC11 Of 'the speClflC heRt to 1'ts (fll11'te}

value at T,. We have analyzed the recursion rela-
tions (3.5)-(3.15) for model E in the case a& 0,
keeping the parameter v, finite, i.e., not equal
to its fixed-point value v„=O. In this way we
show [see Appendix C] that Eq. (4.12) has the
correction terms

A(f) =Bing, ~ '~'[klan'C»(t)]'~'y(a, )

x (I +Dot *0+D, t *' +D,f *'+D,f *~), (4.21)

where Q@(f) 18 the (llonulllvel'SRl) effective expo-
nent" of the specific heat

C»(f)/C, (-f) =(1+P~.)-', f&0, (4.25)

where P -=n '[(A'/A) —1]=PA'//i is auniversal
constant, 40 whose q expansion can be obtained from
the results of Ref. 30,

P=2(n+8)/nc =(10/z)[1+O(a)].

Experimentally, P can be obtained rather accu-
rately, and is found to be equal to""

(4.27)

in liquid helium.
The last factor in (4.21) comes from the usual

corrections to scaling, ' with universal exponents
x,. and nonuniversal coefficients D, The exponent
&0=0.5& arises from static corrections, "and is
the same as in the specific heat, "and the coeffi-
cient Do has the same pressure dependence as the
corresponding nonuniversal static coefficient. The
exponents x„g„and x„on the other hand, are
the three independent dynamic correction expo-
nents, which are of order & and are calculated to
lowest order in Appendix C. The value of n, is
approximately 0.15 in the experimental range of
temperatures, "and it will be interesting to see
whether the data on the thermal conductivity' can
be explained Iluantitativeiy by (4.21), with a simple
ansatz for q(n, ). Elluation (4.21), which also holds
for e~O, has the same limiting form as the ori.-
ginal dynamic scaling prediction of Ferrell et ai.
[EII. (5.33) of Ref. 4]. However, (4.21) contains
in addition the correction terms in the last two
factors, which are expected to make a measurable
difference in the experimental range.

4. Hamiltonian mode1 for heIium

Various authors" have attempted to study the
critical dynamics of helium by applying the re-
normalization group directly to a Hamiltonian
model of helium involving only a single complex
field g. The simplest example of such a model can.
be obtained from our Elluation (2.1) by treating I;
as pure imagine. ry (no dissipation) and dropping
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all couplings to the field m:

(4.28)

senting the staggered and total magnetizations,
respectively. The equations of motion may be
taken as

gE ~ 5Eo
+g pX +g,

gt 0 5P 6m
(5.1a)

with Rn appropriate cutoff at short wavelengths.
If the renoxmalization group is properly applied to
this mode&, however, one lmmedlately encounters
a difficulty on the first iteration. The renormalized
four-polllt vertex B~(k(, &d() ls a singular function
of the wave vectors and frequencies, when the net
wave vector and frequency transfers go to zero.
These singularities are due to the absence of
damping in the bare propagators, and are reflec-
tions of the conservation laws in the system.
Equations (4.28-29) conserve the total particle
number, "

g 2d"x, (4.30}

V, ISOTROPIC ANTIFERROMAGNET

A. Two-field model

As mentlolMd ln the Introduction, thex'e ls R sim-
ple variant of the two-field planar-spin model
which describes an isotropic Rntiferromagnet. '2"
In this model, which we shall denote model 6, g
and rn are (three-component) vector fields repre-

as well as the total energy E =3C[$]. Furthermore,
as long as the cutoff is introduced in such a way
that the Hamiltonian X is translationally invariant,
the total momentum will also be conserved.

%e expect that after many iterations of the re-
normalization group, the vertex u~ will contain a
number of simple poles near zero frequency trans-
fer (when the momentum transfer is small) while
the renormalized propagator for g will be damped
and well behaved. A careful analysis of the sing-
ularities in u would then involve keeping track of
the positions and residues of these poles. This
procedure would presumably be equivalent to in-
troducing propagators and coupling constants for
Rppropl late RuxlllRl y conserved fields» Rs hRs
been done phenomenologically in the present paper.

Alternatively, one might attempt to remove the
singularities in the vertex s,(k;, &o;) by simply in-
troducing an imaginary part in the frequencies of
the initio/ propagator for $, while keeping a struc-
tureless bare coupling constant u, . This pxocedure
violates the conservation laws, however, and one
is led by further. iterations to the fixed point for a
time-dependent Qinzburg-Landau model with no
conserved quantjty44 (model Q of HHM ), rather
than to a fixed point appropriate to helium.

Bm ~ GEO 5EO GEO

at ' gm ' 5 q
' aih

= XOV2 +go/ x +gom x + r, (5.lb)

+ —,
' yo' /m/'+s, (r/). m)']. (5..lc)

I'„,=b' 'I', [1+2lnbf, (1+st) '],
x„,= b' 'X,(1+ —,

' lnb f,),
(5 2)

It is then easy to see, from the recursion rela-
tions for f, and tu, that the fixed point has the
"symmetric" exponent

and the parameter values

f =N+O(c ),
ur„= 3+ O(e) .

(5.6)

(5.V)

The characteristic frequency for the order param-
eter then goes to zexo as

(u,(k = 0) = I'/X„~ x ~ ~',

while the spin diffusion mode goes as

(o„(k)= Xk /y,

(5.8)

(5 8)

In Eq. (5.lc) the symbol
~

/~2 denotes the scalar
product (g g). The noise terms 8 and r„have cor-
relations analogous to Eqs. (2.1d) —(2.1f). The
parameter so is irrelevant for T& T, and can be
taken to be zero; the term gom x 5EO/5m in Eq.
(5.1b) vanishes identically when s, =0, and in any
case it does not contx'ibute to the correlation
functions at T„ to first o~der ln ~, at. least. This
term should be included in general, however, to
preserve the Poisson bracket relations of the
Rntiferromagnet. For simplicity we have normal-
ized P in such a way that the coefficient of

~
Vg ~'

remains unity.
The recursion relations of model C are quite

analogous to those of model E, with modifications
arising in cextain coefficients, owing to the differ-
ent number of components (n = 3}. The static recur-
sion relations are the same as in model C of HHM"

(for n=3), and the dynamic parameters satisfy
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with

(5.10)

and g-const, in agreement with results of dynam-
ic scaling' and mode coupling theories. """The
ratios R q, Rz, and Rz~q,. defined in Table II, are
given by

R,=K,'~'(f„~„)-'~'=(24''e)-'",

Rr =K~'~'(4v„/f„)'~' = (3/Bw'6)'~'

Rr/ )t $04O 3 p

(5.11)

(5.12)

(5.13)

to lowest order in &. The second-order calculation
of Appendix F yields in this case

R, =K,'~'(3e) '"[1+0.271'+ O(~')],

R =K'"(3/4)'"[1-0.605e+ o(&')1,

(5.14)

(5.15)

Rr&„-3[1-0.876e+ 0(e')] . (5.16)

B. Hamiltonian antiferromagnetic models

Let us consider a spin system with Hamiltonian

K= —Q Jgj(S„'S„'+S„'S~+S,'S',), (5.17)

and J,-,. so chosen that the system orders anti-
ferromagnetically. It was shown in Sec. 6 of Ref.
14 that the hydrodynamic behavior of this system
corresponds to that of a three-field model with a
vector order parameter P ( the staggered magneti-
zation) a conserved vector field m (the total mag-
netization), and a conserved energy density 7..
Such a model, which we can denote model 6', is
analogous to model E', considered in Appendix E.
A similar analysis may be carried out for 6' to
show that the isotropic antiferromagnet (5.17) will
have the critical exponents of model C, and also
the same amplitude ratios, for a &0 (as seems to
be the case4' for d=3, n=3).

As pointed out in Ref. 11, a real magnet has
phonon degrees of freedom in additon to the spin
degrees of freedom in (5.1V), and it is difficult to

A calculation of the amplitude ratio Rr&~ was
performed earlier by Joukoff-Piette and R6sibois, ~
using mode-coupling theory. Their result, R«„
= P, /n, = 2.5 is rather close to our first-order re-
sult in Eq. (5.13). A similar calculation by Huber
and Krueger" obtained R«„=3.3. In a recent paper
Freedman and Mazenko" have treated model |"to
lowest order in &, using renormalization-group
techniques. Their results for f, and st, agree with
ours in lowest order. In addition, these authors
have calculated the scaling function K„[Eq. (3.4V)]
to the next order in &.

say whether a model with or without conservation
of energy is a better representation of a real ma-
terial. In any case it is only the correction terms
and not the leading singularities which are affected
by energy conservation, for z &0.

Finally, let us mention that in the presence of
a magnetic field the Heisenberg antiferromagnet
corresponds to model E (or I"), and in particular
the static properties are those of an Xl' system
(s 2) 14,46

C. Application to RbMnF3

hm4(k = 0) = 12.8x", 4' meV,

K = 0.476 t '7' A

(5.18)

(5.19)

The spin diffusion mode, on the other hand, is
hydrodynamic, and does have a Lorentzian form at
long wavelengths, with a frequency measured'4 to
be

k&u (k) = 1.09N, "k' meV . (5.20)

The dynamic critical behavior of the Heisenberg
antiferromagnet RbMnF, has been studied in de-
tail using inelastic neutron scattering. "'" Al-
though the accuracy of the measurements is con-
siderably less than in the case of bulk measure-
ments on fluids, the ability to study the complete
fluctuation spectrum of both the staggered" and
total" magnetization leads to an excellent semi-
quantitative understanding of the isotropic anti-
ferromagnet. As has already been stressed, "'
the exponent predictions of dynamic scaling theory
are reasonably well borne out by the measure-
ments. There is, however, an apparent, differ-
ence" "between exponents above and below T~,
which is not understood at present. This difference
leads to a weak t dependence of the critical ratios
v,/v, R„, and R„(see below). In addition, one
could hope for improvements in the aeeuraey of the
measurements and closeness of approach to the
critical point, but it is not clear how these im-
provements are best achieved.

It should be pointed out that although the frequen-
cy spectrum of y6(k, u&) given in Eqs. (3.47) and
(3.52) is Lorentzian, this property is not expected
to hold in higher order in e, and in particular for
d = 3. A non-Lorentzian spectrum was indeed found
recently by Freedman and Mazenko" in first order
in 6 for k& K. Moreover the neutron experiments '
on RbMnF, gave evidence for large deviations from
simple Lorentzian behavior at T„since they were
fit to a three-peak structure. Even above T„ for
k « ~, there is no reason to believe that g„(k, to)
will be exactly Lorentzian, although the data of
Ref. 23 were fit to such a form, with a character-
istic frequency
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[In Eqs. (5.18) and (5.20), K, and k are expressed
in A ', and we have used" a=4.24 A ' for the lat-
tice parameter at T„.] Below T„, the spin-wave
frequency has been measured as"'"

her (k) =25 2 f0.37k meV, (5.21)

with k again in A '. %e shall discuss elsewhere"
our estimates of the static ratio «,/» obtained
from the neutron scattering experiments, which
yield

~/~ =2 97t"" (5.22)

R'"P' = = —= 1.07 f '" (5.23)
0d (K ) (d (K+) K

ftxePt +0(0) I 16 f-0, 03
r/) (5.24)

(5.25)

The reduced ratios of (3.61) and (3.68) are

ff'"P'=If&"P'(K /K ) ~3=3021 f '=0.23-0.24

This result has the unexplained temperature de-
pendence alluded to earlier. We may now obtain
experimental values for the dynamic ratios in Eqs.
(3.60), (3.68), and (3.69), noting that for the anti-
ferromagnetic model (5.1), y is finite at T„and
y, /g =1. Using Eqs. (5.18)-(5.22) for d=3, we
find

in to Eq. (3.55) and using (5.19) we find

R'"~' = 0.17, (5.31)

which agrees with (5.27) to the extent that the ex-
perimental data are consistent with strong scaling.
The mode-coupling calculation by Huber and
Krueger20 obtained a value of Rr which was rather
close to experiment, but a value of R„which was
too small by a factor of 2.7, so that R~» was too
large by a similar factor.

Since RbMnF, corresponds to a symmetric mod-
el, it does not contain slowly varying corrections
arising from the small value of cy, as in helium.
On the other hand, the experiments did not go very
close to T, and the departures from scaling in
(5.26) and (5.27) (involving only data above T,) can
be accounted for by ordinary static and dynamic
corrections to scaling, with the exponents x& of Eq.
(4.21). The relatively strong temperature depen-
dence in the static ratio KJK of Eq. (5.22), which
influences R„and 8 [Eqs. (5.23) and (5.25)] and
involves data below T„seems less likely to be
merely a correction term, and further investiga-
tion of this point would be worthwhile. For the
purpose of estimating R» however, the tempera-
ture dependence of KJK seems to cancel, since
the two estima. tes (5.27} and (5.31) are in agree-
ment.

The theoretical values of R» R~», and Rr can
be estimated from the lowest-order expressions
(5.11)-(5.13) by setting & =1,

(using d=3 in this experimental value) and

(5.26) R„=0.065,

R„=0.19,
(5.32)

(5.33)

8'"0' ff '"p'/R'r ft3=0—.18 6 "=0.18-0.17, (5.27)

where the notation R'"~' again indicates that data
both above and below T„were used. In these
equations we have evaluated the ratios for the
temperature range t = 10 '-10 ' where the experi-
ments"'" were carried out. The quoted experi-
mental amplitudes vary with the fitting function and
it is necessary to include the unexplained tempera-
ture dependence when comparing with theory.

We may also obtain an experimental value for
R„using data purely above T„, from the measured
spin-diffusion frequency (5.20} and Eq. (3.55). The
quantity g, which enters Eq. (3.55) is

(5.34)

The second-order expressions (F18) and (F19}of
Appendix F may be extrapolated using K3 = (aw'} '
to yield

R„=0.165,

R„=0.155,

(5.35}

(5.37)R„»= 0.93.
Although the second-order estimates involve large
corrections to the first-order values, the rough
agreement of these estimates with the experimen-
tal values, (5.24)-(5.27) and (5.31), gives us some
confidence in our extrapolation procedures.

g0 = f3sTg/ls/ff ~

if g and m are measured in emu/cm', and

(5.28)

VI. CONCLUSION

X=3.9 x 10 (5.30)

(5.29)

where X is the usual susceptibility per cm' in
electromagnetic units. Inserting the value '

Let us conclude by summarizing the principal
results of the present work.

(i) Phenomenological models with planar-spin and
antiferromagnetic dynamics are introduced, and
their critical behavior analyzed using renormali-
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(y
—0}cc «(d+8/ v) /2 (6.2)

where II—= max(o, 0), and the transport coefficient
(thermal conductivity) diverges as

(6.3)

for 2&d&4. For d=3 we obtain Rect "~ C&~2, in
agreement with the prediction of Ferrell et al.'
for liquid helium.

(ii) Matching conditions are proved between
characteristic frequencies above and below T„
and the corresponding amplitude ratios are Shown

to be universal, i.e. , dependent only on the dimen-
sionality Rnd the fixed point reached. For bquid
helium the universal ratio is

X(t))I'p, (-t)
I 0'm«mpkB-T, C~(t)c,(-t) ' (6.4)

where ]f is the reduced temperature, p, the supex-
fluid density, m„ the helium mass, p the mass
density, C~(t) the specific heat above T„, and

c,(-t) the second-sound velocity. Inserting exper-
imental values on the right-hand side of Eq. (6.4)
we obtain a number which agrees reasonably well
with the second-oxdex &-expansion estimate. The
amplitude of the divergence of X may be related
to experimental data purely above T„by the uni-
versal amplitude

tt„=-Iim X(t)«I/'(t)/g, CI~/'(t), (6.5)

where the inverse correlation range «(t) is ob-
tained" fxom the singular part of the specific heat,
and the constant g, is determined from the entropy
at T„. The experimental value of R„at t =10 ~ and
SVP is in good agreement with the second-order
8-expansion for this quantity. Equation (6.5) rep-
resents the transport coefficient X purely in tex'ms of
equilibrium properties Rnd R calculated coeff icient.

zation-group methods. These models are appli-
cRble to easy-plane ferromagnetsy lsotx'oplc anti-
ferromagnets, and superfluid helium. Dynamic
scaling~' is shown to hold to all orders in & =4 —d,
and the dynamic exponents are expressed entixely
in terms of static exponents (Sec. ID). For sym-
metric models (magnetic systems in zero applied
field), the characteristic frequency of the order
parameter 18 given by

&u, (tl = 0) ~ «'/',

where v is the inverse cox'relation x'ange. For
asymmetric Illodels (llqllld helium and IIIRglletlc
models in an applied field}, the corresponding
x'elRtion is

The ratio P for the antiferromagnet involves
spin diffusion above T~ and spin waves below.
Moreover, the characteristic frequency (6.1) for
the order parameter (staggered magnetization)
has also been measured and the corresponding
ratios determined. The experimental values in
RbMnF, are in rough agreement with the estimates
obtained from the 8 expansion (Sec. V).

(iii) For the asymmetric model, the nature of
the dynamic fixed point reached depends on the sign
of the exponent n [see Eq. (6.2)]. For n&0, n=0
Rnd the asymmetxic model reaches a symmetH'c
fixed point, whereas fox z&0, there is an asym-
metric fixed point with distinct exponents and
critical amplitudes. Since liquid helium has o. & 0
but very close to zero, there will be significant
corrections to the asymptotic critical behavior
reflecting the slow approach of the specific heat
to its finite value Rt T,. These corrections, which
are analyzed in some detail in Sec. IV and Appendix
C, tend to mask the sealing behavior at finite dis-
tances from T~, and may serve to explain the
small observed departures' from dynamic scaling
Rnd unlvex'sRllty ln llquld heliulTl.

(iv) The applicability of our simple phenomeno-
logieal models to real materials is studied by
analyzing moxe complicated models with additional
fields. In the ease of the Bose liquid it is argued
that, these RddltlonRl fields only Rffect, the dynamics
at frequencies of order g, r(, which are much higher
than +~, since the first-sound velocity g, remains
finite at T„. For magnetic systems, energy con-
servation is Shown not to affect the asymptotic
critical behavior„since a&0 in three dimensions.
In the experimental range, however, energy con-
servation may lead to significant corrections.

ACKNOWLEDGMENTS

VVe wish to thank G. Ahlers and J.M. Hastings
for communicating to us unpublished experimental
results, and for numerous discussions of the data.
%e are gx'Rteful to H. Freedman and Q. Mazenko
for sending us a copy of their work (Ref. 15) prior
to publicRtion.

APPENMX A: HYDRODYNAMICS
OF THE PLANAR-SPIN MODEL

%'e may derive the hydrodynamics of the model
in Eqs. (2.1) without specifying the form of the
functional &,[g, III]. Thus the derivation given in

pp d t t tdt th p
ample of Eq. (2.1c). Let us write a Fokker-Planck
equation fol' 'tile pl'obRlllllty density P[$ IÃ] i1i the
form

(AI}
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In the absence of time-dependent applied fields,
a time-independent solution of (Al) is the thermal
equil ibrium distribution

Z= e 0~ ~d qdm. (A3)

8—= PlnPd ( d ~,

Q =— PF,d[q]d [m] —8 .

(A4)

The occurrence of this equilibrium solution de-
pends crucially on the facts that the same con-
stant g, appears in (2.1a) and (2.1b), and that the
constants ho and I',/c, in (2.1d) and (2.1e} are the
same as in (2.1a) and (2.1b). Indeed, requiring
that (A2) be an equilibrium state puts important
restrictions on the possible equations of motion
that can occur.

Let us define an entropy function 8(P) and a ther-
modynamic potential Q(P) by

(i). In the normal phase (above T, ), let us con-
sider the second-order response function X&
which gives the expectation value of g(x, t) in the
presence of weak time-varying fields h„(x', t') and
h&(x", t") I.t follows that

l 4:mg(x, , t, x', t', x", t" )d'x'

&g~y~(x —x", t —t") for I &t' &I"

0 otherwise. (A9)

M = d'x[m(x)] (Al0)

Here y& is the ordinary linear response function
for a time-va, rying field h& coupling to g. Equation
(A9}, which is a Ward identity, will be useful in the
general renormalization-group analysis of Sec. III.

(ii). In the ordered phase, let us consider a prob-
ability density P which minimizes 0, subject to a
constraint that the total "magnetization"

It is clear that 0 is minimized by taking P= P.q,
and that

Q(P,q) = -lnZ. (A6)

In the ordered phase, when the system has a bro-
ken symmetry, a thermal equilibrium state in
which the order parameter has a definite phase cp

may be chosen of the following form:

P„~= lim Z 'exp[-F, —Re(+ '~4)],
h 0+

d"x g x).

(A7)

(A8 }

[For a system of finite volume, h& must be taken
small but finite in (A7). J The thermodynamic po-
tential per unit volume for (A7) will differ only
infinitesimally from that of (A2), in the limit
of infinite volume, and it may also be verified tha, t
P

q fly is a time -independent solution of the equa-
tions of motion in this limit.

A. N as the generator of rotations of 4
Let us consider a situation where the system is

prepared in some specified state p, (g, m) at time
t = t„and then subjected to a uniform, time-depen-
dent field coupling to M [i.e. , h (x, t) = h (t)]. If
&& =0 for t &t„ then the only term in the equations
of motion affected by h is the second term on the
right-hand side of (2.1a). This term has the sole
effect of rotating the order parameter by the uni-
form phase 5y(t) =gJ, h (t')dt'. [This 5y is in
addition to any time dependence that would have
been present in the absence of h .] There are sev-
eral important consequences of this rotation.

have some specified expectation value M. Let us
suppose, also, that the phase of the order param-
eter is specified to be y0 at time t,. Then the
density matrix at time t, is given by

P= [Z(lVl)] ' lim exp[-F, +pM —h~(e '"%+e'~ @o)],
hq, 0

(Al 1)

where p. is a Lagrange multiplier which obeys the
relation

dQ
P =~y

and the thermodynamic potential 0 is related to
the normalization constant Z(M) by

(A12)

lnZ(M) = p, M —Q. (A13)

Note that p. is analogous to the chemical potential
of helium. Comparing (All) with (A7), and in-
volving our previous remarks on the effect of a
uniform field coupled to M, we see that the prob-
ability density P will not change in time except
for a variation of the phase y given by

dip dQ
dt ~0 dM' (A14)

Equation (A14) is the Josephson equation" men-
tioned in Sec. II.

B. Hydrodynamics

The long-wavelength, low-frequency behavior
of our model will be very similar to that of the
easy-plane ferromagnet discussed in Ref, 14, ex-
cept that in the present case there is no field cor-
responding to the conserved energy density. The
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hydrodynaxnie states in the paramagnetic phase
axe now described by a single conserved density
m(x, t) which is assumed to vary slowly in space
and time. In the ordered phase the hydrodynamic
states are described by two slowly varying fields
~(x, I) and y(x, t). For small long-wavelength
fluctuations the thermodynamic potential 0 will
have the form

Q=Qcq+2 d Xg ~
s T&Tc

Q=Q, +
J

d"x(~x 'm'+-,'p, iVyi'), 7 &T, (A16)

Martin, Siggia, and Rose which converts the
classical formalism at finite temperatures into a
form ana. logous to zero-temperature quantum field
theory, (i.e., with frequency integrals rather than
sums). This is accomplished by introducing a
fictitious adjointss operator for each classical
variable, and appxopriate commutation relations
to generate the dynamics. For the model in Eqs.
(2.1), in addition to the three physical fields P(», f},
g*(», f), and m(», f}, we define the adjoints ${»,f),
g*(», f}, and m(», f) by the equal-time commuta-
tion I'elatlons

[y(», f), q(»', f)]=A, 5"'(» —x'), (Bla}
where p, is a stiffness constant, analogous to the
superfiuid density in helium, and X is the suscep-
tibility given by

[C*(», f), i*(»', f)l=& 6"'(»- »),

[m(x, f), m(»', f)]=5"'(-»x')
(Blb)

(B1c)

X (q, (o) = Xq'/(-i(o+ hp/X), (A19)

for the correlations of m, but X& does not have a
hydx odynamic mode and is not in general domina-
ted by a simple pole. Nevertheless, one can de-
fine a characteristic frequency for P by its low-
frequency behavior, a,ccording to Eqs. (2.15}and

(2.16).

APPENDIX 8: DIAGRAMMATIC EXPANSION

AND THE RENORMALIZATION GROUP

A. General formalism

In order to implement the renormalization-group
calculations described in Sec. III we need a per-
turbation expansion for the frequency-dependent
correlation functions which follow from the equa-
tions of motion (2.1). We shall use the method of

x
' =O'Q(R)/dhf'

From the equations of motion (2.1), the thermo-
dynamic potential Q(P) may be shown to be a mono-
tonic decreasing function of time (in the absence
of any time-dependent perturbations). Using this
fact, and Eqs. (A12)-(A17), we may derive the
hydrodynamic properties of the present model in

the ordered phase, in complete analogy to the
derivation in Ref. 14. (HereQplays a role similar
to the entropy in Ref. 14.) In the limit of long
wavelengths, below T, , one finds a dissipationless
flow

(A18)

which leads to a px'opagating spin-wave mode, un-
damped in the long-wavelength limit, with fre-
quency given by Eqs. (2.12) and (2.13) of the text.
The response functions g&(q, ur) and g (q, &o) are
both dominated at long wavelengths by the spin-
wave modes in the ordered phase. Above T, we
ma, y write

C„s(k, (u) = Cs„(-k, -&u) = C~~„*(k, (o)*. (B3)

It is convenient to introduce 2 x 2 matrices 6 and
D for the correlation functions involving the g's
and m's separately, i.e., to define

G„=Cqq~, G„=Cq~ ——[C-„~q*]*=G,*„

&2~=Cg+g =-O, D,~=Cmm, D„=Cmm

= [C-„]*=a~+„D»=C-- =-0.

All other equal-time commutators between the
fields P, g*, $, g*, m, and m vanish. The physi-
cal fields g, g*, and m commute with each other
even at different times, as is required for a clas-
sical system. The constant A, in (B.l) is arbi-
trary, and may be taken to be unity, as in Ref.
2V. We introduce it here for later convenience.
We shall define correlation functions

C„(k,~)= T ([&(», t)&(»', f')],), (B2)

where T~ denotes a. Fourier transform, the+ is
a time-ordering operation, and A and B are cho-
sen among the 6 quantities g, P*, g, g*, m, arrd

m. . Of the 36 functions C„~ only nine are non-zero,
s Cg+g s Cmms C

g ti's Cg' lt s

C&*&,*, C-, and C -. The first three ar'e the
physical correlation functions, whereas the last
six are responses to infinitesimal changes in the
thex'mal noise sources, and bare only an indirect
relationship to the physical response functions
lt„{k,&u) and y (k, &u). The latter may, however,
be determined from the correlation functions C
and C„@by means of the fluctuation dissipation
theorem and the Kramers-Kronig relations.

We may note that of the nonzero correlation
functions, only four are independent, e.g., C«~,
C«, C, and C -. The remaining nonzero func-
tions are determined from these by the general
relations
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These correlation functions may be obtained per-
turbatively in terms of the bare propagators

4ReI'0
+ i.,(,+k')i'

602(k, u&) =A, [-i&a + I",(r, +k') ] ',

2A,ok

i-i(u+X X
'k'~' 'Do k v)=

D'„(k, e) =(-i++A, X, 'k') ',

and the interaction

P+q

(&)

d x Ao' 2yoI'og~g:+4u, I'Ocogg g~+igoxo'(~

+~g y.c.AI4I')+c. c c.~y—.™V'Ill'

kc.-g. n('4*&'0 0&-'0*)l (86)

It was shown in Ref. 27 that the ordinary Feynman
rules of quantum field theory may be applied to
(86) to find the dressed propagators. Let us define
self-energy matrices

(87a)

(BVb)

and interaction vertices U' (linking four 6' prop-
agators), and P' (linking two G, propagators and

one D ). Note that the mat elements Z and

H „are zero, and that Z, =Z,*„O, =II *,. %e rep-
resent the self -energies diagrammatically by draw-
ing a solid linefox the matrix 6', awavy line for the
matl lx D with a four -point vertex for U, and a
three-pointvertexfor V, as in Fig. 1. Thenon-
zexo matrix elements of U' and V' may easily be ob-
tained from the interaction (86), and are given by

U~««. Uo, „.« =(4a,—r, +iy,g, )c,y~„(89a)
U&~&*&&s = U&&~g*&*, ——(4uoFO —iyogo)co/AO, (881)

k —
p

—
q

(e)

FIG. 2. Some diagrams contributing to the self-energy
&, fox the g propagator.

In the last equation, k„k2, and ks are the wave
vectors associated with the fieMs @, g, and (*,
respectively.

Some typical diagram for Z and B are given in

Ce f = (2&oi"0+'go&0')~~o

l"-i*a*=»of'o '&oy ')~&o-

W qq*= X,yj', c, 'ig+, (k 22k,')c,.

(89a)

(89b)

(89c)

FIG. 1, Bare vertices in perturbation expansion.
Straight lines repxesent the order parameter f)I, wavy
line represents the field tn.

FIG, 3. Some diagrams contributing to the self-energy
0, for the m-propagator.
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Figs. 2 and 3. Note that each of these diagrams
may represent the sum of several terms, as dif-
ferent elements of the matrices are considered.
For example, the contribution of the lowest-order
diagram for Z», indicated in Fig. 2(a) is actually
the sum of two different terms, as illustrated in
Fig. 4.

B. Renormalization group

At the lthstage of the renormalization procedure,
the equations of the model may be described in
terms of renormalized propagators G, and D„
together with a set of interaction vertices, each
of which are matrices with indices referring to
$, g*, t(I, etc. We shall write the propagators
in the form

xa, ' —)l b *II,', (k, b))bb *)',
k 0

(B11c)

(k u)=P (k u) '] —b('+' ' & 'gG'(k' ~') ]

-Z,', (k', (b)')), (B12)

where a, a, and c are the rescaling exponents
for the fields tt}, g, and ~, respectively. We have
chosen the rescaling exponent for m as c =d —c.

The differences between the actual value of Z'
and II at finite k, and their forms in the limit k,
u-0, must be treated as two-point vertices,
which will be included in the diagrammatic expan-
sion for the renormalization group. Thus, for
example, we define a two-point vertex W' by

G1 Gl+ A)
iop+ I-, (r, +'lP} ' (B10a) iir l

( k }
e ) h(a+ a 2a 2a-)l (-[go(k x)

—
1])

c, i i()+x-I, (r, +'k')i' ' (B10b)
-Z,', (k', (x)P)), (B13)

+~ kX

2Z, k'

(B10c)

(B10d)

i BZ,', (0, (x)) (d- a-a)l (B11a)

where the constants c„r„and X&
' are obtained

from the usual static recursion relations.
The constants I;, A.„and A, are defined in

terms of the partial self-energy matrices Z'(k, (x))

and fl'(k, (x)} in which only intermediate wave vec-
tors greater than b 'A are included. Specifically
we identify

where k' = kb ' and &'= ub ". The two-point ver-
tices are small for small c, and may be neglected
in deriving recursion relations to lowest order
in e (see below).

In a similar manner we may consider the par-
tially renormalized three- and four-point vertices
V' and U'. In general, these will be functions of
their wave vectors and frequencies. To lowest
order in ~, these functions may be replaced by
their values in the limit k, co-0, and may Oe

written in the same form as (B8) and (B9), with
y„j.o, g„etc., replaced by y„ I;, g„etc. The
constants y, and u, are determined by the static
renormalization group.

C. Calculation of lowest-order recursion relations

r, =-A, A-'r — " k 0 O~'d--'-~i, »1baz'
The lowest-order diagrams for Z and II are

those of Fig. 2(a) and 3(a}, respectively. These
diagrams have the value

. (» )' (.. p*)(.. (p b)')(- -r.(.. (p b)*) ~ r&.. p*))}
dp 1 1 r, +r*,

, +p*
'

r, (p ~ b)* — ~ r, (,+(p ~ b)*) ~ rex, ip*))

(,)( )
(r, +k')g', ' d'p

&.x. . (X )' ( ~ P*)l. — ~ r(""P*)'"X.'(P-bi )}
4'Y, X I d p I;(r, +p'}+X,X, '(p —k)'

tb, )' (,+P*X- r(, +P*l ~ X.x. '(P-bi))'

(B14)

(B15)
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FIG. 4. Two different terms included in diagram 2a,
corresponding to two possible choices of the matrix
elements of the propagators. FIG. 5. Lowest-order diagrams for the renormaliza-

tion of the vertex V.

In (B14) and (B15) we have performed the inte-
gration over intermediate frequencies, and have
summed over the contributing components of the
matrices G and D', but we have left explicit the
momentum integrals. Recursion relations for
A. ,+, and I;+, are obtained by substituting r» g»
y„.. . , for r„g„y„.. . , on the right-hand sides
of (B14) and (B15), and restricting the momentum
integrals to the shell Ab '&P&A. The values of
the static parameters are determined by the static
recursion relations, and the changes in A.„,and

r, y are extracted from the behavior at cu- 0 and
k-0, according to Eqs. (Bll). Finally, rescal-
ing is performed and Eqs. (3.11) and (3.12) are
obtained. The recursion relation for the quantity
A„„which was not needed in the text, is given by

(4y', x, I; ~ 2',y)K, I

b)l+I. l ~i+~&x
(B16)

The coupling constant g, must be extracted from
the asymptotic form of the renormalized three-
point vertex V'. To lowest order in e, we approx-
imate V' by matrix elements of the same form as
(B9) but with renormalized coupling constants g„
y» etc. The deviation of the full vertex V' from
the simple form of (B9) can be shown to be small,
i.e. , finite and higher order in e (see below. ) Sim-
ilarly, the four-point vertex U' may be approx-
imated by the simple form (B8) with renormal-
ized parameters u„etc.

All the parameters other than g» which enter
the approximate form of V' and U', are determined
either from the static renormalization group, or
from the previously discussed dynamic self-ener-
gies Z,', and D,', . Furthermore, one can show that
recursion relation for g, can be written in the
form (3.10). to all orders in e. The fact that there
is no nontrivial renormalization of g, is closely
related to the exactness of the Josephson relation
and the Ward identity. This nonrenormalization
of g, has been checked, to lowest order in c, by
explicit computation of the renormalized vertices
V && and V-&&~. The diagrams which enter to
lowest order are shown in Fig. 5. The compu-
tation is fairly simple in the symmetric case, but

rather complicated in the asymmetric case where
each vertex has both a dissipative and nondisspa-
tive part. We shall not give details here.

It may be noted that the coefficient A» will be
independent of l, for large l, if and only if the
nonphysical scaling exponent 0 is chosen appro-
priately. We see from (3.16) and (B15), that 5
will be equal to 3, in the limit d-4. We may
also remark that the exponent a is in general
complex at the asymmetric fixed point.

In principle, we could have introduced a coeffi-
cient B» analogous to A» in the numerator of
D'„. The equations analogous to (Blla) and (B16)
would be trivial, however, because Ii is propor-
tional to k', and sli»(k, ~)/8&@~ o must vanish
in the limit k-0. The choice c=d —c leads to
B, independent of l; and we choose B, = 1.

D. Justification to all orders in e

The detailed justification of the above procedures
follows closely the discussion of the static case
given by Wilson and Kogut. " We mention here
only a few of the more subtle points.

(i) The self-energies and vertices generated
by the renormalization group are claimed to be
regular functions of the wave vectors and frequen-
cies, in the limit k-0 and a-0. It is clear that
the integrals arising from any diagram in our per-
turbation theory have integrands which remain
finite and regular for any frequency on the real
axis as long as all intermediate momenta are re-
stricted to a shell, with b 'A&P&A. Furthermore
the integrals over intermediate frequency vari-
ables can be carried out from -~ to+~, without
any difficulties, because the integrands fall off
sufficiently rapidly at infinity and contain no poles
or singularities closer to the real axis than the
minimum of 2Rel', A% ' and (Xg, '+ ReI', )&'5 '

The integrations over intermediate wave vectors
can lead to no divergences, because the regions
of integration are finite. Unfortunately, however,
the use of sharp cutoffs in k space does lead to
nonanalyticities of a weaker sort, e.g. , a term in
the self-energy proportional to ~k~ —because the
volumes of integration in various diagrams are
non-analytic functions of the incoming momenta. "
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11,',(k, O) = -){.{k,0)II I (k, O). (817)

The relation between Z22 and Z», to lowest order
in &, is given by Kq. (813), with W&» set equal to
zero. Also, the coupling constants g, and y„
appearing in different parts of the vertices V'

and U' must all be the same. Indeed, we see
that to lowest order in &, the system of propaga-
tors and vertices at stage / is equivalent to a set
of Langevin equations of the form (2.1), with re-
normalized coupling constants. %'e have already
remax'ked in Sec. D, that in order for the propeI
equilibrium dlstl lbutlon to be reached, lt 18 nec-
essary for the constants I"„and llo in (2.1d) and
(2.1e) to be the same as in (2.la) and (2.1b), and
similarly for the constant go in (2.1a) to be the
same as in (2.1b).

(iv) In higher order in 6, the relation between
Z» Rnd Z~ is not direct. The thoro-point vertex
II"', defined by (812) and {813), is small (of
relative order 6 or higher) but nonzero. In prin-
ciple, W (k, (d) IIIRy be expl'essed ill 'tel'1118 of tile
slowly-varying coupling constants by inverting the
renormallzatlon group equations RQd the detRlled
balance condition. (Cf. Wilson and Kogut and also
the analysis of Wilson, Ref. 10.) Similar consid-

These spurious singular terms lead to no funda
mental change in the renox'malization group be-
cause the singula, rities introduced at any stage t'

a,re cancelled by singularities of the opposite sign
in the next stage of the integration. Alternatively„
one may exnploy a renormalization group with

soft cutoffs Rnd avoid these diff lcultles, Ne
emphasize that these proMems of sharp eutoffs are
also a. feature of the static renormalization group
and are not eonseq enees of t e extension to dy
QRIDlC 8,

(ii) In developing the renormalization group,
we must keep explicit track of the slowly-varying
parameters, i.e., those pa.rameters which are
multiplied by R QGQ-Qegatlve powex' of 5 (either
II' or 5') under the scaling operation" ft;, in the
llmlt of foUl dlnlellslons The 1'eIQRlnlng variables
correspond to fast transients and may be ignored
(to lowest ol'del' 111 &) ol' 611111111Rted In fRvol' of tile
slow variables (at higher orders in e). The slow
variaMes in the present case are the constant
paxt of Z~, the part proportional to k', the con-
stant part of Z,'„ the parts of II'„and II'„propor-
tional to a', and the parts of V' and U ' listed in
(88) and (89).

(iii) The slowly-varying constants a.re not all
independent —there are various constraints that
must be obeyed if detailed balance and the

fluctuat-

ionn-dissipation theorem are to be satisfied. To
lovrest oxder ln ~, for example, n'„and O„' are
related, fox small k, by

The diagrammatic expRQslon fol A~ 18 the same
as for II», except that the fixst vertex must be

ig(gg-+P P ). In the symmetric case, model E,
where@0=0, and X =go, it is easy to see that

A (k, &u) =-yII„(k, ~). {820)

Tllus according to (A19), we lllRy expI'688 the
physical transport eoefflclent X Rs

X=X, -Iimk 'Il„{k,o)y, .
A simple relationship between A & Rnd Z», anal-

agous to(820) does not exist even in the symmet-
ric cRse, since tI1ere Rre diagrams sucl1 R8 Fig.
2(e) which contribute to Z», but not to A. On the
basis of our renormalization-group analysis, how-
ever, we know that

1(T)=a,I", (822)

rol' A OZO11(0, 0)
A, ' -iBZ (0, ~)/3Idi

and where gs is finite and universal, as T - T, ,
RQd eqURl to UQlty ln the llDllt c~ 0. We shRll see
in Appendix D that for model 8, a, = 1+0(6) and
that a, cancels the denominator of Eq. (823).

%e wish to study the recuxsion relations (3.8)-
(3.15) for model F in the case a& 0, i.e., when
v„=o. When iai is small el approaches zero very
slowly as I-~, and we shall retain the eorreetions
of 01'del' UI 111 Eqs. (3.14) Rnd (3.15). I't 18 con-

erRtloQs Rpply to the relRtloQ between Vy, qg g RQd

V~q q, etc»

(v) It should be remarked that II' and VI
&& are

proportional to 4' Rs k-0, to a, ll orders in c.
Aj.so, matrix elements such as zeal, Gl~, V'

&& +,
UqgI() gy g vanish identlcRlly. Matl lx elenlents
SUch Rs V~~y tt, or 7~gg j do not vanish ldentlc ally~
but are small (higher order in 6).

(vi) As remarked above, the precise relation-
ship between the physical correlation functions
or response functions Rnd the parameters of the
off-diagonal Green's functions G» and B» becomes
complicated beyond the lowest order in c. %'e

have, f01 example

X &(k, Id) = G»(k, &u)[A, 'I', + A& (k, &d)], (818)

whexe A& is a vertex coxreetion which ha. s a, dia-
gl'RnllllRtlc expRIlsioll SIIIIIIRI' to ZR(k, 4I)q 6xcept
that the fixst interaction in A& must be taken to
be 2igo+g*. %e also have

X„(k, (u) = D„(k, (u)[X,k'+ A (k, (u)] .
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venient to rewrite these recursion relations in
differential form,

where &r(L) -=d Ins (/)/(f/& 0, and we assume that
lol «[I.e., s(/) Is slowly vary1ng]. ~e may then
extend the integral in (C IV) down to lo- -~, and
obtain

—= v (o/1) -4v},

dE
—=—Re[0)(e - ,f -A-)],

dE
—=u)(A - ,f +4m)-

A. = (I +u)) '[fs)'/w -41)u) 4i -(fogy')')" ],
SV ='N +E,K

(C2)

(ce)

(C7)

k{l) =s{/)(a +o} '=a 's(/)-a 's(/)+, {C18)

where the dot ins (l) denotes a derivative with re-
spect to /. Equation (C 18) can be applied to Eqs.
(C12)-(C14), in turn, to obtain

F(/) = --', k+(32/9e)k(/) + ~ ~ ~, (C19)

X(/) =Bk' --', F'+4k'+(4/e)FY' —(64/e)kk

-(Ie/~)(kr+kr)+ ~ ~ ~,

Z(l) = 4k'+ (40/9e)kk + ~ .
where the terms left out of Eqs. (C19)-(C21) are
of higher order in k, k, etc. Equations (CB) and
(Cl) yield

where the quantities X, f, y, v, andre are all func-
tions of l. It is clear from Eq. (C3) that 1)- 0
when E -~, for n& O. In order to find the large-$
behavior of the various quantities, we expand the
equations about the symmetric fixed point se„= 1,
f„=e, v„=0. It is important to note that s)"(I) is
proportional to [v(/)]'~' [see Eqs. (Ce) and (Ce)],
so that we must go to second order in s)"(/). Let
us write

f (l) =e +4m+(40/lee)b+0(b', b)

d ink. d in/ q d lng
dZ ds ' "~'

dg

y, = (5/leev)[1+0((. )]. (C24)

f (/) -=~ [1+2(/)1,

u'(/) =- I+«/}
s)"(/) =- F(/),

1)(/) =-ek'(/) .

(CB)

(C9)

(C10)

(Cll)

If we define

cp(/) = const'). (/)I{ '~'{/),

(c26)
Then to second order in k{l) we find

dh
&
—

I
= -ak(/) +s(l),

with 8 (l) slowly vaI'y111g. Tile s0111't1011 1s

s(()= "J s"s(( )s)', '

vrhich may be written as

(C15)

dl
—= -&g +g&X -KkF+8&+ +Kk'

These eq~ations may now be solved for F(/), &(/),
and g(/) in terms of k(/), assuming k(l) to be slow-
ly varying. The general form of these equations
ls )/{I') = (x/A)"-')((/-/, ) =)I(/ =I, ),

l, -=/, -In(x/A) =l, —11n/;

(C28)

(C29)

the second equality in (C28) follows from Eq. (3.26),
for o. & Q. Let us define the "effective exponent"

( )
d In)L(T') d Iny (r)

d lnt dl (C30)

where we have used (C2). Equation (C26) may
be solved to yield

cons+ ~ —$ + 4y pgp + ~ s

In Eq. (C2V) we have chosen the undetermined
constant of Eq. (C25) such that s)( )=1.

In order to relate the function 1) (/) to observable
quantities, we note that the physical susceptibility
If (T) is expressible in terms of the rescaled
quantity )L{/) by [cf. Eq. (3.8)],

S()) 01J S) [ss(pl' s-=) )()its( ))+ +), '-
(CI'I)

which according to Eq. (C2), is given by

n, ( )=fc(, (L) = 4» {I) (C31)
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Equation (C27) can then be rewritten

y=l+y, n, +O(n,'). (cs2)

(n-n ).
dl v

The solution is

The temperature dependence of o., is found from
the differential equation (Cs), which can be writ-
ten as

Thus the final expression for X(T) is as given in
Eq. (4.21) of the text.

The foregoing calculation applied to the case
a &0, where the susceptibility g(T) goes to a
finite limit at T, , and n, vanishes when t -0 [cf.
Eq. (C34)], so that the expansion in (C32) should
become applicable as p T, . For a & 0, Eqs.
(C40) and (C37) can still be shown to be valid, but

n, tends towards n at T, , and y(n, } goes to a
finite constant, which affects the amplitude of
X(T) in Eq. (C40), in the asymptotic limit.

-nA exp[n/v (I —I,}] At
A-n-A exp[In/v)(t —to)] 1 +(A/n)(t —1)'

(c34)

with A -=n, (l =I,); in the second equality in (C34) we

used (C29). The quantity X(l) can now be found by
solving Eq. (C2), and X(T) obtained from (CSO), as

X(T}/'Xo=(A/'n}(t "-1}+
where X, =X(l =I,) =X(t=1), is the value "far from
T, ." The quantities X, and~ are nonuniversal
since they depend on l„or the cut-off A.

Note that in liquid helium the "susceptibility"
x(T) is the specific heat Co(T), as explained in
Sec. IVB. The pa, rameter n, (t) is simply related
to the ratio Co (t)/Co (- t). We may write

C'(T)/C, = (A/n)(t "- 1)+1, t&0, (C36a)

Co(T)/Co= (A'/n) (t~ "-A/n+ 1, t&0. (C36b)

From Eqs. (C36) and (C34) we find

APPENDIX D: SECONDARDER CALCULATION

FOR MODELE

In order to find the amplitude ratios g~ and Az
to second order in c we shall use the Feynman-
graph expansion method of Wilson, ' rather than
the recursion relations. This means that we do
perturbation theory in the Hamiltonian (86) with
parameters uo, go, ~0, Xo, go, yo, etc. , which
depend on E, and are fixed in such a way as to
eliminate slow transients from the perturbation
theory. We shall only consider the symmetric
case, where y0=0, so that I; is real, X is equal
to the bare susceptibility g„and u =uo. The
physical coefficients A, and I' will be obtained
from Eqs. (821)-(823), so that we need only cal-
culate the off-diagonal self-energies Z„and II„.

Since g, is not renormalized, we shall use it to
fix the overall frequency scale. We also choose
A, = c, = 1. I et us introduce the dimensionless
quantities

P =n-'(A'/A-I) -=AI /A. (css)

where we defined a universal quantity Eq (4 26) fo = &o ZoA '/XoTo

wo =FoXo/Xo~

(D 1)

(D2)

From the relation between the physical transport
coefficient A.(T) and the rescaled function X(l), we
find, using (C25}, (3.3), and (3.4}, If ' =—2' 'v' 'r(-'d) =Sv'[I--,'e(ln4s+I- C )+O(e )]

A.(T) = (a/A) '~X„[X(t,)/Xo]'~'y(l, ),

X(T}=go(w„'f„)~'~ '+[Co(T)]'t'y(n, }.
(C39)

(C40)

= Sw'[I- 1.477&+0(e )]. (Ds)

s, = —,'e~+O(e'},

x, = &~v+0(~'),

x, = e~+O(e').

(C41)

(C42)

(C43)

In obtaining Eq. (C40), we have neglected the
exponentially decaying transients in f(t}, arising
from the terms independent of p(t) [or k(t}] in
Eqs. (C12)-(C14). These will give rise to powers
of t with combinations of the following exponents
corresponding, respectively, to the eigenoperators
w' w" and e 'f 'w'--

We shall fix fo and wo, as functions of e, by the
requirement that the scaling relations (3.55) and

(3.56) be satisfied order by order.
The diagrams contributing to 5» up to second

order in ~ are shown in Fig. 2. The three-point
vertex is V [Eq. (89)], and the four-point vertex
U' [Eq. (BS)]. The propagators will be taken in the
form (85), except that r, is replaced by r =X&'(k =0),
i.e. , one performs a "mass renormalization. "'
After considerable rearrangement, the contribution
from the diagrams in Fig. 2 can be reduced to the
following form:
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Z ('i (k = 0, &o) = -rgoXo
'

o (r+ P') '[-i oo+ I' (r +P') + & X. 'P'] ', (D4)

h d h d

Zoi"(0 0}+Zoi'(0 0}=r(goXo'}' o o(r+q') '[~oX. 'P'+r. (r+P')) '

1 (P+ q)' —q'

Z, X, '((' ~ (P ql*l ~ r, ( q'(
'

( ('(r, p' ~ e* ~ (( s(* ~ ( )'
(D5)

h d h d

Zoi (0 0)="(g'oXo')
(2 )o 2 )s [(XoXo'P'+ro P'+r r)(~o Xo'q'+ roq'+ r r)l '

[p' (p+-q)'] q' —(p+q)']
(r+P )(r+q )[r+(P+q) ro[P +q +(P+q) +3r] [XoXo'(P +q )+I'or+I'o(P+q)'][r+(P+q)']

(D6)

1 r, [3r+p'+q'+ (p+q)']
(2v) o (2v) (r+p )(r+q )[r+(P yq) ] i&d+-r [3r+p +q + (p~q) ]'

The diagram coming from Fig. 2(f) gives no contribution in the symmetric model for k 0.
Similarly, the diagrams for II»(k, (o) shown in Fig. 3 lead to the integrals

A dop
II,", (k, 0)=-g'o/X, r, 2, 2(k P)'(p'+r) ',

0

h yd h yd
1121 (» 0) = l(go/xor, )'k'

2 2
(p'(r+p')-'

x(r+q ) '[lo(p'+q'+2r)+XoXo'(p+q)'] '),
h ydp

(D7)

(D8)

(D9)

x(r+q') '[ro(p'+q'+2r)+XoX, '(P+q)'] '}, (D10)

and the diagram in Fig. 3(d} does not contribute.
The quantities f~ and wo are known in lowest order
from the recursion relation analysis, and in gen-
eral we write them in the form

(D12). A rather lengthy calculation yields,
for r-0,

Z"'+ Z,", = I,rf', 2-'[21n'(A'/r) + ln(A'/r)

f, =a(1+foe+ ~ ~ ~ ),
sp= 1+F06+' ' '

We find, to second order in c, for r- 0,

(D11)

(D12)

(D16)

(D17)

x (201n2 —1 —121n3)],
Zot, i = rorf, 2 '[ln(A'/r)(12 ln2 —6ln3 —1)],

A
Zo~ (0, 0}=— woln 1+ -ln

2(1+w )
' 1+w, 2 r

+ ln —+ —ln'

g g(e)

ei(o o 2(1+w, )
1+ (1+M,) In ' + 0(e'),

1 +260

(D14)
II„'i(k, 0) = Xo k'Xo 'f~d '[o —ln(A'/r)

+ —,'min(A'/r} ——,'e ln'(A'/r)]. (D15)

The other integrals, which are multiplied by

fo e', may be eva-luated for d=4, inserting the
lowest-order values for fo and w„ from (Dl1) and

Z,; (0, oo) = Z, ', (0, 0) +i &u96 ln K'uo ln(A'/r) .
(D18)

The term Zot,' (0, 0) is just equal to ro times the
contribution of the diagram 2(e) to the renormal-
ization of r, and thus drops out of the correction
to I". We choose up 5' E fixed at its lowest-
order value, "for n =2. In addition, we find

Il„(k, 0}= (Xok'/Xo)f P '[ln(A'/r)(6 ln3 —121n2 —1)

+ ln'(A'/r)], (D19)

Ilo(', i(k, 0) = (xok'/Xo)f p '[ln(A'/r)(61n2 —31n3 —1)].
(D2O)

We now insert the above results into Eqs. (B23)
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and (821) for 1"' and A, with A, =—1 and Xo—= }(, for
the symmetric case. To linear ordex in & we
obtain, using Eqs. (Dl1)-(D20),

I"/I', = (1 ——,
' e + —,

' c ln2) [1+—,'e In(A'/r)

+ ~2 e' In'(A'/r) + e' ln(A'/r)

(,' f~
—B—wo—pln2+ peln3+ ~- /~in f )],

(D21)

(818) to first order in e. Only the diagram Fig.
2(a) contributes, and we have, to first order in e,

Av(k, w) = —{r+k') 'Z~i;~(k, w) .
Using (818}, (823}, (A20), and (2.16), we then
find, for the symmetric model with A0=1

teZ 0, {d

~(d ~-0

y/y, = {1-se)[1+—,'e In(A'/r}+~»e'In'(A'/~}

+ g2 In(A'/r)(~ f0 +~8 ln3 —jf ln2 + 8) ] .
Thus, for R& of Eq. (3.6V) we find

-2 2+ +I'
go K

(D33)

According to dynamic scaling [see Eqs. (3.5)
and (3.6)], we must have

~- / ~-( / )( -y})

-g/a+y} y-(g/2-f))(a-I))

(D23)

(D24)

Ne may verify these relations to linear order in
~, by comparing the terms proportional to
e In(A'/r) with the terms of order e'In'(A'/r) in
(D21) and (D22). This exponentiation condition
confirms the validity of the lowest-order expres-
sions for f, and w, in Eqs. (Dll) and (D12).
Moreover, from the condition that the sealing
relations (D23} and (D24} should also hold in sec
ond ox'der in c, we find conditions on the terms
proportional to e'In(A'/r) in (D21) and (D22),
which imply

APPENDIX E: EFFECTS OF ENERGY CONSERVATION

Let us consider the following three-field model

UFO . 5EO
0 Qyg 804 (Ela)

It„=I;g '}('"(I——,'eln2)

ff I {wJy ) I (I -e ln2) (D34)

Expanding, once again, the quantities svo
' and

fo" we obtain

=Z'"e '"[1—0.860&+0(e')].

f0
= —,

' ln + —g
= -0.284,

~,=~-~ln ~= -1.659,

(D25)

(D26}

S~ &+0
'dt 5C

(Elc)

where we have used the value (for n = 2) q= ~50m'

In order to find the critical amplitude ratios
we return to Eq. (D22), which we rewrite as

X =X,(I —~«)(A'/r)'~'=B, g,}i"x-'", (D27)

=if&~'e '~'(1+0.597q) . (D29)

In a similar manner we find

I"=I',(1 ——,'e+ ~eln2}x '~'"". (D30)

In order to calculate the physical quantity I',
we must know the vertex correction A(k, ur) in

ft ~
= (1 —s3e)(w,f,) "'K~",

and we have used Eqs. (Dl), (D2), and the rela-
tion" r =a'[I+0(e')]. Since the correction to w,
in (D26) is rather large, we shall. calculate w,"'
=1+ ~ Oc+ ~ ~ ~, which is the quantity entering
(D28). Inserting also f, to second order in e from
(Dll) and (D25), we find

Ry =Kg e (1 —a6 —~@of —gfOE)'

E = dg &y' jg +-&g +u

+ -,')t,-' m'+-,' C, 'P + y,'~( yP),

where m and & are real fields representing the z
component of magnetization S, and energy density,
respectively, and g is a complex order parameter
representing S„-iS,. The noise sources 8, g,
and & have Gaussian correlations, as in (2.1).
By the symmetry properties of the system under
180' rotations about the x axis, it may be seen
that the e equation cannot possess reversible
terms (proportional to g, ), or terms containing
5E,/5m. The model defined by Eq. (Bl), which
we shall call model E' reduces to model E when

yo =0, and to model C of HHM" wheng0=0. It
corresponds to the planar ferromagnet in the ab-
sense of a z magnetic field discussed in Refs. 14
and 34. %'e ean introduce a corresponding asym-
metric three-field model (E') by adding to E, terms
terms linear in m, as in (2.1c), but we shall not
treat this model explicitly here. The reeux"sion
relations for model 8' may be obtained analogously
to those of Sec. IG for model E. The static recur-
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sion relations are identical to (3.5}-(3.9), with
in addition an equation for v) =E—,(y, )'C„

vz„= 5' vf[I —Inn(32Z', u, - 4vz)] . (E2)

1+fr 1 1r 2

fr 1 4
se, +, =a, 1+Inb ' — f, ——

I1+mr +y r

sin& 4'Ur +
1+)Jr 1+p, r

Repea. ting the analysis of model C, or model I'
(Sec. III), for Eq. (E2), we find

4v„=a/v = —,
' e +0(~'}, (E7}

where a=max(o. , 0). Thus for a(0, v„=0 and the
energy becomes uncoupled from g and rn near T,.
The exponents and amplitude ratios are the same
in models E' and E, though of course the correc-
tion terms mill differ. For 0. &0, we may combine
Eqs. (E4) and (E5) to find

f„=a=2f „/(1+co„)—8v„/(I+ p„), (ES)

irrespective of the values of w„and p, „. Then Eq.
(E6) may be rewritten, using (E'I), as

p i~i = p ([I —In&((z/v+ 2 6 }],
which only has solutions

(E10)

(E11)

of which (E10) is the stable one. It then follows
from Eq. (EB) that

se„=~7+O(e) .
Since both f„and so„are finite nonzero constants,
we may repeat the analysis of Sec. III to find

f

P oc K-&~2

(E13)

(E14)

(E15)

whereas the thermal conductivity A. is unrenor-
malized, and the thermal diffusivity has a sca, ling
exponent"

zz = 2+&jv.

The dynamic recursion relations can be written in
terms of f, and w, of Eqs. (3.3) and (3.4) and

p, , —= A. , /I', C,

(note that I', is real since the model is symmetric,
i.e., even in m). These equations are

APPENDIX F: PERTURBATION THEORY

AND SECOND-ORDER CALCULATION

FOR THE ANTIFERROMAGNET

The diagrammatic formalism for model Q is
very similar to that for model E. In the antiferro-
magnet the physical fields are the six real vari-
ables g and m„, n =1, 2, 3. We introduce adjoint
fields g~ and m„, and define correlation functions
in the same may as before. We may again define
2& 2 matrices G and D, which are related to the
nonzero correlation functions by

~ ll

12 tp~ Q~ [ g(y g(y ] C21

(F1a)

(Flb}

As mentioned in Sec. IV, we anticipate that higher-
order corrections to the recursion relations may
yield some of the same difficulties as mere en-
countered"'" in mode1 C for 2&n&4, owing to the
singular nature of the fixed point reached [see
Eq. (E10)]. Nevertheless, dynamic scaling may
hold for a suitable definition of the characteristic
frequencies.

It is instructive to see what would have happened
if the field ~ had been introduced as a noncon-
served quantity. The operator (A.,&') in Eq. (Elc)
would then be replaced by a constant I"0, and the
noise source g mod1f led accordingly. The re-
cursion relation for I', would then read

I/r„, = 5-2(I/r', )[I +O(~)] .

It follows that (1/I' f) is a "fast transient, " which

rapidly tends to zero with increasing /. The field
~ then responds instantaneously to fluctuations of

g and m, and may be eliminated in favor of a,n in-
stantaneous interaction between the latter fields.
The critical behavior is thus simply that of the
two-field model E. Alternatively, one could have
eliminated the nonconserved field ~ from the equa-
tions of motion at the beginning, at the price of
introducing interactions which are nonlocal in
time. Since the retardation is of order C,/&, ,
mhich is short compared to the order parameter
relaxation times near T„one would not expect
the ~ to affect the critical properties. Indeed,
frequency-dependent interactions at intermediate
stages of the renormalization group were already
encountered in earlier discussions (Sec. III C) and
mere argued to be irrelevant.

More generally, it appears than any number of
nonconserved fields may be added to the models
listed in Table I, mithout any effect on the critical
dynamics, provided that the overall symmetry and
Poisson bracket relations for the order parameter
and the various conserved fields are not altered.
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Dii —C~ ~, (Flc) 112| (k, 0) = (Aok'/y, }f',2 '[ln'(A'/r}+In(A'/r)

D12 =~% 4 =[G ] =&2*1 ~ (Fld)

The bare propagators 6», D», and D'„are the
same as in (B5}, but (B5a) must be replaced by

G (k, w) =2I' /(cJ —i&@ +I',(r +k )I') . (F2)

Equation (B6) is now replaced by

x (301n15 —120 1n2 —1)], (F10)

II,; (k, 0) = (A.o k'/y )f' 2 ' ln(A'/r )

(60 ln2 —15 ln15 —I) . (F11)

The constant u, must now be chosen as —,', 7t'e. Let
us write

I = —„d"& g 0 ~a8y O'X.o' mals 4y+ ~omakaka
a8y

w 0
= 3 +w,'e + O(e'),

f0
= e +f,' e'+O(e') .

(F12)

(F13)

(F3)

where e z is the antisymmetric unit tensor. See
Eq. (5.'I).

The calculation of diagrams is identical to that
for model E, except for simple numerical factors
arising from the sums over components in (F3)
and the factor of —,

' difference between (F2) and
(B5a}. For any given value of the parameters u„
go I 0 etc ., the contributions of the various dia-
grams in Figs. 2 and 3 may be written as

We then find

I"/I', = ( 1 —-' e ——,e ln —,') lt1+ —,
' e ln(A'/r) + —,', e' ln'(A'/r)

+,—', e' ln(A'/r )[8f,' —2 w,' —19 ln2

+ ~ ln3 + —,
' --',~» ln —,']], (F14)

»/»0 = (1 -&e)[1+ —,
' s ln(A'/r) + 3—', c' ln'(A'/r)

+e' ln(A'/r)(-, 'f,' —~~ ln2+ —'„' ln15+ —,')].
(F15)

Applying the scaling laws (D23) and (D24), we ob-
tain

Z2l,'(model G) = s'Z2l,"(model E),
Ill,"(model G) =P 'll l,'(model E),

where

s'=4, s'=s'=s'=p'=

(F4)

(F5)

f0= -0.258,

wo = —3.102 .
(F16)

(Fl I)

The amplitude ratios defined by Eqs. (3.55) and
(3.56) are

R&, =K~(3e)-' '(1 ——', e ——', w,'s —',foe)-
S 4 & (F6) =Kg(3e) 'i'(I +0.211m), (F18)

Thus Z2lf
' is now given by Eqs. (D13) and (D14)

multiplied by 2, whereas II2~,' is precisely given
by (D15). The lowest-order value of f, is the same
as for model E, but the lowest-order value of wp
is now 3. For the diagrams other than II2~,' and
Z, ', it suffices to use these lowest-order values
in the integrals, and we find, for d =4 and r-0,
taking into account (F6):

Z„+Z„' = I', rf', 2 '[4 ln(A'/r)+ln(A'/r)

x (3 +42 ln'I + 61n3 —132 ln2)], (FV)

Z2l, ~ = F,rf 2' 0In(A' jr)(40 ln2 —'I In'I —91n3 —2),

(F8)

Z„' (0, ru) = Z2,
' (0, 0) + i&uuoK~(120) In+Bin(A'/r),

(F9)

Rr=Kt '(3/e)' '(1 — e ——,'e ln,'-+ —,'wo —2fo)

=K~(3/e)'i'(1 —0.605e) . (F19)

We have used a relation analogous to (D30)-(D32},

&= I', (I+-,'e In-,')» 'l" '. (F20)

An equation equivalent to (F20) was recently
found by Freedman and Mazenko. " As a result of
a comparison of our Eq. (F20) with their work,
we uncovered an error in an earlier version of the
present paper, which had led to incorrect values
for several of our universal ratios, at the linear
order in e.

Note that since I', is not measurable, Eq. (F20}
cannot be compared directly to experiment. It is
only once one has determined w,' and f,' from a
second-order calculation that one can make con-
tact with experimental amplitudes via (F19).
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