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Ultrasonic study of terbium in a magnetic field*

S. Maekawa, ~ R. A. Treder, M. Tachiki, ~ M. C. Lee, ~ and M. Levy
University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201

(Received 16 July 1975)

A model is presented which describes longitudinal ultrasonic propagation characteristics in magnetic materials.

The model specifically incorporates magnetoelastic and exchange interactions when an external magnetic field

is applied. Spin fluctuations and spin polarization are seen to play a dominant role, and particular attention
is focused on the effect of critical fluctuations near the magnetic-phase-transition temperatures. The model is

applied to single-crystal terbium. Longitudinal ultrasonic attenuation data are presented under conditions of
constant temperature and constant magnetic field. The constant-temperature data reveal a very large
attenuation enhancement by a magnetic field in the paramagnetic region. The constant-field data show

anomalous attenuation maxima even when the applied field is sufficient to quench the spin-spiral state; a
magnetic phase diagram for terbium is deduced from the constant-field data. A quantitative comparison
between the experimental results and theory is presented for the constant-temperature data, and a qualitative

comparison between experimental results and theory is presented for the constant-field data. Good agreement

is achieved.

I. INTRODUCTION

Terbium has very strong magnetoelastic cou-
pling, indicating that changes in its spin order-
ing (due to temperature changes or application of
magnetic field) will significantly affect its ultra-
sonic- attenuation and velocity characteristics.
Experimental studies of the ultrasonic velocity
and zero-field ultrasonic attenuation have already
been reported. ' ' We shall report on the ultra-
sonic attenuation in terbium for nonzero applied
magnetic field.

Our experimental measurements show that for
temperatures above the Neel temperature, the
constant-temperature attenuation in terbium first
increases with the magnetic field, then reaches a
maximum and decreases as the magnetic field in-
creases. Near the Neel temperature the applica-
tion of a magnetic field increases the ultrasonic
attenuation by an order of magnitude. We have
found, in addition, a very complicated tempera-
ture dependence of the attenuation, depending
strongly on the magnetic field applied: A double-
peak structure occurs for low magnetic fields and
the two peaks appear to correspond to the Neel
and Curie transitions; at the intermediate field
strengths only one peak is discernible; at higher
fields, the temperature dependence again exhibits
a double-peak structure. Luthi et al. ' have re-
ported anomalous divergent behavior of the veloc-
ity variation with temperature near T„ in Tb under
a magnetic field.

A recent theory developed by two of the present
authors (M.T. and S.M. }, and applied in particular
to the experimental results on MnP found by
Komatsubara et al. , "is modified in this paper
to explain these experimental results; the modifi-

cation consists of the explicit inclusion of the mag-
netostriction as well as the magnetic field in the
expression of the spin fluctuations. This model
considers the atomic lattice and spin system as
coupled via the exchange and single-ion magneto-
elastic interactions: The theory regards the cou-
pled lattice and spins as the unperturbed system;
the time-dependent modulation of the lattice-spin
coupling which accompanies the impressed ultra-
sonic wave is regarded as a perturbation. Phonon
absorption by the spin system produces the sound
attenuation.

Of particular interest in this paper is the critical
attenuation of sound near a magnetic phase transi-
tion, such as near the Neel temperature or Curie
temperature. In the vicinity of these phase transi-
tions the fluctuating spins have components which
become relatively strongly correlated, the corre-
lation strength being governed by the proximity to
the transition temperature. This correlation of
spin components essentially increases the effec-
tiveness of the spin-lattice coupling, giving a
corresponding increase in the ultrasonic attenua-
tion.

Our experimental results appear to be explained
by the effect of the magnetic field on the spin
polarization and fluctuations of the spins which we
have incorporated into our model. This model
starts with a random-phase approximation in which
the attenuation coefficient is expressed as a sum
of two terms: A cross term of the static spin
polarization with the two-spin correlation function
parallel to the field, and a sum of products of
four-spin correlation functions which are later
decoupled into two-spin correlation functions. In
the magnetic field the maximum of the two-spin
correlation function occurs at different tempera-
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tures for different directions, and each component
of the correlation function contributes to the atten-
uation in a different way. This has allowed us to
interpret the double-peak structure observed in
the high-field region. The constant-temperature
attenuation behavior and the velocity variation for
temperatures above T~ can also be explained on
the basis of this model. In this way we have re-
duced the information to a magnetic phase diagram
for terbium which gives an overview of the mag-
netic field effects we have found for this element.

II. THEORY

m +an + +e + me ph N- ph (2.1)

denotes the exchange interaction and the Zee-
man term:

Terbium metal has a spin-spiral structure for
only a narrow temperature range between 227 and
221'K. Its spin-spiral axis is along the c axis
and the spins are in the c plane of the hexagonal-
close-packed (hcp) crystal structure. The spin-
spiral turn angle is around 18', which is small
compared to that of the other rare-earth metals.
At 220'K a first-order phase transition occurs
and the spins align in the c plane ferromagneti-
cally. There is appreciable lattice distortion at
this temperature (5l/l =10 '-10 '). According to
Cooper" the transition occurs because there is
competition between the exchange interaction for
the undistorted hcp lattice favoring a spin-spiral
arrangement on the one hand, and the magneto-
strietion favoring a ferromagnetic arrangement
on the other hand. The reason that the transition
occurs is that the temperature dependences of
these different contributions to the free energy
differ. The magnetostrictive energy is larger at
low temperatures than the difference between the
spin-spiral and ferromagnetic exchange energies.
However, it falls more sharply than this difference
with increasing temperature, so that at high tem-
peratures exchange effects for the undistorted
lattice dominate. A magnetic field in the c plane
narrows the temperature span of the spin-spiral
phase. At a certain value of the field, the spin-
spiral phase disappears and above this field the
spin system is uniform at any temperature.

We should emphasize the following two points:
First, the energies between the ferromagnetic
and spin-spiral states are very close. Second,
the magnetoelastic interaction has an effect on the
ferromagnetic phase transition which is compara-
ble in magnitude to that of the exchange interaction.

The Hamiltonian for Tb is expressed as

ac~ = DQ [S'„——', S(S+1)] D=, ' ) 0.
f

(2.3)

X, denotes the elastic energy for the system. The
complete expression for the hexagonal lattice has
been given by Callen and Callen. " According to
them, K, has the following form:

where

+~2c" [(E ~1)' + (e ~2 )'] + —,
' c'[( )e' + (e', )'], (2.4)

+ 6„+Egg

e"' =(-'v 3)(~"—-'e ')
1 2( xx XX)i 2 xX
7 1

6gy 3
6 2

(2.6)

The symmetry elastic constants are related to the
conventional Cartesian elastic constants by

11 9 ( 11 12 13 33)&

c» = (2j31I 3 ) (-c» —c» + c» + c33),

3L
22 3 ll 3 12 3 13 3 33&

c =2(c11—c12), c =4c44.

(2.6)

where 5, is the total angular momentum at the
ith site. Hereafter, the total angular momentum
is called spin. g is the Lande g factor which is
+ for Tb. The case we consider is that of a mag-
netic field applied in the c plane. The & axis is
taken parallel to the magnetic field, the y axis
perpendicular to the field in the c plane, and the
z axis parallel to the c axis.

For the hcp lattice of Tb, there exist four mag-
netic anisotropy constants. " Of these anisotropy
constants, the second-order anisotropy constant
K, is the largest. " " The fourth-order aniso-
tropy constant K4 is one order of magnitude
smaller than K, at O'K. " From torque measure-
ments on a dilute solution of Tb in Gd, it has been
shown that the sixth-order uniaxial anisotropy
constant K3 is about 30% of K, ." The sixfold basal-
plane anisotropy constant K6 is two orders of mag-
nitude smaller than K, ."" The effect of K, on
the spin-spiral to ferromagnetic transition is
negligible compared with the magnetoelastic effect.'
Therefore, we only retain the anisotropy energy
which corresponds to K, and write the spin Hamil-
tonian as

K~= -g J,3 5, Sy +EPsHP S„, (2.2)
All the elastic constants of Tb have been mea-
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sured at room temperature by benson. His
results show that c»=0.11X10"dyn/cm', which
is about two orders of magnitude smaller than
other elastic constants. Therefore we assume

that c» in Tb vanishes and, thus, the (a, 1) and

(a, 2) strains are not coupled.
The magnetoelastic Hamiltonian+, for a hcp

crystal has been given by Callen and Callen".

-QB [e,"2( 8,', - S,',) +c, 2 (8„8(),+Sg„S„)] QB' [ e,'2 (8()8» +S„S ) ) +e2 —.' (8„8(g +8(gS„)].
(2.7)

In the above Hamiltonian, the two-ion-type terms for the y and & strains were neglected because the
single-ion theory provides a good fit to the experimental data on the temperature dependence of these
strains in Tb' and Dy. ' 3.'„„represents the Hamiltonian for the noninteracting longitudinal acoustic
phonons:

&p( =QSav~gf)t f)
k k

k

(2.8)

where wo- is its frequency, and the operators b-„and b~ are annihilation- and creation-boson operators„
respectively. The longitudinal acoustic wave along the c axis couples to the spin system through the
strain modulation of the exchange and magnetostrictive interactions. When the strain &„ in & ' and &

is expressed by the derivative of the lattice displacement and the displacement is expressed by the phonon
operators, this interaction Hamiltonian in the long-wavelength limit is obtained as

(2.9}

Vg, = -Q Qg",~
(k)e'"'" 8,„8~„, (2.10)

P(, , = -Qh*(k)e "'
& [8(g —SS(8 +1)], (2.1 1}

g~), (k)= f(k'e~) D„,(ij) — 5 „(ij)+ 8 „(ji)—, B„(ij) for g—=xandy,
(2.12)

gf~(k)=f(k e, ) f)„(ij)+~D,".(ij)+~f).,(ij)+ 'D:gij)-

h(id = ((): i.) l )) )—, ))
2

(2.13)

where p is the density of the crystal, V is the vol-
ume, and e„ is the polarization vector of the pho-
nons with the wave number k which is parallel to
the c axis in the z direction. The variation of T„
has been observed to be linear with pressure in
Tb and Dy."'" Thexefore, the higher-order
effects with respect to strains and phonon ampli-
tudes were not included in Eqs. (2.7) and (2.9).

We calculate the free energy from the Hamilton-
ian (2.1) using the mean-field approximation and
obtain &p from the relation sF/se, '~ =0 as

+ ol, j. ~& 0) D+ 0)

+ 0( B,2[+8(S+1)-A2/2AO],2 xx

Dcx O g) 0' 0)

+ B„[+ S(S+1)—A, /2A ],&3

(2.14)
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y
B"

e& —— [S(S + 1) —3 (A, /A, )], (2. 16)
I ~ e"' "& Tr(S&&- o„6„,)exp[-PKmf (i )]

Tr exp[ -PZ, (i )]

where D „(0) is the component with q=0 of D (q)
defined by

(2.25)

The diagonal element of the staggered susceptibility
defined by

„(q)=PD"„(ij)e"' &

ij
(2.17) X" = —lim qp~(S" )/~NH"q

H~~ p

(2.26)

o, =(S,)

= [A, /Aq —zP( D+ fp~-et)(A, /Ao —A,A, /Aq)],

(2. 18)
v3D= D — (B„e '+ B„e") (2. 19)

When a staggered magnetic field H", is applied
along the p axis, the mean-field Hamiltonian for
the ith spin is expressed as

JCmf (i) = (-2Joo, +g~sH) S„+DS,', —,' B&e & (S—,', —S&'„)

+ (—2 d,"( S-", )/WjV +gp. H-") e "' ~ S;„,
where

(2.20)

P-= J-+ D„(q) — D'„(q)e"'

The other strains are zero. In Eqs. (2.14)—(2.16),
A„ is defined by A„= Tr(S, )" exp(-PX, ) with the
mean-field Hamiltonian X f. By following the
mean-field theory in the usual way, the magnetiza-
tion in the paramagnetic and ferromagnetic phases
is calculated from the self-consistent equation

is calculated as

Xq =g PaGq/(I —2dgGq). (2.27)

The definition of t"„ is given in the Appendix. In the
above calculation we used the frozen-lattice model. '

The large anisotropy energy strongly suppresses
the spin fluctuation along the c axis and X-' be-
comes very small. The magnetostrictive inter-
action suppresses the spin fluctuation perpendi-
cular to the magnetic field in the basal plane and
decreases X$. We indicate by Q the wave number
at which Jq has its maximum. Then, X& diverges
at a certain temperature under a magnetic field,
and a sinusoidal spin order with wave number Q
and with an infinitesimal amplitude appears along
the y axis at this temperature. We call this tem-
perature the Neel temperature. The Neel temper-
ature decreases with increasing magnetic field.
Above a critical magnetic field H, , the constraints
on the spin motion reduce the fluctuations such
that the divergence in X@ disappears, resulting
in the disappearance of TN. However, even under
magnetic fields above H, , X has a maximum when
the temperature changes. This maximum leads
to an anomalous peak of the attenuation coefficient
of longitudinal sound waves. Xq does not diverge
at any temperature under a finite magnetic field.

W3, v3
+ D„(q)e ' + D,', (q) "e6„, , (2.21)

J —~ J ei'q (Ri
q ~ ij

i-j
(2.22)

g(S &6 )el+ R~ (2.23)

In Eq. (2.20), we divided the component ~'p into the
static spin polarization 8, = ~N& and the deviation
& p from it:

III. ULTRASONIC-ATTENUATION COEFFICIENT

previous theoretical studies of ultrasonic atten-
uation due to the spin-phonon interaction" were
preceded by the more general theories of irrevers-
ible prpcesses by Kubp ' and Mori, applied tp
magnetic systems. Tachiki and Maekawa' ex-
plicitly calculated the ultrasonic-attenuation coef-
ficient for a spin system to which a magnetic
field has been applied. The procedure used by
Tachiki and Maekawa will be followed here in the
calculation of the attenuation coefficient for a
longitudinal sound wave in Tb.

The ultrasonic-attenuation coefficient is ex-
pressed as a function of the time correlation of the
random force acting on the phonon as

S*, =(So) +S;. (2.24)

Therefore, (S&q) with q=0 and p=x in Eq. (2.20)
should read (S; ). We obtain the staggered spin
polarization by solving the self-consistent equation

Co

o-„= Re dt(fi(t), f*(0))e ' i'/u, (b-„, bg),
& p k
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with the relaxation function defined by

dZ (c""Ae ~B) —P(~)(a }.

In Eq. (3.1), v, is the speed of the longitudinal
sound wave and the random force is defined by

0

fI = br+ &'~rb~. (3.2)

If the relation

a)), ——i (b(, , b„)/(b), , b„'}

= ([b-„,b~) & yg(b-„, b~ }= I&a (b-„, b&),

O -+2f r,
= -t(2@i'"(c( ) (If-) .i+U-k. ~) (3.4)

where U ), , and U ), , were given in Eqs. (2.10) and
(2.11}. By using Eqs. (2.23), (3.3), and (3.4), the
attenuation coefficient (3.1) is calculated as

is used, (b-„, b-„) i s related to the phonon frequency
The frequency is changed by the spin-phonon

interaction. However, since this change is very
small, (c), and v, in Eq. (3.1) are replaced by those
of noninteracting phonons. The random force is
obtained from Eq. (3.2) as

~qo

a)„= (2pVu, ) 'Hegg l dt e )(' P g"-(k)S&(t)S „„(t)+b*(k}S-(t)S'- „(t)
Cf J

x g, k S~, O S-,„-„O)+hk)S -, 08';,,-„0 (3.5)

g ~ (k }=Q e'q' ~ ( i (k ' e-„)g (, (k}.

The magnetic field induces a uniform spin polarization in the x direction and spins fluctuate around it.
If Eq. (2.24) is used, the attenuation coefficient is rewritten. as

&„- =(2a)', ) 'ReI();,**(iciilf)(&*,)*
l) (pi()ls*-„(ol)8,

+ g dt e '
P,

' ggq (k}Sq(t)S'q -„(t)+b*(k)Sq(t)S'- (, (t),
o

q q' CX

x T(('„.(k)s';. (0)sf.i(0) ~ h(es =, {0)st.„-(o)')I,
n'

where S- with k = 0 and & = x in the last term reads
k

So. For the calculation of the second term in the
large parentheses of Eq. (3.7), we approximate the
four-spin relaxation function by products of the
two-spin relaxation functions with the use of the
decoupling approximation

(ab, cd) P '[(a, b)(c, —d) + (a, c)(b, d)

+ (a, d)(b, c) -P(ab)(cd }].

In the spin systems of metals the exchange inter-
action is of long range; hence, this decoupling
approximation may work well, except very near
the transition temperature where the correlation
length of the spin pair correlation function becomes
much longer than the force range of the exchange
interaction.

The next step to be done is to calculate the two-
spin relaxation function in a magnetic field. The
time dependence of the spin motion has the form
Sq(t)=SaqexP(i(caqt —I' t), where ~ and I'„are
the frequency and damping constants of the spin

However, it has been shown' that the attenua-
tion coefficient is almost independent of &-.
Therefore, neglecting q, we take

(S"-(t), S -(0))= (S-,S ~) exp(-I t)5 ~ (3.&)

(S-, S q) = (gus} 'X q. (3.9)

In the ease that the energy of the spin system is
dissipated by conduction electrons thxough the so-
called s finteraction, it -has been shown in Ref.
4 that I

q may be expressed as

I'; = t}(I,)'a/xs, (3.10}

where B is a constant independent of temperature.
We assume Eq. (3.10}for the damping constant of
the spins in Tb. According to the neutron-inelastie-
scattering experiment on Tb by Dietrich and Als-
Nielsen, " I"$ is proportional to (T —T„)~ and

pter is proportional to (T —T„) '". In what follows,
the assumptions I"~ —(T —T„)"and X-'- (T —T„)'

Q
appear to be reasonable approximations in view
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of the above experimental results.
Using Eqs. (3.8)-(3.10) we obtain &r& in the case

of I +&&g as

).gg. (gglgl(2)l'tgg, &g:))'(g1)'
2pVe) gps}'»'

constant. The vallle of 'Q for Tb ls about 0.1(211/
c,), vrhere c, is the lattice constant along the e
axis and this value of 4 is small. Therefore, we
expand J2 for small q from Eq. (2.21) and obtain

2J'~ =24+Dtt q', -Aq', —Dg(q,'+q', ),

~I lg-', (2) ~ g(2) l*gg ). (3.1'.)

~here O'„Dii, D~, and A. are positive constants.
The condition that J@ should have a maximum at
the wave number /gives a relation between Dlt
and A

(3.13)

The exchange constant (2.21) includes the stratn-
dependent parts vrhich are temperature and field
dependent. However, me neglect these parts vrhich
are very small compared with the usual exchange

Inserting the value of 4, from Eq. (3.12) into Eq.
(2.27) and then inserting the resulting value of
}('.

q into Eq. (3.11) and summing q in Eq. (3.11)
over the Brillouin zone, me have

&,G, kqTV, A ~' 2&x+Dii +g -Dii p~yg g 3/" gW„+Bit ~,'/" —D2i,= AMATI' 4
i —2ZG, B)iD, &o, (&d —

D2)t )((d)/2 D„u}2/2 BvD, ~„(&,-D(t)(~, '-Dtt)' '

I2JgT2/, ig', (k) +h(k) i' /I '/' —2&d, +Dtt 0
(3.14)

~.= 4&(I —2~,GJ/G„,

Ej = Rig*(K) i'/2pVegB,

(3.15)

(3.16)

where vo is the volume per spin. In the paramagnetic phase and in the absence of a magnetic field, Eq.
(3.14) reduces to the usual mean-field-theory result which gives &2), proportional to (7 —T„) ' '.

IV. SOUND VELOCITY

Following the procedure in the previous paper' we obtain from Eq. (3.3) the sound-frequency shift

-„= —((B/2pV „)((I/-„,, +U;,)(U -, +U,,)) (4.1)

If we use Eq. (2.10) for IJ), , and Eq. (2.11) for U„„h&g)-„ is expressed as a function of four-spin correla-
tions. In the same way as the attenuation case, the four-spin correlation function is decoupled into a
product of the bvo-spin correlation functions, and these two-spin correlation functions are replaced by
the staggered susceptibilities, using the relation (3.9). Then, the velocity change is calculated as

(4.2)

g" =g~iig= -tg"w(g&) g*t (glg (2')l &'& ))*ggg*';g

~ g,gI' ig'- (2) I
*(g'-„)*+g,gI; Ig*,(2) I

'( )'+ PgI I g(2) + gt)I'(g-',g)'g).

q

Inserting Eq. (3.12} into Eq. (4.2) and making the summation of q in Eq. (4.2) over the Briilouin zone, we
have

1-2J,G, 16mB 1-2Z,G,
g,/2 + ~P~o

16 () t —)Z,G„)
(~1/2 D )1/2

I,T~, ig'.(k}+a(k} i' G,
1evD ig*,(k)i' I —2J,G,

(~)/2 D )4gg (4.3}
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In the paramagnetic phase and in the absence of a
magnetic field, Eq. (4.3) reduces to the usual
mean-field-theory result which gives AV, pro-
portional to (T —T„) ' '.

V. EXPERIMENT

A. Procedure

We obtained our data on a sample of single-cry-
stal terbium obtained from Metals Research, Ltd.
The sample was cylindrical in shape, having a
diameter and length of 0.61 cm and 1.36 cm, re-
spectively. The ends of the sample were cut nor-
mal to the c axis of the hcp crystallographic
structure. A 15-MHz fundamental x-cut (longitu-
dinal wave) quartz transducer was bonded to one
end of the sample using an epoxy bonding process. "
Figure 1 shows the experimental arrangement.

The pulse-echo technique was employed in moni-
toring the ultrasonic attenuation with a commer-
cially available Matec package. Except where
specifically noted, the data presented in this paper
are double-echo type. We anticipated that sample
deformations might occur when the temperature
and applied magnetic field were changed, which
could alter the bond coupling the transducer to
the sample. The double-echo method of signal
analysis virtually eliminates such nonintrinsic
effects from the data.

The temperature was monitored via a copper-
constantan thermocouple and controlled by a
thermocouple feedback-energized heater system.
The absolute accuracy of the temperature data is
estimated to be +0.5'K, while the relative accu-
racy is estimated as +0.1'K.

Signal frequencies were measured by visually
displaying and superposing the Matec pulse and a
continuous wave of known frequency on the screen
of a model 7904 Tektronix oscilloscope. The fre-

quency range employed was 15-225 MHz.
The sample was suspended in a controlled en-

vironment provided by a standard He cryogenic
system. Highly uniform magnetic fields were
supplied by a 15-in. Varian electromagnet, pro-
ducing fields up to 17 koe with a field inhomo-
geneity of seven parts in 10' over a cube with
2-in. sides. The field was applied normal to the
c axis of the crystal.

B. Results

In Fig. 2 we show the 15-MHz longitudinal
ultrasonic attenuation in terbium from room tem-
perature to 50 K. The significant feature is the
rather large attenuation peak at 219.7 'K with an
accompanying shoulder around 225'K, which we
associate with the two magnetic-ordering phase
transitions in terbium: the paramagnetic to
spin-spiral transition at the higher temperature,
and the spin-spiral to ferromagnetic transition
at the lower temperature. For these data the ex-
ternal magnetic field (H) is zero, and the behavior
agrees qualitatively with previously reported
data. ' " In Fig. 3 we have plotted the attenua-
tion as a function of temperature in the para-
magnetic region for several frequencies in the
range 15-225 MHz with H=O. For each frequency
the zero of attenuation was found by raising the
temperature to about 300'K where the attenua-
tion is relatively unaffected by temperature
changes, and using this high-temperature attenua-
tion level as the reference level. In Fig. 4, we
show the frequency dependence of the data in Fig.
3 at five representative temperatures. The atten-
uation is plotted against the square of the ultra-
sonic frequency, giving a fairly good linear fit
and indicating a quadratic dependence of the atten-
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FIG. 1. Diagram illustrating the experimental ar-
rangernent. The ransducer, depicted at the cylinder
end, acts as both signal transmitter and receiver. The
c axis coincides with the cylinder axis; H is normal to
the c axis.

0
50 IOO I50 200

T( K)
250 300

FIG. 2. Zero-field attenuation of 15-MHz longitudinal
sound waves propagating along the c axis in single-
crystal terbium.
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FIG. 6. Low-field region from Fig. 5, showing quad-
ratic behavior of attenuation for small H.

for small H. Similar results have been reported
for holmium' and MnP. ''

In Fig. 7 we have plotted the attenuation as a
function of temperature as the sample was
cooled through the critical region in a constant
small magnetic field. Of particular interest is
the magnitude of the enhancement which results
eventually in a second peak aroung H =1 kOe.
This enhancement continues as H is inex'eased
to 2.5 kOe, as shown in Fig. 8. Further in-
crease of the applied field reduces the attenua-
tion, as shown in Fig. 9. Qualitative agree-
ment of our theoretical attenuation expxession
with the data in Fig. 9 will be shown in Fig.
12.

In Figs. S and 9 it was necessary to use both
single- and double-echo techniques to obtain the
data shown, due to the large total attenuation
in our sample. For magnetic fields 2 ~H ~ 3.5
kOe we found that the second echo was near or

FIG. 8. Constant-field attenuation data showing
maximum enhancement.

in the noise level when the temperature was at
the point of maximum attenuation. We there-
fore made duplicate runs using the single- and
double-echo methods and matched the two types
of data at temperatures above and below the
transition temperature to get complete informa-
tion about the entire temperature region of in-
terest.

An obvious feature of the attenuation versus
temperature data, besides the aforementioned
enhancement, is the shift in temperatuxe of the
attenuation maxima when the applied field
changes. By associating these maxima with
magnetic phase transitions, one can get a pic-
ture of the magnetic phase diagram implied by
the data. The particular shape taken by the
attenuation versus temperature curves is as-
sumed to arise from the relatively close prox-
imity of the transition temperatures T„and Tc.

By picking up the attenuation-maxima tem-
peratures and plotting them against the eorre-
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FIG. 7. Constant-field attenuation data when H is
sma. ll. Note enhancement which leads to another maxi-
mum.

l90 200 2IO 220 230 240 250 260 270 280
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FIG. 9. Constant-field attenuation data showing onset
of suppression produced by the applied field.
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FIG. 10. Graph of the constant-field attenuation max-
ima showing the applied fields and corresponding tem-
peratures at which they occur.

sponding magnetic field strengths, one gets the
graph shown in Fig. 10. This graph can be
viewed as an approximation to the magnetic
phase diagram of terbium and interpreted as
follows: the curves emanating from the H =0
axis mark the Neel and Curie temperatures,
T„and T~; the application of a magnetic field
moves T~ and Tc toward each other, until the
critical field H, =35 kOe is reached and T„
coincides with Tc; for fields higher than H,
one expects a uniform phase, varying contin-
uously from a more paramagneticlike phase in
the high-temperature region to the more ferro-
magnetic type as the temperature is decreased.
The paramagnetic region is labeled A and the
spin-spiral region is labeled B. Regions A,
F-I, and F-II, for fields greater than H, , are
considered to be different regions of the uni-
form phase, where region F-I is more ferro-
like than A, and region F-II is more ferro-
like than F-I. The existence of attenuation
maxima in the uniform-phase region may be
attributable to fluctuations due to the onset of
short-range ordering parallel to and perpendi-
cular to the applied field in the basal plane;
short-range ordering parallel to H (ferrolike)
would be expected to occur at a higher tem-
perature than short-range ordering perpendi-
cular to H.

An important point to note here is that in
Fig. 10 we used the external magnetic field,
not the internal effective field, as the field
responsible for the phase transitions. Because
of the cylindrical shape of our sample, one

VI. EXPLANATION OF EXPERIMENTAL RESULTS

A. Attenuation of longitudinal sound

The parameters which are contained in the
expression of the attenuation coefficient, Eq.
(3.14), are determined in the following way.
The anisotropy constant D is related to the
parallel paramagnetic Curie temperature 8~~

and the perpendicular paramagnetic Curie
temperature 8~ with the relation

ks(8i —Hp) = +o D[4S(S +1) —3]. (6.1)

By using the value of 6)~ —
~~] =44'K," D is

determined to be D =1.57 K. Jenson' has
obtained the elastic constant c'& on Tb by mea-
suring the shear-elastic-wave velocity at room
temperature. He finds c& =9.20 && 10" dyn/cm'.
The magnetostriction coefficient A" has been
determined by Rhyne and Legvold" to be ~" (T = 0)
=8.8 & 10 '. Using this value and the relation
B& =2c&M/S(2S —1), we estimate B as 50 'K/
atom. Marsh and Sievers, "Wagner and Stan-
ford, " and Sievers" have made magnetic-res-
onance experiments and estimated the value
of J3& from the gap of the spin-wave and the
anisotropy constants on the basis of the frozen-

must consider the contribution of the demag-
netizing fields to the local magnetic field seen
by the spins. The ratio of the length to the
diameter in our sample is 2.24.

Using the table by Bozorth, " the demagnetiz-
ing factor along the cylinder axis is about
0.12(4s). The table lists demagnetizing factors
when the external field is along the cylinder
axis. However, our experiments were done
with the external field normal to the cylinder
axis. For cylinders, we have approximately

Njt +2N~ =4m

in cgs units, whence

N~ = —,'(4w —N~~) = ~[4w —0.12(4s)] = 5.53.

Using the magnetization data of Hegland et al."
for Tb for a reduced temperature of T/T„
=225/226. 3 =0.994, we may compute

KL + NJM Key)

where H& is the internal field. In this way one
finds that H,„= 3.5 kOe for H& = 820 Oe. There-
fore our experimentally determined value of
the critical field, H, = 3.5 kOe (Fig. 10), at
T/T„=0.994 implies an internal-field strength
of about 820 Oe; this is in good agreement
with the data of Thoburn et al." and Hegland
et al. ,

" their value being 800 Oe for the field
sufficient to quench the spin-spiral state.
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model to be 76'K/atom (Marsh and

Sievers), 64.4'K/atom (Wagner and Stanford),
100 'K/atom (Sieve rs) . We tentatively take

100 K/atom for B&.
The parameters 8,, D~~, and A in Eq. (3.12)

are related to Q, T„, and H, : (i) The wave
number q which is a function of Djj and A, as
seen in Eq. (3.13). ranges from 0.115(2v/c, ) to
0.095(2v/c~) depending on the temperature. "
We take 0.10(2v/co) for Q and neglect the tem-
perature dependence of Q. (ii) In the mean-
field approximation, the Neel temperature is
expressed as

(6.2)

In general, this equation gives a transition
temperature which is higher than the real value,
since this equation does not include the contri-
bution of the spin fluctuation to the energy.
Therefore, T~ should rather be considered as a
parameter which may be adjusted to find the
best agreement with the experimental data. We

take 228.5 for T„. From these expressions for
Q and T~, Jo and D~~ are expressed as functions
of A. (iii) The paramagnetic to spin spiral
transition is of second order and X& diverges

Q
at this transition point. When A is fixed, T„
decreases with increasing magnetic field, and

above a certain value of the magnetic field
g-' does not diverge at any temperature, since
0

the spin-spiral phase disappears above the
critical field H, . The value of H, is a func-
tion of the parameter A, and H, coincides
with our experimental value of 3.5 kOe for A
=1.624c', 'K. In order to facilitate comparison
with the experimental data the effect of the
demagnetization factor has been absorbed into
this value of A by using H, =3.5 kOe instead
of H, =820 Oe. From the values of A, T„, and

Q, J,, and Dj~ are determined to be V. 717 K
and 1.297c', 'K, respectively. We leave D~ in
Eq. (3.12) as an adjustable parameter and

determine it by comparison with the field de-
pendence of the attenuation coefficient.

First we calculate the attenuation coefficient
when the temperature is fixed and the mag-
netic field is changed. The expression of the
attenuation coefficient is given by Eq. (3.14).
If )h(k) ( is comparable to )g'(k) (, the last
term in the square bracket of Eq. (3.14) is
negligibly small compared with the other terms
in the vicinity of the critical temperature,
since the spin fluctuation along the c axis is
strongly suppressed. For determining the

adjustable parameter D~/vo, we calculated
o'-„/I"-„as a function of the magnetic field and the
parameter D~/v„holding the temperature at
233.7'K. The calculated e jI'- has a maximum

k k
at a certain magnetic field whose value depends
on the magnitude of Djlv, and which coincides
with the experimental value of 5 kOe when D~ jvo
is 90'K/c, . The value of F& is determined from
the magnitude of the attenuation at the maximum
point. Using these values, we obtain the field
dependence of the attenuation coefficient for
various temperatures and show the results in
Fig. 11. As seen from the figure, agreement
between theory and experiment is satisfactory.
We did not show the calculated values of the
attenuation corresponding to 228.9 and 229.6 K
in the figure for the following reason. The at-
tenuation coefficient is expressed as a function of
susceptibilities, as seen in Eq. (3.11); but the
susceptibility calculated by the mean-field ap-
proximation does not agree with experimental
observations at temperatures within &% of the
zero-field Neel temperature. Therefore it would
not be expected that the theoretical curve for
&& would agree with the experimental data within
this temperature range.

Figure 12 shows the temperature dependence of
the attenuation coefficient for several values of
magnetic fie1d above H, . Curve a, which corre-

E

CQ 4.-a

I5 MHz

a) 228.9'K
b) 229.6 K

c) 23I.6 K

d) 233.7'K
) 2382'K

0 2 4 6 8 IG l2 I4 l6
H(kOe)

FIG. 11. Magnetic field dependence of the attenuation
in Tb measured from that in zero-field: Ze&(H}
= G.'z(H) —nE(0). Solid lines represent the calculated
values using Eq. {3.14), and black dots show the experi-
mental values.
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sponds to a magnetic field just above H, , has a
large maximum at a low temperature and a
shoulder at a high temperature. The low-tem-
perature peak decreases rapidly with increasing
field. The characteristics exhibited here are
seen in the experimental curves of Fig. 9.

The attenuation peak at the lower temperature
comes from the contribution of the y-component
term in the large parentheses in Eq. (3.11}.
This peak may be understood as follows. The
exchange interaction acts on spins to order them
with the wave number Q, and thus enhances Xo.
At high temperatures, this effect is weakened by
the thermal agitation of spins and && decreases.
On the other hand, at low temperatures the mag-
netoelastic interaction suppresses the spin
fluctuations in the y direction, and thus this in-
teraction decreases XQ. As a result, Y& has a
maximum at an intermediate temperature near
T„. This maximum leads to the maximum of the
attenuation coefficient at the lower temperature.
The attenuation peak at the higher temperature
comes mainly from the first term in the large
parentheses in Eq. (3.11}. In a magnetic field the
magnitude of the product of (S*,) and X*-„has a
maximum slightly above T„. Therefore we have
two peaks in the attenuation coefficient above H, .
The low-temperature peak is just a function of

X-'. The susceptibility and thus the peak heightQ'
rapidly decrease with increasing magnetic field.
This is apparent by the rapid decrease and even-
tual disappearance of the low-temperature peak
both experimentally (Fig. 9} and theoretically
(Fig. 12} as the magnetic field is increased. On

the other hand, the high-temperature peak is
proportional to the square of the product of (So)
and X&. Since (S;}is an increasing quantity with
magnetic field, the decreasing rate of the pro-
duct (S*,) X~ in a magnetic field is weakened com-

X

pared with that of Xq. Consequently, the decreas-
ing rate of the high-temperature peak is much
smaller than that of the low-temperature peak as
seen in Figs. 9 and 12. The phase diagram ob-
tained in our experiment (Fig. 10} shows the change
of the short-range order of the spins as well as
that of the long-range order. When the tempera-
ture decreases in a magnetic field above H„ the
short-range order of the spin component in the
field direction becomes maximal at the boundary
between the A and F-I phases. With further de-
creasing temperatures, the sinusoidal short-range
order of the spin component perpendicular to the
field direction in the c plane becomes maximal
around the boundary between the F-I and F-II
phases.

30-
Hc= 3.5 kOe

H=

~~ 20-
ca~
0

IO-

0.90 0.95
T/TN

1.0 I.05

FIG. 12. Temperature dependence of the attenuation in
a magnetic field applied normal to the c axis, calculated
from Eq. (3.14). This behavior is to be compared to the
experimental data in Fig. 9.

B. Velocity change of longitudinal sound

Luthi et al.' have measured the sound velocity
change of Gd, Tb, Ho, and Dy in a magnetic field.
They plotted the relative change for a 10 kOe field
Av, = [v, (H, T) —v, (0, T)]/v, (0, T) vs T —T„, where
v, (H, T) is the velocity in a field H at a tempera-
ture T. Their results for Gd, Tb, and Ho, are as
follows: Av, is negative for most of the paramag-
netic phase and is positive only close to T„
(T —TN ~0.1T~). Below T~, hv, is positive. We
calculated Dv, at fields of 5, 10, and 15 kOe in
the paramagnetic region using Eq. (4.3). The last
term in Eq. (4.3), which originates from spin fluc-
tuations in the z direction, can be neglected owing
to the large uniaxial anisotropy as discussed in the
case of the attenuation. The parameter F'„-/v, was
determined from the experimental value at a 10
kOe field and a temperature of T —T~ = 5 K. The
temperature dependence of Av, is shown in Fig.
13. This temperature variation is in a.greement
with the experimental results mentioned above.
The drastic temperature variation of Av, is due
to the following facts. The magnitude of the dip
in the velocity change at T„diverges in the absence
of a magnetic field. However, in a magnetic field
this diverges disappears. This effect makes Dv,
positive very close to T~. The fact that Av, is
negative for most of the paramagnetic phase is
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FIG. 13. Calculated values of ultrasonic velocity
change using Eq. (4.3). Black dots are experimental
data points obtained by Luthi et al . (Ref. 4) for Tb.

due to the large positive magnetic field dependence
of the first term in the large parentheses in Eq.
(4.2). As may be seen the principal magnetic field
dependence of this term comes from (S,")'.

VII. CONCLUDING REMARKS

We studied longitudinal sound propagation in Tb
under a magnetic field, with emphasis on the con-
tribution of spin fluctuations on the sound attenua-
tion. In this respect the following properties of
Tb were significant: First, the exchange energies
between the ferromagnetic and the spin-spiral
states are very close-therefore, when we consider
the critical fluctuations of spins we must treat both
the ferromagnetic and sinusoidal spin fluctuations
at the same time; second, the magnetoelastic in-
teraction has a significant effect on the spin fluc-
tuations.

We have observed strong enhancement of the
attenuation by the magnetic field in the paramag-
netic phase near T„. The model we have proposed
has explained this enhancement and the complicated
velocity change in a magnetic field observed by
Luthi et al. '
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APPENDIX

When we define a and A„as
a =-p(-2 J,o, +gp, eff),

and

(A1)

mne am
n 7 (A2)

we have

We obtained the phase diagram of Tb which
shows the change of the short-range order of spins
as well as that of the long-range order. We esti-
mated the critical value of the internal field, at
which the syin-spiral phase disappears, as 820 Oe.

In addition to the two peaks which originate from
the phase transitions, we have observed two anom-
alous peaks by increasing the external field beyond
the critical field. We explained these two anom-
alous peaks as follows: The spin fluctuations be-
come anisotroyic in the magnetic field. When we
change temperature with a fixed value of the field,
the properties of the spin fluctuations do not
change monotonically but change rapidly around a
certain temperature in a uniform phase. This rap-
id change occurs in each component of spin almost
independently, and leads to the anomalous attenua-
tion peak. The magnetic field leads to a maximum
of the spin fluctuation in the field direction and the
magnetostriction leads to a maximum of the spin
fluctuation perpendicular to the field direction.
Thus it appears that ultrasonic attenuation is very
useful not only for studying phase transitions of
magnetic systems but also for studying changes in
the short-range order of spins as a function of
temperature and magnetic field.

-3 ', ' +2 ', ' — ' — S S+1 —3

AA, AA, A, 13 (A2)

2A a 4aA, 2a A,

S(S 1) 3 ' ~ ~ ' ' ~S(S 1)8c&aA, . A, Sa a 4A, 4

Y, = -(sinhag, —2(sinh~a) A, + S(S+ 1)(sinha)A„

(A4)

(AS)
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y -A 8 (8 + 1){1.+ g sjnhg —coshg) +A, [2S{8+1) —1]{acoshg —sinha)

+A,[8(8 + l)a sinha —3a sinha —3+ 3 cosha j

-A.,(3a cosha —2sinha —a) -A, a sinha, (A6)

1;=A, [S '(8 + 1)'(-', ——,'cosh2a+ 2a sinha)+8(8 + 1)(-1+cosh2a —2a sinha)]

+A, [28 (8 + 1)(a+sinh2a —3a cosha) +2a cosha —sinh2a j

+A, [S(8 + l)(cosh2a -4a sinha —1)+ —,'+ —,'cosh2a+ 6a sinha j
+ 2A, (2a cosha —sinh2a —a)+A. ,(2asinha --,'cosh2a+ —,'),

Z Pg), A, Z, P(B&)'
)

A, Z„, 3A, Z, S(8+ 1)Z,

Z, =~ {sinha)S(8+1)+(1-cosha) ' —(sinha)
A A, , A
2Q Ao A,

Ao ~A ~A', 8(8+1) 1+asinha-coshg —2 ~ (»nhg -acosha)+asinhg ~
20 Ao Ao

+ (sinha -a cosha) —3(1+a sinha —cosha)
A. ~ A2

A() Ao

+ (a+ 2sinha —3a cosha) —g sinhaA, . A4

Z„=- ', (1-cosha) 8'(8+1)'-[28(8+1)+1) ' +Ao A, A, t
d 8+2

I

-2(1+a sinha —cosha) 8'(8+ 1)' —S(S+ 1) —2S(S+ 1) ' + 3 ' +
Ao Ao Ao

2(ainha-acoaha) -38(s ll{ ') ( ') 3( ')

+ 2(l —cosha) 8'(8+1)' —2S(S+ 1) ' + ' + 2(a —sinha) —8(8+1) ' +
] Ao Ao A A

--,'{1+cosh2a —2cosha) 8'(8+1)' —2S(S+1) —28(S+1) ' +5 ' +
Ao Ao Ao

+-,'(2sinha —sinh2a) -48(S+1) —'- +2 — ' +4
Ao Ao Ao

%hen the spin polarization 0, is less than 0.3 times the spin value 8, 6„ is expressed as

P 'G„= 1 ——[8'+ (S+ 1)'] + S(S+ 1)[48(S+1) —3]+ 4 &
S'(S+ 1)'[4S(8+1)—3]'a',S(S+ 1) a'

2 pD

P 'G, = 1 ——[8'+ (8+ 1)'] + S(S+ 1)[4S(8+ 1) —3] — S2(8+ 1)'[4S(8+1) —3]'a',S(S+ 1) a'
» PD

{A13)

P 'G, = 1 ——[8'+ (8+1)'] — S(8+1)[48(8+1)—3]. (a14)
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